Optimal Design of a CMOS Op-amp via Geometric Programming

Maria del Mar Hershenson, Stephen P. Boyd, Thomas H. Lee

Electrical Engineering Department Stanford University Stanford CA 94305
marita@smirc.stanford.edu, boyd@isl.stanford.edu tomlee@smirc.stanford.edu

Submitted to Transactions on Computer-Aided Design, November 1997

Abstract

We describe a new method for determining component values and transistor dimensions for CMOS operational amplifiers (op-amps). We observe that a wide variety of design objectives and constraints have a special form, i.e., they are posynomial functions of the design variables. As a result the amplifier design problem can be expressed as a special form of optimization problem called geometric programming, for which very efficient global optimization methods have been developed. As a consequence we can efficiently determine globally optimal amplifier designs, or globally optimal trade-offs among competing performance measures such as power, open-loop gain, and bandwidth. Our method therefore yields completely automated synthesis of (globally) optimal CMOS amplifiers, directly from specifications.

In this paper we apply this method to a specific, widely used operational amplifier architecture, showing in detail how to formulate the design problem as a geometric program. We compute globally optimal trade-off curves relating performance measures such as power dissipation, unity-gain bandwidth, and open-loop gain. We show how the method can be used to synthesize robust designs, i.e., designs guaranteed to meet the specifications for a variety of process conditions and parameters.

Contents

1 Introduction 3
1.1 The two-stage amplifier 4
1.2 Other approaches 5
1.3 Outline of paper 8
2 Geometric programming 8
2.1 Geometric programming in convex form 9
2.2 Solving geometric programs 10
2.3 Sensitivity analysis 11
3 Dimension constraints 12
3.1 Symmetry and matching 12
3.2 Limits on device sizes 12
3.3 Area 12
3.4 Systematic input offset voltage 13
4 Bias conditions, signal swing, and power constraints 13
4.1 Bias conditions 14
4.2 Gate overdrive 15
4.3 Quiescent power 15
5 Small signal transfer function constraints 15
5.1 Small signal transfer function 15
5.2 Open-loop gain constraints 17
5.3 Minimum gain at a frequency 17
5.43 dB bandwidth 17
5.5 Dominant pole conditions 18
5.6 Unity-gain bandwidth and phase margin 18
6 Other constraints 20
6.1 Slew rate 20
6.2 Common-mode rejection ratio 20
6.3 Power supply rejection ratio 21
6.4 Noise performance 21
7 Optimal design problems and examples 22
7.1 Summary of constraints and specifications 22
7.2 Example 24
7.3 Trade-off analyses 24
7.4 Sensitivity analysis example 29
7.5 Design verification 31
8 Design for process robustness 34
9 Discussions and conclusions 37
A MOSFET models 39
A. 1 Large signal models 39
A. 2 Small signal models 40
B Derivation of bias conditions 42
C Technology parameters 44

1 Introduction

As the demand for mixed mode integrated circuits increases, the design of analog circuits such as operational amplifiers (op-amps) in CMOS technology becomes more critical. Many authors have noted the disproportionately large design time devoted to the analog circuitry in mixed mode integrated circuits. In this paper we introduce a new method for determining the component values and transistor dimensions for CMOS op-amps. The method handles a very wide variety of specifications and constraints, is extremely fast, and results in globally optimal designs.

The performance of an op-amp is characterized by a number of performance measures such as open-loop voltage gain, quiescent power, input-referred noise, output voltage swing, unity-gain bandwidth, input offset voltage, common-mode rejection ratio, slew rate, die area, and so on. These performance measures are determined by the design parameters, e.g., transistor dimensions, bias currents, and other component values. The CMOS amplifier design problem we consider in this paper is to determine values of the design parameters that optimize an objective measure while satisfying specifications or constraints on the other performance measures. This design problem can be approached in several ways, for example by hand or a variety of computer-aided design methods, e.g., classical optimization methods, knowledge-based methods, or simulated annealing. (These methods are described more fully below).

In this paper, we introduce a new method that has a number of important advantages over current methods. We formulate the CMOS op-amp design problem as a very special type of optimization problem called a geometric program. The most important feature of geometric programs is that the globally optimal solution can be computed with great efficiency, even for problems with hundreds of variables and thousands of constraints, using recently developed interior-point algorithms. Thus, even challenging amplifier design problems with many variables and constraints can be (globally) solved.

The fact that geometric programs (and hence, CMOS op-amp design problems cast as geometric programs) can be globally solved has a number of important practical consequences. The first is that sets of infeasible specifications are unambiguously recognized: the algorithms either produce a feasible point or a proof that the set of specifications is infeasible. Indeed, the choice of initial design for the optimization procedure is completely irrelevant (and can even be infeasible); it has no effect on the final design obtained. Since the global optimum is found, the op-amps obtained are not just the best our method can design, but in fact the best any method can design (with the same specifications). In particular, our method computes the absolute limit of performance for a given amplifier and technology parameters.

The fact that geometric programs can be solved very efficiently has a number of practical consequences. For example, the method can be used to simultaneously optimize the design of a large number of op-amps in a single large mixed mode integrated circuit. In this case the designs of the individual op-amps are coupled by constraints on total power and area, and by various parameters that affect the amplifier coupling such as input capacitance, output resistance, etc. Another application is to use the efficiency to obtain robust designs, i.e., designs that are guaranteed to meet a set of specifications over a variety of processes or technology parameter values. This is done by simply replicating the specifications with a

Figure 1: Two stage op-amp considered in this paper.
(possibly large) number of representative process parameters, which is practical only because geometric programs with thousands of constraints are readily solved.

The method we present can be applied to a wide variety of amplifier architectures, but in this paper we apply the method to a specific two-stage CMOS op-amp. The authors show how the method extends to other architectures in another paper [1].

1.1 The two-stage amplifier

The specific two-stage CMOS op-amp we consider is shown in Figure 1. The circuit consists of an input differential stage with active load followed by a common-source stage also with active load. An output buffer is not used; this amplifier is assumed to be part of a VLSI system and is only required to drive a fixed on-chip capacitive load of a few picofarads. This op-amp architecture has many advantages: high open-loop voltage gain, rail-to-rail output swing, large common-mode input range, only one frequency compensation capacitor, and a small number of transistors. Its main drawback is the nondominant pole formed by the load capacitance and the output impedance of the second stage, which reduces the achievable bandwidth. Another potential disadvantage is the right half plane zero that arises from the feedforward signal path through the compensating capacitor. Fortunately the zero is easily removed by a suitable choice for the compensation resistor R_{c} (see [2]).

This op-amp is a widely used general purpose op-amp [3]; it finds applications for example in switched capacitor filters [4], analog to digital converters [5, 6], and sensing circuits [7].

There are 18 design parameters for the two-stage op-amp:

- The widths and lengths of all transistors, i.e., W_{1}, \ldots, W_{8} and L_{1}, \ldots, L_{8}.
- The bias current $I_{\text {bias }}$.
- The value of the compensation capacitor C_{c}.

The compensation resistor R_{c} is chosen in a specific way that is dependent on the design parameters listed above (and described in $\S 5$). There are also a number of parameters that we consider fixed, e.g., the supply voltages V_{DD} and V_{SS}, the capacitive load C_{L}, and the various process and technology parameters associated with the MOS models.

1.2 Other approaches

There is a huge literature, which goes back more than twenty years, on computer-aided design of analog circuits. A good survey of early research can be found in the survey [8]; more recent papers on analog circuit CAD tools include, e.g., $[9,10,11]$. The problem we consider in this paper, i.e., selection of component values and transition dimensions, is only a part of a complete analog circuit CAD tool. Other parts, that we do not consider here, include topology selection (see, e.g., [12]) and actual circuit layout (see, e.g., ILAC [13], KOAN/ANAGRAM II [14]). The part of the CAD process that we consider lies in between these two tasks; the remainder of the discussion is restricted to methods dealing with component and transistor sizing.

Classical optimization methods

General purpose classical optimization methods, such as steepest descent, sequential quadratic programming and Lagrange multiplier methods, have been widely used in analog circuit CAD. These methods can be traced back to the survey paper [8]. The widely used general purpose optimization codes NPSOL [15] and MINOS [16] are used in, e.g., [17, 18, 19]. Other CAD methods based on classical optimization methods, and extensions such as a minimax formulation, include the one described in [20, 21, 22], OAC [23], OPASYN [24], CADICS [25], WAPOPT [26], and STAIC [27]. The classical methods can be used with more complicated circuit models, including even full SPICE simulations in each iteration, as in DELIGHT.SPICE [28] (which uses the general purpose optimizer DELIGHT [29]) and ECSTASY [30].

The main advantage of these methods is the wide variety of problems they can handle; the only requirement is that the performance measures, along with one or more derivatives, can be computed. The main disadvantage of the classical optimization methods is they only find locally optimal designs. This means that the design is at least as good as neighboring designs, i.e., small variations of any of the design parameters results in a worse (or infeasible) design. Unfortunately this does not mean the design is the best that can be achieved, i.e., globally optimal; it is possible (and often happens) that some other set of design parameters, far away from the one found, is better. The same problem arises in determining feasibility: a classical (local) optimization method can fail to find a feasible design, even though one exists. Roughly speaking, classical methods can get stuck at local minima. This shortcoming is so well known that it is often not even mentioned in papers; it is taken as understood.

The problem of nonglobal solutions from classical optimization methods can be treated in several ways. The usual approach is to start the minimization method from many different initial designs, and to take the best final design found. Of course there are no guarantees
that the globally optimal design has been found; this method merely increases the likelihood of finding the globally optimal design. This method also destroys one of the advantages of classical methods, i.e., speed, since the computation effort is multiplied by the number of different initials designs that are tried. This method also requires human intervention (to give "good" initial designs), which makes the method less automated.

The classical methods become slow if complex models are used, as in DELIGHT.SPICE, which requires more than a complete SPICE run at each iteration ("more than" since the gradients and second derivatives must also be computed).

Knowledge-based methods

Knowledge-based and expert-systems methods have also been widely used in analog circuit CAD. Examples include genetic algorithms or evolution systems like SEAS [31], DARWIN [32, 33]; systems based on fuzzy logic like FASY [34] and [35]; special heuristics based systems like IDAC [36, 37], OASYS [38], BLADES [39], and KANSYS [40].

One advantage of these methods is that there are few limitations on the types of problems, specifications, and performance measures that can be considered. Indeed, there are even fewer limitations than for classical optimization methods since many of these methods do not require the computation of derivatives.

These methods have several disadvantages. They find a locally optimal design (or, even just a "good" or "reasonable" design) instead of a globally optimal design. The final design depends on the initial design chosen and the algorithm parameters. As with classical optimization methods, infeasibility is not unambiguously detected; the method simply fails to find a feasible design (even when one may exist). These methods require substantial human intervention either during the design process, or during the training process.

Global optimization methods

Optimization methods that are guaranteed to find the globally optimal design have also been used in analog circuit design. The most widely known global optimization methods are branch and bound [41] and simulated annealing [42, 43].

A branch and bound method is used, for example, in [12]. Branch and bound methods unambiguously determine the global optimal design: at each iteration they maintain a suboptimal feasible design and also a lower bound on the achievable performance. This enables the algorithm to terminate nonheuristically, i.e., with complete confidence that the global design has been found within a given tolerance. The disadvantage of branch and bound methods is that they are extremely slow, with computation growing exponentially with problem size. Even problems with ten variables can be extremely challenging.

Simulated annealing (SA) is another very popular method that can avoid becoming trapped in a locally optimal design. In principle it can compute the globally optimal solution, but in implementations there is no guarantee at all, since, for example, the cooling schedules called for in the theoretical treatments are not used in practice. Moreover, no real-time lower bound is available, so termination is heuristic. Like classical and knowledgebased methods, SA allows a very wide variety of performance measures and objectives to be handled. Indeed, SA is extremely effective for problems involving continuous variables and
discrete variables, as in, e.g., simultaneous amplifier topology and sizing problems. Simulated annealing has been used in several tools such as ASTR/OBLX [44], OPTIMAN [45], FRIDGE [47], SAMM [48] and [49].

The main advantages of SA are that it handles discrete variables well, and greatly reduces the chances of finding a nonglobally optimal design. (Practical implementations do not reduce the chance to zero, however.) The main disadvantage is that it can be very slow, and cannot (in practice) guarantee a global optimal solution.

Convex optimization and geometric programming methods

In this section we describe the general optimization method we employ in this paper: convex optimization. These are special optimization problems in which the objective and constraint functions are all convex.

While the theoretical properties of convex optimization problems have been appreciated for many years, the advantages in practice are only beginning to be appreciated now. The main reason is the development of extremely powerful interior-point methods for general convex optimization problems in the last five years (e.g., [51, 52]). These methods can solve large problems, with thousands of variables and tens of thousands of constraints, very efficiently (say, in minutes on a small workstation). Problems involving tens of variables and hundreds of constraints (such as the ones we encounter in this paper) are considered small, and can be solved on a small current workstation in less than one second. The extreme efficiency of these methods is one of their great advantage.

The other main advantage is that the methods are truly global, i.e., the global solution is always found, regardless of the starting point (which, indeed, need not be feasible). Infeasibility is unambiguously detected, i.e., if the methods do not produce a feasible point they produce a certificate that proves the problem is infeasible. Also, the stopping criteria are completely nonheuristic: at each iteration a lower bound on the achievable performance is given.

One of the disadvantages is that the types of problems, performance specifications, and objectives that can be handled are far more restricted than any of the methods described above. This is the price that is paid for the advantages of extreme efficiency and global solutions. (For more on convex optimization, and the implications for engineering design, see [53].)

The contribution of this paper is to show how to formulate the analog amplifier design problem as a certain type of convex problem called geometric programming. The advantages, compared to the approaches described above, are extreme efficiency and global optimality. The disadvantage is less flexibility in the types of constraints we can handle, and the types of circuit models we can employ.

As far as we know, the only other application of geometric programming to circuit design is in transistor and wire sizing for Elmore delay minimization in digital circuits, as in TILOS [54] and other programs [55, 56, 57]. Their use of geometric programming can be distinguished from ours in several ways. First of all, the geometric programs that arise in Elmore delay minimization are very specialized (the only exponents that arise are 0 and ± 1). Second, the problems they encounter in practice are extremely large, involving up to
hundreds of thousands of variables. Third, their representation of the problem as a geometric program is only approximate (since the actual circuits are nonlinear, and the threshold delay, not Elmore delay, is the true objective).

Convex optimization is mentioned in several papers on analog circuit CAD. The advantages of convex optimization are mentioned in [12, 58]. In $[19,59]$ the authors use a supporting hyperplane method, which they point out provides the global optimum if the feasible set is convex. In [60] the authors optimize a few design variables in an op-amp using a Lagrange multiplier method, which yields the global optimum since the small subproblems considered are convex.

1.3 Outline of paper

In $\S 2$, we briefly describe geometric programming, the special type of optimization problem at the heart of the method, and show how it can be cast as a convex optimization problem. In §3-6 we describe a variety of constraints and performance measures, and show that they have the special form required for geometric programming. In $\S 7$ we give numerical examples of the design method, showing globally optimal trade-off curves between various performance measures such as bandwidth, power, and area. We also verify some of our designs using high fidelity SPICE models, and briefly discuss how our method can be extended to handle short-channel effects. In $\S 8$ we discuss robust design, i.e., how to use the methods to ensure proper circuit operation under various processing conditions. In $\S 9$ we give our concluding remarks.

2 Geometric programming

Let x_{1}, \ldots, x_{n} be n real, positive variables. We will denote the vector $\left(x_{1}, \ldots, x_{n}\right)$ of these variables as x. A function f is called a posynomial function of x if it has the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{k=1}^{t} c_{k} x_{1}^{\alpha_{1 k}} x_{2}^{\alpha_{2 k}} \cdots x_{n}^{\alpha_{n k}}
$$

where $c_{j} \geq 0$ and $\alpha_{i j} \in \mathbf{R}$. Note that the coefficients c_{k} must be nonnegative, but the exponents $\alpha_{i j}$ can be any real numbers, including negative or fractional. When there is only one term in the sum, i.e., $t=1$, we call f a monomial function. (This terminology is not consistent with the standard definition of a monomial in algebra, but it should not cause any confusion.) Thus, for example, $0.7+2 x_{1} / x_{3}^{2}+x_{2}^{0.3}$ is posynomial (but not monomial); $2.3\left(x_{1} / x_{2}\right)^{1.5}$ is a monomial (and, therefore, also a posynomial); while $2 x_{1} / x_{3}^{2}-x_{2}^{0.3}$ is neither. Note that posynomials are closed under addition, multiplication, and nonnegative scaling. Monomials are closed under multiplication and division.

A geometric program is an optimization problem of the form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 1, \quad i=1, \ldots, m \\
& g_{i}(x)=1, \quad i=1, \ldots, p \tag{1}\\
& x_{i}>0, \quad i=1, \ldots, n
\end{array}
$$

where f_{1}, \ldots, f_{m} are posynomial functions and g_{1}, \ldots, g_{p} are monomial functions.
Several extensions are readily handled. If f is a posynomial and g is a monomial, then the constraint $f(x) \leq g(x)$ can be handled by expressing it as $f(x) / g(x) \leq 1$ (since f / g is posynomial). For example, we can handle constraints of the form $f(x) \leq a$, where f is posynomial and $a>0$. In a similar way if g_{1} and g_{2} are both monomial functions, then we can handle the equality constraint $g_{1}(x)=g_{2}(x)$ by expressing it as $g_{1}(x) / g_{2}(x)=1$ (since g_{1} / g_{2} is monomial).

We will also encounter functions whose reciprocals are posynomials. We say h is $i n$ verse posynomial if $1 / h$ is a posynomial. If h is an inverse posynomial and f is a posynomial, then geometric programming can handle the constraint $f(x) \leq h(x)$ by writing it as $f(x)(1 / h(x)) \leq 1$. As another example, if h is an inverse posynomial, then we can maximize it, by minimizing (the posynomial) $1 / h$.

Geometric programming has been known and used since the late 1960s, in various fields. There were two early books on geometric programming, by Duffin, Peterson, and Zener [61] and Zener [62], which include the basic theory, some electrical engineering applications (e.g., optimal transformer design), but not much on numerical solution methods. Another book appeared in 1976 [63]. The 1980 survey paper by Ecker [64] has many references on applications and methods, including numerical solution methods used at that time. Geometric programming is briefly described in some surveys of optimization, e.g., [65, p326-328] or [66, Ch.4]. While geometric programming is certainly known, it is nowhere near as widely known as, say, linear programming.

2.1 Geometric programming in convex form

A geometric program can be reformulated as a convex optimization problem, i.e., the problem of minimizing a convex function subject to convex inequalities constraints and linear equality constraints. This is the key to our ability to globally and efficiently solve geometric programs. We define new variables $y_{i}=\log x_{i}$, and take the logarithm of a posynomial f to get

$$
h(y)=\log \left(f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)\right)=\log \left(\sum_{k}^{t} e^{a_{k}^{T} y+b_{k}}\right)
$$

where $a_{k}^{T}=\left[\alpha_{1 k} \cdots \alpha_{n k}\right]$ and $b_{k}=\log c_{k}$. It can be shown that h is a convex function of the new variable y : for all $y, z \in \mathbf{R}^{n}$ and $0 \leq \lambda \leq 1$ we have

$$
h(\lambda y+(1-\lambda) z) \leq \lambda h(y)+(1-\lambda) h(z)
$$

Note that if the posynomial f is a monomial, then the transformed function h is affine, i.e., a linear function plus a constant.

We can convert the standard geometric program (1) into a convex program by expressing it as

$$
\begin{array}{ll}
\operatorname{minimize} & \log f_{0}\left(e^{y_{1}}, \ldots, e^{y_{n}}\right) \\
\text { subject to } & \log f_{i}\left(e^{y_{1}}, \ldots, e^{y_{n}}\right) \leq 0, \quad i=1, \ldots, m \tag{2}\\
& \log g_{i}\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=0, \quad i=1, \ldots, p
\end{array}
$$

This is the so-called exponential form of the geometric program (1). Convexity of the exponential form geometric program (2) has several important implications: we can use efficient
interior-point methods to solve them, and there is a complete and useful duality, or sensitivity theory for them; see, e.g., [53].

2.2 Solving geometric programs

Since Ecker's survey paper there have been several important developments, related to solving geometric programming in the exponential form. A huge improvement in computational efficiency was achieved in 1994, when Nesterov and Nemirovsky developed efficient interiorpoint algorithms to solve a variety of nonlinear optimization problems, including geometric programs [51]. Recently, Kortanek et al. have shown how the most sophisticated primal-dual interior-point methods used in linear programming can be extended to geometric programming, resulting in an algorithm approaching the efficiency of current interior-point linear programming solvers [67]. The algorithm they describe has the desirable feature of exploiting sparsity in the problem, i.e., efficiently handling problems in which each variable appears in only a few constraints.

For our purposes, the most important feature of geometric programs is that they can be globally solved with great efficiency. Problems with hundreds of variables and thousands of constraints are readily handled, on a small workstation, in minutes; the problems we encounter in this paper, which have a few tens of variables and fewer than 100 constraints, are easily solved in under one second. To carry out the designs in this paper, we implemented, in MATLAB, a simple and crude primal barrier method for solving the exponential form problem [53]. Despite the simplicity of the algorithm (i.e., primal only, with no sparsity exploited) and the overhead of an interpreted language, the geometric programs arising in this paper were all solved in approximately one to two seconds on an ULTRA SPARC1, 170 MHz . (We are in the process of developing a C implementation of a primal-dual method, which will be far more efficient.)

Perhaps even more important than the great efficiency is the fact that algorithms for geometric programming always obtain the global minimum. Infeasibility is unambiguously detected: if the problem is infeasible, then the algorithm will determine this fact, and not just fail to find a feasible point. Another benefit of the global solution is that the initial starting point is irrelevant; the same global solution is found no matter what the initial starting point is.

These properties should be compared to general methods for nonlinear optimization, such as sequential quadratic programming, which only find locally optimal solutions, and cannot unambiguously determine infeasibility. As a result, the starting point for the optimization algorithm does have an affect on the final point found. Indeed, the simplest way to lower the risk of finding a local, instead of global, optimal solution, is to run the algorithm several times from different starting points. This heuristic only reduces the risk of finding a nonglobal solution.

2.3 Sensitivity analysis

Suppose we modify the right-hand sides of the constraints in the geometric program (1) as follows:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq e^{u_{i}}, \quad i=1, \ldots, m \\
& g_{i}(x)=e^{v_{i}}, \quad i=1, \ldots, p \tag{3}\\
& x_{i}>0, \quad i=1, \ldots, n
\end{array}
$$

If all of the u_{i} and v_{i} are zero, this modified geometric program coincides with the original one. If $u_{i}<0$, then the constraint $f_{i}(x) \leq e_{i}^{u}$ represents a tightened version of the original i th constraint $f_{i}(x) \leq 0$; conversely if $u_{i}>0$, it represents a loosening of the constraint. Note that u_{i} gives a logarithmic or fractional measure of the change in the specification: $u_{i}=0.0953$ means that the i th constraint is loosened 10%, whereas $u_{i}=-0.0953$ means that the i th constraint is tightened 10%.

Let $f_{0}^{*}(u, v)$ denote the optimal objective value of the modified geometric program (3), as a function of the parameters $u=\left(u_{1}, \ldots, u_{m}\right)$ and $v=\left(v_{1}, \ldots, v_{p}\right)$, so the original objective value is $f_{0}^{*}(0,0)$. In sensitivity analysis, we study the variation of f_{0}^{*} as a function of u and v, for small u and v. To express the change in optimal objective function in a fractional form, we use the logarithmic sensitivities

$$
\begin{equation*}
S_{i}=\frac{\partial \log f_{0}^{*}}{\partial u_{i}}, \quad T_{i}=\frac{\partial \log f_{0}^{*}}{\partial v_{i}}, \tag{4}
\end{equation*}
$$

evaluated at $u=0, v=0$. These sensitivity numbers are dimensionless, since they express fractional changes per fractional change.

For simplicity we are assuming here that the original geometric program is feasible, and remains feasible for small changes in the right-hand sides of the constraints, and also that the optimal objective value is differentiable as a function of u_{i} and v_{i}. More complete descriptions of sensitivity analysis in other cases can be found in the references cited above, or in a general context in [53]. The surprising part is that the sensitivity numbers S_{1}, \ldots, S_{m} and T_{1}, \ldots, T_{p} come for free, when the problem is solved using an interior-point method (from the solution of the dual problem; see [53]).

We start with some simple observations. If at the optimal solution x^{*} of the original problem, the i th inequality constraint is not active, i.e., $f_{i}\left(x^{*}\right)$ is strictly less than one, then $S_{i}=0$ (since we can slightly tighten or loosen the i th constraint with no effect). We always have $S_{i} \leq 0$, since increasing u_{i} slightly loosens the constraints, and hence lowers the optimal objective value. The sign of T_{i} tells us whether increasing the right-hand side side of the equality constraint $g_{i}=1$ increases or decreases the optimal objective value.

The sensitivity numbers are extremely useful in practice, and give tremendous insight to the designer. Suppose, for example, that the objective f_{0} is power dissipation, $f_{1}(x) \leq 1$ represents the constraint that the bandwidth is at least 30 MHz , and $g_{1}(x)=1$ represents the constraint that the open-loop gain is $10^{5} \mathrm{~V} / \mathrm{V}$. Then $S_{1}=-3$, say, tells us that a small fractional increase in required bandwidth will translate into a three times larger fractional increase in power dissipation. $T_{1}=0.1$ tells us that a small fractional increase in required open-loop gain will translate into a fractional increase in power dissipation only one-tenth as
big. Although both constraints are active, the sensitivities tell us that the design is, roughly speaking, more tightly constrained by the bandwidth constraint than the open-loop gain constraint. The sensitivity information from the example above might lead the designer to reduce the required bandwidth (to reduce power), or perhaps increase the open-loop gain (since it won't cost much). We give an example of sensitivity analysis in §7.4.

3 Dimension constraints

We start by considering some very basic constraints involving the device dimensions, e.g., symmetry, matching, minimum or maximum dimensions, and area limits.

3.1 Symmetry and matching

For the intended operation of the input differential pair, transistors M_{1} and M_{2} must be identical and transistors M_{3} and M_{4} must also be identical. These conditions translate into the four equality constraints

$$
\begin{equation*}
W_{1}=W_{2}, \quad L_{1}=L_{2}, \quad W_{3}=W_{4}, \quad L_{3}=L_{4} \tag{5}
\end{equation*}
$$

The biasing transistors M_{5}, M_{7}, and M_{8} must match, i.e., have the same length:

$$
\begin{equation*}
L_{5}=L_{7}=L_{8} \tag{6}
\end{equation*}
$$

The six equality constraints in (5) and (6) have monomial expressions on the left and right hand sides, hence are readily handled in geometric programming (by expressing them as monomial equality constraints such as $W_{1} / W_{2}=1$).

3.2 Limits on device sizes

Lithography limitations and layout rules impose minimum (and possibly maximum) sizes on the transistors:

$$
\begin{equation*}
L_{\min } \leq L_{i} \leq L_{\max }, \quad W_{\min } \leq W_{i} \leq W_{\max }, \quad i=1, \ldots, 8 \tag{7}
\end{equation*}
$$

These 32 constraints can be expressed as posynomial constraints such as $L_{\min } / L_{1} \leq 1$, etc. Since L_{i} and W_{i} are variables (hence, monomials), we can also fix certain devices sizes, i.e., impose equality constraints.

3.3 Area

The op-amp die area A can be approximated as a constant plus the sum of transistor and capacitor area as

$$
\begin{equation*}
A=\alpha_{0}+\alpha_{1} C_{c}+\alpha_{2} \sum_{i=1}^{8} W_{i} L_{i} . \tag{8}
\end{equation*}
$$

Here $\alpha_{0} \geq 0$ gives the fixed area, $\alpha_{1}>1$ is the ratio of capacitor area to capacitance, and the constant $\alpha_{2}>1$ (if it is not one) can take into account wiring in the drain and source area. This expression for the area is a posynomial function of the design parameters, so we can impose an upper bound on the area, i.e., $A \leq A_{\max }$, or use the area as the objective to be minimized. More accurate posynomial formulas for the amplifier die area could be developed, if needed.

3.4 Systematic input offset voltage

To reduce input offset voltage, the drain voltages of M_{3} and M_{4} must be equal, ensuring that the current I_{5} is split equally between transistors M_{1} and M_{2}. This happens when the current densities of M_{3}, M_{4}, and M_{6} are equal, i.e.,

$$
\begin{equation*}
\frac{W_{3} / L_{3}}{W_{6} / L_{6}}=\frac{W_{4} / L_{4}}{W_{6} / L_{6}}=\frac{1}{2} \frac{W_{5} / L_{5}}{W_{7} / L_{7}} . \tag{9}
\end{equation*}
$$

These two conditions are equality constraints between monomials, and are therefore readily handled by geometric programming.

4 Bias conditions, signal swing, and power constraints

In this section we consider constraints involving bias conditions, including the effects of common-mode input voltage and output signal swing. We also consider the quiescent power of the op-amp (which is determined, of course, by the bias conditions). In deriving these constraints, we assume that the symmetry and matching conditions (5) and (6) hold. To derive the equations we use a standard long channel, square-law model for the MOS transistors, which is described in detail in §A.

In order to simplify the equations, it is convenient to define the bias currents I_{1}, I_{5}, and I_{7} through transistors M_{1}, M_{5} and M_{7}, respectively. Transistors M_{5} and M_{7} form a current mirror with transistor M_{8}. Their currents are given by

$$
\begin{equation*}
I_{5}=\frac{W_{5} L_{8}}{L_{5} W_{8}} I_{\mathrm{bias}}, \quad I_{7}=\frac{W_{7} L_{8}}{L_{7} W_{8}} I_{\mathrm{bias}} \tag{10}
\end{equation*}
$$

Thus I_{5} and I_{7} are monomials in the design variables. The current through transistor M_{5} is split equally between transistor M_{1} and M_{2}. Thus we have

$$
\begin{equation*}
I_{1}=\frac{I_{5}}{2}=\frac{W_{5} L_{8}}{2 L_{5} W_{8}} I_{\mathrm{bias}} \tag{11}
\end{equation*}
$$

which is another monomial.
Since these bias currents are monomials, we can include lower or upper bounds on them, or even equality constraints, if we wish. We will use I_{1}, I_{5}, and I_{7} in order to express other constraints, remembering that these bias currents can simply be eliminated (i.e., expressed directly in terms of the design variables) using (10) and (11).

4.1 Bias conditions

The setup for deriving the bias conditions is as follows. The input terminals are at the same DC potential, the common-mode input voltage V_{cm}. We assume that the common-mode input voltage is allowed to range between a minimum value $V_{\mathrm{cm}, \min }$ and a maximum value $V_{\mathrm{cm} \text {, max }}$, which are given. Similarly, we assume that the output voltage is allowed to swing between a minimum value $V_{\text {out, min }}$ and a maximum value $V_{\text {out, max }}$ (which takes into account large signal swings in the output).

The bias conditions are that each transistor M_{1}, \ldots, M_{8} should remain in saturation for all possible values of the input common-mode voltage and the output voltage. The derivation of the bias constraints given below can be found in \S B. The important point here is that the constraints are each posynomial inequalities on the design variables, and hence can be handled by geometric programming.

- Transistor M_{1}. The lowest common-mode input voltage, $V_{\mathrm{cm}, \min }$, imposes the toughest constraint on transistor M_{1} remaining in saturation. The condition is:

$$
\begin{equation*}
\sqrt{\frac{I_{1} L_{3}}{\mu_{\mathrm{n}} C_{\mathrm{ox}} / 2 W_{3}}} \leq V_{\mathrm{cm}, \min }-V_{\mathrm{ss}}-V_{\mathrm{TP}}-V_{\mathrm{TN}} \tag{12}
\end{equation*}
$$

- Transistor M_{2}. The systematic offset condition (9) makes the drain voltage of M_{1} equal to the drain voltage of M_{2}. Therefore, the condition for M_{2} being saturated is the same as the condition for M_{1} being saturated, i.e., (12). Note that the minimum allowable value of $V_{\mathrm{cm}, \min }$ is determined by M_{1} and M_{2} entering the linear region.
- Transistor M_{3}. Since $V_{\mathrm{gd}, 3}=0$ transistor M_{3} is always in saturation and no additional constraint is necessary.
- Transistor M_{4}. The systematic offset condition also implies that the drain voltage of M_{4} is equal to the drain voltage of M_{3}. Thus M_{4} will be saturated as well.
- Transistor M_{5}. The highest common-mode input voltage, $V_{\mathrm{cm}, \max }$, imposes the tightest constraint on transistor M_{5} being in saturation. The condition is:

$$
\begin{equation*}
\sqrt{\frac{I_{1} L_{1}}{\mu_{\mathrm{p}} C_{\mathrm{ox}} / 2 W_{1}}}+\sqrt{\frac{I_{5} L_{5}}{\mu_{p} C_{\mathrm{ox}} / 2 W_{5}}} \leq V_{\mathrm{dd}}-V_{\mathrm{cm}, \max }+V_{\mathrm{TP}} \tag{13}
\end{equation*}
$$

Thus, the maximum allowable value of $V_{\mathrm{cm}, \min }$ is determined by M_{5} entering the linear region.

- Transistor M_{6}. The most stringent condition occurs when the output voltage is at its minimum value $V_{\text {out, min }}$:

$$
\begin{equation*}
\sqrt{\frac{I_{7} L_{6}}{\mu_{\mathrm{n}} C_{\mathrm{ox}} / 2 W_{6}}} \leq V_{\mathrm{out}, \min }-V_{\mathrm{ss}} \tag{14}
\end{equation*}
$$

- Transistor M_{7}. For M_{7}, the most stringent condition occurs when the output voltage is at its maximum value $V_{\text {out }, \max }$:

$$
\begin{equation*}
\sqrt{\frac{I_{7} L_{7}}{\mu_{\mathrm{p}} C_{\mathrm{ox}} / 2 W_{7}}} \leq V_{\mathrm{dd}}-V_{\mathrm{out}, \max } \tag{15}
\end{equation*}
$$

- Transistor M_{8}. Since $V_{\mathrm{gd}, 8}=0$, transistor M_{8} is always in saturation; no additional constraint is necessary.

In summary, the requirement that all transistors remain in saturation for all values of common-mode input voltage between $V_{\mathrm{cm}, \min }$ and $V_{\mathrm{cm}, \max }$, and all values of output voltage between $V_{\text {out,min }}$ and $V_{\text {out, max }}$, is given by the four inequalities (12), (13), (14), and (15). These are complicated, but posynomial constraints on the design parameters.

4.2 Gate overdrive

It is sometimes desirable to operate the transistors with a minimum gate overdrive voltage. This ensures that they operate away from the subthreshold region, and also improves matching between transistors. For any given transistor this constraint can be expressed as

$$
\begin{equation*}
V_{\mathrm{gs}}-V_{\mathrm{T}}=\sqrt{\frac{I_{D} L}{\mu C_{\mathrm{ox}} / 2 W}} \geq V_{\text {overdrive, } \min } . \tag{16}
\end{equation*}
$$

The expression on the left is a monomial, so we can also impose an upper bound on it, or an equality constraint, if we wish. (We will see in $\S 8$ that robustness to process variations can be dealt with in a more direct way.)

4.3 Quiescent power

The quiescent power of the op-amp is given by

$$
\begin{equation*}
P=\left(V_{\mathrm{dd}}-V_{\mathrm{ss}}\right)\left(I_{\mathrm{bias}}+I_{5}+I_{7}\right), \tag{17}
\end{equation*}
$$

which is a posynomial function of the design parameters. Hence we can impose an upper bound on P, or use it as the objective to be minimized.

5 Small signal transfer function constraints

5.1 Small signal transfer function

We now assume that the symmetry, matching, and bias constraints are satisfied, and consider the (small signal) transfer function H from a differential input source to the output. To derive the transfer function H, we use a standard small signal model for the transistors, which is described in \S A.2. The standard value of the compensation resistor is used, i.e.,

$$
\begin{equation*}
R_{c}=1 / g_{\mathrm{m} 6} \tag{18}
\end{equation*}
$$

(see [2]).
The transfer function can be well approximated by a four pole form

$$
\begin{equation*}
H(s)=A_{v} \frac{1}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right)\left(1+s / p_{3}\right)\left(1+s / p_{4}\right)} . \tag{19}
\end{equation*}
$$

Here A_{v} is the open-loop voltage gain, $-p_{1}$ is the dominant pole, $-p_{2}$ is the output pole, $-p_{3}$ is the mirror pole, and $-p_{4}$ is the pole arising from the compensation circuit, respectively. In order to simplify the discussion in the sequel, we will refer to $p_{1} \ldots, p_{4}$, which are positive, as the poles (whereas precisely speaking, the poles are $-p_{1} \ldots,-p_{4}$).

We now give the expressions for the gain and poles. The two-stage op-amp has been previously analyzed by many authors [3, 68, 69]. The compensation scheme has also been analyzed previously [2, 70]. A complete derivation of the next results can be found in [70].

- The open-loop voltage gain is

$$
\begin{equation*}
A_{v}=\left(\frac{g_{\mathrm{m} 2}}{g_{\mathrm{o} 2}+g_{\mathrm{o} 4}}\right)\left(\frac{g_{\mathrm{m} 6}}{g_{\mathrm{o} 6}+g_{\mathrm{o} 7}}\right)=\frac{2 \mathrm{C}_{\mathrm{ox}}}{\left(\lambda_{\mathrm{n}}+\lambda_{\mathrm{p}}\right)^{2}} \sqrt{\mu_{\mathrm{n}} \mu_{\mathrm{p}} \frac{W_{2} W_{6}}{L_{2} L_{6} I_{1} I_{7}}} \tag{20}
\end{equation*}
$$

which is monomial function of the design parameters.

- The dominant pole is accurately given by

$$
\begin{equation*}
p_{1}=\frac{g_{\mathrm{m} 1}}{A_{v} C_{c}} \tag{21}
\end{equation*}
$$

Since A_{v} and $g_{\mathrm{m} 1}$ are monomials, and C_{c} is a design variable, p_{1} is a monomial function of the design variables.

- The output pole p_{2} is given by

$$
\begin{equation*}
p_{2}=\frac{g_{\mathrm{m} 6} C_{c}}{C_{1} C_{c}+C_{1} C_{\mathrm{TL}}+C_{c} C_{\mathrm{TL}}} \tag{22}
\end{equation*}
$$

where C_{1}, the capacitance at the gate of M_{6}, can be expressed as

$$
\begin{equation*}
C_{1}=C_{\mathrm{gs} 6}+C_{\mathrm{db} 2}+C_{\mathrm{db} 4}+C_{\mathrm{gd} 2}+C_{\mathrm{gd} 4} . \tag{23}
\end{equation*}
$$

and C_{L}, the total capacitance at the output node, can be expressed as

$$
\begin{equation*}
C_{\mathrm{TL}}=C_{\mathrm{L}}+C_{\mathrm{db} 6}+C_{\mathrm{db} 7}+C_{\mathrm{gd} 6}+C_{\mathrm{gd} 7} \tag{24}
\end{equation*}
$$

The meanings of these parameters, and their dependence on the design variables, is given in the appendix, in $\S A .2$. The important point here is that p_{2} is an inverse posynomial function of the design parameters (i.e., $1 / p_{2}$ is a posynomial).

- The mirror pole p_{3} is given by

$$
\begin{equation*}
p_{3}=\frac{g_{\mathrm{m} 3}}{C_{2}} \tag{25}
\end{equation*}
$$

where C_{2}, the capacitance at the gate of M_{3}, can be expressed as

$$
\begin{equation*}
C_{2}=C_{\mathrm{gs} 3}+C_{\mathrm{gs} 4}+C_{\mathrm{db} 1}+C_{\mathrm{db} 3}+C_{\mathrm{gd} 1} . \tag{26}
\end{equation*}
$$

Thus, p_{3} is also an inverse posynomial.

- The compensation pole is

$$
\begin{equation*}
p_{4}=\frac{g_{\mathrm{m} 6}}{C_{1}} \tag{27}
\end{equation*}
$$

which is also inverse posynomial.
In summary: the open-loop gain A_{v} and the dominant pole p_{1} are monomial, and the parasitic poles p_{2}, p_{3}, and p_{4} are all inverse posynomials. Now we turn to various design constraints and specifications that involve the transfer function.

5.2 Open-loop gain constraints

Since the open-loop gain A_{v} is a monomial, we can constrain it to equal some desired value $A_{\text {des }}$. We could also impose upper or lower bounds on the gain, as in

$$
\begin{equation*}
A_{\min } \leq A_{v} \leq A_{\max } \tag{28}
\end{equation*}
$$

where $A_{\min }$ and $A_{\max }$ are given lower and upper limits on acceptable open-loop gain.

5.3 Minimum gain at a frequency

The magnitude squared of the transfer function at a frequency ω_{0} is given by

$$
\left|H\left(j \omega_{0}\right)\right|^{2}=\frac{A_{v}^{2}}{\prod_{i=1}^{4}\left(1+\omega_{0}^{2} / p_{i}^{2}\right)}
$$

Since p_{i} are all inverse posynomial, the expressions $\omega_{0}^{2} / p_{i}^{2}$ are posynomial. Hence the whole denominator is posynomial. The numerator is monomial, so we conclude that the squared magnitude of the transfer function, $\left|H\left(j \omega_{0}\right)\right|^{2}$, is inverse posynomial. (Indeed, it is inverse posynomial in the design variables and ω_{0} as well.) We can therefore impose any constraint of the form

$$
\left|H\left(j \omega_{0}\right)\right| \geq a
$$

using geometric programming (by expressing it as $a^{2} /\left|H\left(j \omega_{0}\right)\right|^{2} \leq 1$).
The transfer function magnitude $|H(j \omega)|$ decreases as ω increases (since it has only poles), so $\left|H\left(j \omega_{0}\right)\right| \geq a$ is equivalent to

$$
\begin{equation*}
|H(j \omega)| \geq a \quad \text { for } \omega \leq \omega_{0} \tag{29}
\end{equation*}
$$

We will see below that this allows us to specify a minimum bandwidth or crossover frequency.

5.43 dB bandwidth

The 3 dB bandwidth $\omega_{3 \mathrm{~dB}}$ is the frequency at which the gain drops 3 dB below the DC openloop gain, i.e., $\left|H\left(j \omega_{3 \mathrm{~dB}}\right)\right|=A_{v} / \sqrt{2}$. To specify that the 3 dB bandwidth is at least some minimum value $\omega_{3 \mathrm{~dB}, \min }$, i.e., $\omega_{3 \mathrm{~dB}} \geq \omega_{3 \mathrm{~dB}, \min }$, is equivalent to specifying that $\left|H\left(\omega_{3 \mathrm{~dB}, \min }\right)\right| \geq$ $A_{v} / \sqrt{2}$. This is turn can be expressed as

$$
\begin{equation*}
A_{v} /\left|H\left(\omega_{3 \mathrm{~dB}, \min }\right)\right|^{2} \leq 2 \tag{30}
\end{equation*}
$$

which is a posynomial inequality.
In almost all designs p_{1} will be the dominant pole, (see below) so the 3 dB bandwidth is very accurately given by

$$
\begin{equation*}
\omega_{3 \mathrm{~dB}}=p_{1}=\frac{g_{\mathrm{m} 1}}{A_{v} C_{c}} \tag{31}
\end{equation*}
$$

which is a monomial. Using this (extremely accurate) approximation, we can constrain the 3 dB bandwidth to equal some required value. Using the constraint (30), which is exact but inverse posynomial, we can constrain the 3 dB bandwidth to exceed a given minimum value.

5.5 Dominant pole conditions

The amplifier is intended to operate with p_{1} as the dominant pole, i.e., p_{1} much smaller than p_{2}, p_{3}, and p_{4}. These conditions can be expressed as

$$
\begin{equation*}
\frac{p_{1}}{p_{2}} \leq 0.1, \quad \frac{p_{1}}{p_{3}} \leq 0.1, \quad \frac{p_{1}}{p_{4}} \leq 0.1 \tag{32}
\end{equation*}
$$

where we (arbitrarily) use one decade, i.e., a factor of 10 in frequency, as the condition for dominance. These dominant pole conditions are readily handled by geometric programming, since p_{1} is monomial and p_{2}, p_{3}, and p_{4} are all inverse posynomial. In fact these dominant pole conditions usually do not need to be included explicitly since the phase margin conditions described below are generally more strict.

5.6 Unity-gain bandwidth and phase margin

We define the unity-gain bandwidth ω_{c} as the frequency at which $\left|H\left(j \omega_{c}\right)\right|=1$. The phase margin is defined in terms of the phase of the transfer function at the unity-gain bandwidth:

$$
\mathrm{PM}=\pi-\angle H\left(j \omega_{c}\right)=\pi-\sum_{i=1}^{4} \arctan \left(\frac{\omega_{c}}{p_{i}}\right) .
$$

A phase margin constraint specifies a lower bound on the phase margin, typically between 30° and 60°.

The unity-gain bandwidth and phase margin arerelated to the closed-loop bandwidth and stability of the amplifier with unity-gain feedback, i.e., when its output is connected to the inverting input. If the op-amp is to be used in some other specific closed-loop configuration, then a different frequency will be of more interest but the analysis is the same. For example, if the op-amp is to be used in a feedback configuration with closed-loop gain +20 dB , then the critical frequency is the 20 dB crossover point, i.e., the frequency at which the open-loop gain drops to 20 dB , and the phase margin is defined at that frequency. All of the analysis below is readily adapted with minimal changes to such a situation. For simplicity, we continue the discussion for the unity-gain bandwidth.

We start by considering a constraint that the unity-gain bandwidth should exceed a given minimum frequency, i.e.,

$$
\begin{equation*}
\omega_{c} \geq \omega_{c, \text { min }} . \tag{33}
\end{equation*}
$$

This constraint is just a minimum gain constraint at the frequency $\omega_{c, \text { min }}$ (as in (29)), and so can be handled exactly by geometric programming as a posynomial inequality.

Here too we can develop an approximate expression for the unity-gain bandwidth which is monomial. If we assume the parasitic poles p_{2}, p_{3}, and p_{4} are at least a bit (say, an octave) above the unity-gain bandwidth, then the unity-gain bandwidth can be approximated as the open-loop gain times the 3 dB bandwidth, i.e.,

$$
\begin{equation*}
\omega_{c, \text { approx }}=\frac{g_{\mathrm{m} 1}}{C_{c}} \tag{34}
\end{equation*}
$$

which is a monomial. If we use this approximate expression for the unity-gain bandwidth, we can fix the unity-gain bandwidth at a desired value. The approximation (34) ignores the decrease in gain due to the parasitic poles, and consequently overestimates the actual unity-gain bandwidth (i.e., the gain drops to 0 dB at a frequency slightly less than $\omega_{c, \text { approx }}$).

We now turn to the phase margin constraint, for which we can give a very accurate posynomial approximation. Assuming the open-loop gain exceeds 10 or so, the phase contributed by the dominant pole at the unity-gain bandwidth, i.e., $\arctan \left(\omega_{c} / p_{1}\right)$, will be very nearly 90°. Therefore the phase margin constraint can be expressed as

$$
\begin{equation*}
\sum_{i=2}^{4} \arctan \left(\frac{\omega_{c}}{p_{i}}\right) \leq \frac{\pi}{2}-\mathrm{PM} \tag{35}
\end{equation*}
$$

i.e., the nondominant poles cannot contribute more than $90^{\circ}-\mathrm{PM}$ total phase shift.

The phase margin constraint (35) cannot be exactly handled by geometric programming, so we use two reasonable approximations to form a posynomial approximation. The first is an approximate unity-gain bandwidth $\omega_{c, \text { approx }}$ (from (34)) instead of the exact unity-gain bandwidth ω_{c} as the frequency at which we will constrain the phase of H. As mentioned above, we have $\omega_{c, \text { approx }} \leq \omega_{c}$, so our specification is a bit stronger than the exact phase margin specification (since we are constraining the phase at a frequency slightly above the actual unity gain bandwidth). We will also approximate $\arctan (x)$ as a monomial. A simple approximation is given by $\arctan (x) \approx x$, which is quite accurate for $\arctan (x)$ less than 25°. Thus, assuming that each of the parasitic poles contributes no more than about 25° of phase shift, we can approximate the phase margin constraint accurately as

$$
\begin{equation*}
\sum_{i=2}^{4} \frac{\omega_{c, \text { approx }}}{p_{i}} \leq \frac{\pi}{2}-\mathrm{PM}_{\min } \tag{36}
\end{equation*}
$$

which is a posynomial inequality in the design variables (since $\omega_{c, \text { approx }}$ is monomial). The approximation error involved here is almost always very small for the following reasons. The constraint (36) makes sure none of the nondominant poles is too near ω_{c}. This, in turn, validates our approximation $\omega_{c, \text { approx }} \approx \omega_{c}$. It also ensures that our approximation that the phase contributed by the nondominant poles is $\sum_{i=2}^{4} \omega_{c} / p_{i}$ is good.

Finally we note that it is possible to obtain a more accurate monomial approximation of $\arctan (x)$ that has less error over a wider range, e.g., $\arctan (x) \leq 60^{\circ}$. For example the approximation $\arctan (x) \approx 0.75 x^{0.7}$ gives a fit around $\pm 3^{\circ}$ for angles between 0 and 60°, as shown in Figure 2.

Figure 2: Approximations of $\arctan (x)$

6 Other constraints

In this section we collect several other important constraints.

6.1 Slew rate

The slew rate can be expressed [71] as

$$
\mathrm{SR}=\min \left\{2 I_{1} / C_{c}, I_{7} /\left(C_{c}+C_{\mathrm{TL}}\right)\right\} .
$$

In order to ensure a minimum slew rate $\mathrm{SR}_{\text {min }}$ we can impose the two constraints

$$
\begin{equation*}
\frac{C_{c}}{2 I_{1}} \leq \frac{1}{\mathrm{SR}_{\min }}, \quad \frac{C_{c}+C_{\mathrm{TL}}}{I_{7}} \leq \frac{1}{\mathrm{SR}_{\min }} . \tag{37}
\end{equation*}
$$

These two constraints are posynomial.

6.2 Common-mode rejection ratio

The common-mode rejection ratio (CMRR) can be approximated as (see [70])

$$
\begin{equation*}
\mathrm{CMRR}=\frac{2 g_{m 1} g_{m 3}}{\left(g_{o 3}+g_{o 1}\right) g_{o 5}}=\frac{2 \mathrm{C}_{\mathrm{ox}}}{\left(\lambda_{\mathrm{n}}+\lambda_{\mathrm{p}}\right) \lambda_{\mathrm{p}}} \sqrt{\mu_{\mathrm{n}} \mu_{\mathrm{p}} \frac{W_{1} W_{3}}{L_{1} L_{3} I_{5}^{2}}}, \tag{38}
\end{equation*}
$$

which is a monomial. In particular, we can specify a minimum acceptable value of CMRR.

6.3 Power supply rejection ratio

Negative power supply rejection ratio

The negative power supply rejection ratio (nPSRR) is given by (see [72, 73])

$$
\begin{equation*}
\operatorname{nPSRR}=\frac{g_{m 2} g_{m 6}}{\left(g_{o 2}+g_{o 4}\right) g_{o 6}} \frac{1}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right)} \tag{39}
\end{equation*}
$$

Thus, the low-frequency nPSRR is given by the inverse posynomial expression

$$
\begin{equation*}
\mathrm{nPSRR}=\frac{g_{m 2} g_{m 6}}{\left(g_{o 2}+g_{o 4}\right) g_{o 6}} \tag{40}
\end{equation*}
$$

which, therefore, can be lower bounded.
The high-frequency PSRR characteristics are generally more critical than the low-frequency PSRR characteristics since noise in mixed-mode chips (clock noise, switching regulator noise, etc.) is typically high frequency. One can see that the expression for the magnitude squared of the nPSRR at a frequency ω_{0} has the form

$$
\left|\operatorname{nPSRR}\left(j \omega_{0}\right)\right|^{2}=\frac{A_{p}^{2}}{\left(1+\omega_{0}^{2} / p_{1}^{2}\right)\left(1+\omega_{0}^{2} / p_{2}^{2}\right)}
$$

where A_{p}, p_{1} and p_{2} are given by inverse posynomial expressions. As we did in $\S 5.3$, we can impose a lower bound on the nPSRR at frequencies smaller than the unity-gain bandwidth by imposing posynomial constraints of the form

$$
\begin{equation*}
\left|\operatorname{nPSRR}\left(j \omega_{0}\right)\right| \geq a \tag{41}
\end{equation*}
$$

Positive power supply rejection ratio

The low-frequency positive power supply rejection ratio is given by

$$
\begin{equation*}
\mathrm{pPSRR}=\frac{2 g_{m 2} g_{m 3} g_{m 6}}{\left(g_{o 2}+g_{o 4}\right)\left(2 g_{m 3} g_{o 7}-g_{m 6} g_{o 5}\right)} \tag{42}
\end{equation*}
$$

which is neither posynomial nor inverse-posynomial. It follows that constraints on the positive power supply rejection cannot be handled by geometric programming. However, this op-amp suffers from much worse nPSRR characteristics than pPSRR characteristics, both at low and high frequencies (see [74, 75]). Therefore, not constraining the pPSRR is not critical.

6.4 Noise performance

The equivalent input-referred noise power spectral density $S_{\text {in }}(f)^{2}$ (in $\mathrm{V}^{2} / \mathrm{Hz}$, at frequency f assumed smaller than the 3 dB bandwidth), can be expressed as

$$
S_{\mathrm{in}}^{2}=S_{1}^{2}+S_{2}^{2}+\left(\frac{g_{\mathrm{m} 3}}{g_{\mathrm{m} 1}}\right)^{2}\left(S_{3}^{2}+S_{4}^{2}\right)
$$

where S_{k}^{2} is the input-referred noise power spectral density of transistor M_{k}. These spectral densities consist of the input-referred thermal noise and a $1 / f$ noise:

$$
S_{k}(f)^{2}=\left(\frac{2}{3}\right) \frac{4 k T}{g_{\mathrm{m}, \mathrm{k}}}+\frac{K_{\mathrm{f}}}{C_{\mathrm{ox}} W_{k} L_{k} f} .
$$

Thus the input-referred noise spectral density can be expressed as

$$
S_{\mathrm{in}}(f)^{2}=\alpha / f+\beta,
$$

where

$$
\alpha=\frac{2 K_{p}}{C_{\mathrm{ox}} W_{1} L_{1}}\left(1+\frac{K_{n} \mu_{\mathrm{n}} L_{1}^{2}}{K_{p} \mu_{\mathrm{p}} L_{3}^{2}}\right), \quad \beta=\frac{16 K T}{3 \sqrt{2 \mu_{\mathrm{p}} C_{\mathrm{ox}}(W / L)_{1} I_{1}}}\left(1+\sqrt{\frac{\mu_{\mathrm{n}}(W / L)_{3}}{\mu_{\mathrm{p}}(W / L)_{1}}}\right) .
$$

Note that α and β are (complicated) posynomial functions of the design parameters.
We can therefore impose spot noise constraints, i.e., require that

$$
\begin{equation*}
S_{\mathrm{in}}(f)^{2} \leq S_{\max }^{2} \tag{43}
\end{equation*}
$$

for a certain f, as a posynomial inequality. (We can impose multiple spot noise constraints, at different frequencies, as multiple posynomial inequalities.)

The total RMS noise level $V_{\text {noise }}$ over a frequency band $\left[f_{0}, f_{1}\right]$ (where f_{1} is below the equivalent noise bandwidth of the circuit can be found by integrating the noise spectral density:

$$
V_{\text {noise }}^{2}=\int_{f_{0}}^{f_{1}} S_{\text {in }}(f)^{2} d f=\alpha \log \left(f_{1} / f_{0}\right)+\beta\left(f_{1}-f_{0}\right)
$$

Therefore imposing a maximum total RMS noise voltage over the band $\left[f_{0}, f_{1}\right]$ is the posynomial constraint

$$
\begin{equation*}
\alpha \log \left(f_{1} / f_{0}\right)+\beta\left(f_{N}-f_{0}\right) \leq V_{\max }^{2} \tag{44}
\end{equation*}
$$

(since f_{1} and f_{0} are fixed, and α and β are posynomials in the design variables).

7 Optimal design problems and examples

7.1 Summary of constraints and specifications

The many performance specifications and constraints described in the previous sections are summarized in table 1. Note that with only one exception (the negative supply rejection ratio) the specifications and constraints can be handled via geometric programming.

Since all the op-amp performance measures and constraints shown above can be expressed as posynomial functions and posynomial constraints, we can solve a wide variety of opamp design problems via geometric programming. We can, for example, maximize the bandwidth subject to given (upper) limits on op-amp power, area, and input offset voltage, and given (lower) limits on transistor lengths and widths, and voltage gain, CMRR, slew rate, phase margin, and output voltage swing. The resulting optimization problem is a geometric programming problem. The problem may appear to be very complex, involving many complicated inequality and equality constraints, but in fact is readily solved.

Specification/constraint	Type	Equation(s)
Symmetry and matching	Monomial	5,6
Device sizes	Monomial	7
Area	Posynomial	8
Systematic offset voltage	Monomial	9
Bias conditions		
\quad Common-mode input range $\left(M_{1}, M_{2}, M_{5}\right)$	Posynomial	12,13
Output voltage swing $\left(M_{6}, M_{7}\right)$	Posynomial	14,15
Gate overdrive	Monomial	16
Quiescent power	Posynomial	17
Open loop gain	Monomial	20
Dominant pole conditions	Posynomial	32
3dB bandwidth	Monomial	31
Unity-gain bandwidth	Monomial	34
Phase margin	Posynomial	36
Slew rate	Posynomial	37
Common-mode rejection ratio	Monomial	38
Negative power supply rejection ratio	Inverse Posynomial	40,41
Positive power supply rejection ratio	Neither	42
Input-referred spot noise	Posynomial	43
Input-referred total noise	Posynomial	44

Table 1: Design constraints and specifications for the two-stage op-amp.

7.2 Example

In this section, we describe a simple design example. A $0.8 \mu \mathrm{~m}$ CMOS technology was used; see Appendix $\S \mathrm{C}$ for the technology parameters. The positive supply voltage was set at 5 V and the negative supply voltage was set at 0 V .

The objective is to maximize unity-gain bandwidth subject to the requirements shown in Table 2. The resulting geometric program has eighteen variables, seven (monomial) equality constraints, and twenty-eight (posynomial) inequality constraints. The total number of monomial terms appearing in the objective and all constraints is 68 . Our simple MATLAB program solves this problem in roughly one to two seconds real-time. The optimal design obtained is shown in Table 3.

Specification/Constraint	Value
Device length	$\geq 0.8 \mu \mathrm{~m}$
Device width	$\geq 2 \mu \mathrm{~m}$
Area	$\leq 10000 \mu \mathrm{~m}^{2}$
Common-mode input voltage	fixed at $\left(V_{\mathrm{DD}}+V_{\mathrm{SS}}\right) / 2$
Output voltage range	$\left[0.1\left(V_{\mathrm{DD}}-V_{\mathrm{SS}}\right), 0.9\left(V_{\mathrm{DD}}-V_{\mathrm{SS}}\right)\right]$
Quiescent power	$\leq 5 \mathrm{~mW}$
Open-loop gain	$\geq 80 \mathrm{~dB}$
Unity-gain bandwidth	Maximize
Phase margin	$\geq 60^{\circ}$
Slew rate	$\geq 10 \mathrm{~V} / \mu \mathrm{s}$
Common-mode rejection ratio	$\geq 60 \mathrm{~dB}$
Input-referred spot noise, 1 kHz	$300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

Table 2: Specifications and constraints for design example.
The performance achieved by this design, as predicted by the program, is summarized in Table 4. The design achieves an 86 MHz unity-gain bandwidth. Note that some constraints are tight (minimum device length, minimum device width, maximum output voltage, quiescent power, phase margin and input-referred spot noise) while some constraints are not tight (area, minimum output voltage open-loop gain, common-mode rejection ratio and slew rate).

7.3 Trade-off analyses

By repeatedly solving optimal design problems as we sweep over values of some of the constraint limits, we can sweep out globally optimal trade-off curves for the op-amp. For example, we can fix all other constraints, and repeatedly minimize power as we vary a minimum required unity-gain bandwidth. The resulting curve shows the globally optimal trade-off between unity-gain bandwidth and power (for the values of the other limits).

In this section we show several optimal trade-off curves for the operational amplifier. We do this by fixing all the specifications at the default values shown in Table 2 except two that

Variable	Value
$W_{1}=W_{2}$	$232.8 \mu \mathrm{~m}$
$W_{3}=W_{4}$	$143.6 \mu \mathrm{~m}$
W_{5}	$64.6 \mu \mathrm{~m}$
W_{6}	$588.8 \mu \mathrm{~m}$
W_{7}	$132.6 \mu \mathrm{~m}$
W_{8}	$2.0 \mu \mathrm{~m}$
$L_{1}=L_{2}$	$0.8 \mu \mathrm{~m}$
$L_{3}=L_{4}$	$0.8 \mu \mathrm{~m}$
L_{5}	$0.8 \mu \mathrm{~m}$
L_{6}	$0.8 \mu \mathrm{~m}$
L_{7}	$0.8 \mu \mathrm{~m}$
L_{8}	$0.8 \mu \mathrm{~m}$
C_{c}	3.5 pF
$I_{\text {bias }}$	$10 \mu \mathrm{~A}$

Table 3: Optimal design for design example.

Specification/Constraint	Performance
Minimum device length	$0.8 \mu \mathrm{~m}$
Minimum device width	$2 \mu \mathrm{~m}$
Area	$8200 \mu \mathrm{~m}^{2}$
Output voltage range	$\left[0.03\left(V_{\mathrm{DD}}-V_{\mathrm{SS}}\right), 0.9\left(V_{\mathrm{DD}}-V_{\mathrm{SS}}\right)\right]$
Minimum gate overdrive	130 mV
Quiescent power	5 mW
Open-loop gain	89.2 dB
Unity-gain bandwidth	86 MHz
Phase margin	60°
Slew rate	$88 \mathrm{~V} / \mu \mathrm{s}$
Common-mode rejection ratio	92.5 dB
Negative power supply rejection ratio	98.4 dB
Positive power supply rejection ratio	116 dB
Maximum input-referred spot noise, 1 kHz	$300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

Table 4: Performance of optimal design for design example.
we vary to see the effect on a circuit performance measure. When the optimization objective is not bandwidth we use a default value of minimum unity-gain bandwidth of 30 MHz .

We first obtain the globally optimal trade-off curve of unity-gain bandwidth versus power for different supply voltages. The results can be seen in Figure 3 . Obviously the more power we allocate to the amplifier, the larger the bandwidth obtained; the plots, however, show exactly how much more bandwidth we can obtain with different power budgets. We can see, for example, that the benefits of allocating more power to the op-amp disappear above 5 mW for a supply voltage of 2.5 V , whereas for a 5 V supply the bandwidth continues to increase

 doubles the achievable unity-gain bandwidth at large power budgets. unity-gain bandwidth. For our specifications, a change in load capacitance from 9 pF to 1 pF
 In Figure 7 we show the optimal trade-off curve of unity gain bandwidth versus power increasing the power greatly helps to decrease the input-referred noise spectral density

Figure 6 shows the minimum input-referred spectral density at 1 kHz versus power, for margin constraint the gain bandwidth product is lower. requirement only small gains are achievable. Also, we can see that for a tighter phase gain frequency for different phase margins. Note that for a large unity-gain bandwidth

In Figure 5 we plot the globally optimal trade-off curve of open-loop gain versus unity-unity-gain bandwidth is almost 150 MHz . However when the output range constraint is loosened to 90% of the supply the maximum output voltage range is 98% of the supply the maximum achievable frequency is 55 MHz . and 90% of the supply around mid-supply. Figure 4 shows the results. Note that when the bandwidth versus power relation. The output voltage range is specified to be $98 \%, 95 \%$,

Figure 3: Maximum unity-gain bandwidth versus power for different supply voltages.

Maximum unity-gain bandwidth in MHz

with increasing power. Note also that each of the supply voltages gives the largest unity-gain
bandwidth over some range of powers.

Figure 4: Maximum unity-gain bandwidth versus power for different output voltage ranges.

Figure 5: Maximum open-loop gain versus unity-gain bandwidth for different phase margins.
other constraints are more stringent and increasing the available area does not improve the maximum achievable unity-gain bandwidth.

Figure 6: Minimum noise density at 1 kHz versus power for different unity-gain bandwidths.

Figure 7: Maximum unity-gain bandwidth versus power for different load capacitances.

The phase margin constraint given by 35 assumes that the closed-loop gain is one. If the closed-loop gain is greater than one, then we specify the crossover frequency and phase

Figure 8: Maximum unity-gain bandwidth versus area for different power budgets.
margin at the appropriate closed-loop gain level. In Figure 9 we show the optimal tradeoff curve of crossover bandwidth versus power for different closed-loop gains. Note the large improvement obtained when the closed-loop gain is greater than one. This is easily understood: when the closed-loop gain increases, the parasitic poles can be much smaller.

7.4 Sensitivity analysis example

In this section we analyze the information provided by the sensitivity analysis of the first design problem in $\S 7.2$ (maximize the unity-gain bandwidth when the rest of specifications/constraints are set to the values shown in Table 2). The results of this sensitivity analysis are shown in Table 5. The column labeled Sensitivity (numerical) is obtained by tightening and loosening the constraint in question by 5% and re-solving the problem. (The average from the two is taken.) The column labeled Sensitivity comes (essentially for free) from solving the original problem. Note that it gives an excellent prediction of the numerically obtained sensitivities.

There are six active constraints: minimum device length, minimum device width, maximum output voltage, quiescent power, phase margin, and input-referred spot noise at 1 kHz . All of these constraints limit the maximum unity-gain bandwidth. The sensitivities indicate which of these constraints are more critical (more limiting). For example a 10% increase in the allowable input-referred noise at 1 kHz will produce a design with (approximately) 2.4% improvement in unity-gain bandwidth. However a 10% decrease in the maximum phase margin at the unity gain bandwidth will produce a design with (approximately) $17.6 \% \mathrm{im}-$ provement in unity-gain bandwidth. It is very interesting to analyze the sensitivity to the

Figure 9: Maximum crossover bandwidth versus power for different closed-loop gains.

Specification/Constraint	Requirement	Program	Sensitivity (numerical)	Sensitivity
Minimum device length	$\geq 0.8 \mu \mathrm{~m}$	$.8 \mu \mathrm{~m}$	0.299	0.309
Minimum device width	$\geq 2 \mu \mathrm{~m}$	$2.0 \mu \mathrm{~m}$	0.0049	0.0048
Area	$\leq 10000 \mu \mathrm{~m}^{2}$	$8200 \mu \mathrm{~m}^{2}$	0	0
Maximum output voltage	4.5 V	4.5 V	-0.365	-0.349
Minimum output voltage	0.5 V	0.13 V	0	0
Quiescent power	$\leq 5 \mathrm{~mW}$	4.99 mW	-0.482	-0.483
Open-loop gain	$\geq 80 \mathrm{~dB}$	89.2 dB	0	0
Phase margin	$\geq 60^{\circ}$	60°	-1.758	-1.757
Common-mode rejection ratio	$\geq 60 \mathrm{~dB}$	92.5 dB	0	0
Slew rate	$\geq 10 \mathrm{~V} / \mu \mathrm{s}$	$88 \mathrm{~V} / \mu \mathrm{s}$	0	0
Input-referred spot noise, 1 kHz	$\leq 300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	0.24	0.241

Table 5: Sensitivity analysis for the design example.
minimum device width constraint. A 10% decrease in the minimum device width produces a design with only a 0.05% improvement in unity-gain bandwidth. This can be interpreted as follows: even though the minimum device width constraint is binding, it can be considered not binding in a practical sense since tightening (or loosening) it will barely change the objective.

The program classifies the given constraints in order of importance from most limiting to least limiting. For this design the order is: phase margin, maximum output voltage,
minimum device length, quiescent power, input-referred noise at 1 kHz , and minimum device width. The program also tells the designer which constraints are not critical (the ones whose sensitivities are zero or small). A small relaxation of these constraints will not improve the objective function, so any effort to loosen them will not be rewarded.

7.5 Design verification

Our optimization method is based on the simple square-law device models described in appendices $\S A-\S A .2$. Our model does not include several potentially important factors such as body effect, channel length modulation in the bias equations, and the dependence of junction capacitances on junction voltages. Moreover we make several approximations in the circuit analysis used to formulate the constraints. For example, we approximate the transfer function with the four pole form (19); the actual transfer function, even based on the simple model, is more complicated. As another example, we approximate $\arctan (a) \approx a$ in our simple version of the phase margin constraint.

While all of these approximations are reasonable (at least when channel lengths are not too short), it is important to verify the designs obtained using a higher fidelity (presumably nonposynomial) model.

HSPICE level 1 verification

We first verify the designs generated by our geometric programming method with HSPICE using a long channel model (HSPICE level 1 model). We take the design found by the geometric programming method, and then use HSPICE level 1 model to check the various performance measures. The level 1 HSPICE model is substantially more accurate (and complicated) than our simple posynomial models. It includes, for example, body effect, channel modulation, junction capacitance that depends on bias conditions, and a far more complex transfer function that includes many other parasitic capacitances. The unity gain bandwidth and phase margin are computed by solving the complete small signal model of the op-amp. The results of such verification always show excellent agreement between our posynomial models and the more complex (and nonposynomial) HSPICE level 1 model. As an example, Table 6 summarizes the results for the standard problem described above in §7.4. Note that the values of the performance specifications from the posynomial model (in the column labeled Program) and the values according to HSPICE level 1 (in the righthand column) are in close agreement. Moreover the deviations between the two are readily understood. The unity-gain frequency and the phase margin are slightly overestimated because we use the approximate expression (34), which ignores the effect of the parasitic poles on the crossover frequency. The noise is overestimated 7% because the open loop gain has decreased 7% already at 1 kHz ; this gain reduction translates into a reduction in the input-referred noise.

We have verified the geometric program results with the HSPICE level 1 model simulations for a wide variety of designs (with a wide variety of power, bandwidth, gain, etc.). The results are always in close agreement. Thus our simple posynomial models are reasonably good approximations of the HSPICE level 1 models.

Performance measure	Constraint	Program	HSPICE Level 1
Maximum output voltage	$\geq 4.5 \mathrm{~V}$	4.5 V	4.5 V
Minimum output voltage	$\leq 0.5 \mathrm{~V}$	0.13 V	0.13 V
Quiescent power	$\leq 5 \mathrm{~mW}$	4.99 mW	4.95 mW
Open-loop gain	$\geq 80 \mathrm{~dB}$	89.2 dB	89.4 dB
Unity-gain bandwidth	maximize	86 MHz	81 MHz
Phase margin	$\geq 60^{\circ}$	60°	64°
Slew rate	$\geq 10 \mathrm{~V} / \mu \mathrm{s}$	$88 \mathrm{~V} / \mu \mathrm{s}$	$92.5 \mathrm{~V} / \mu \mathrm{s}$
Common-mode rejection ratio	$\geq 60 \mathrm{~dB}$	92.5 dB	94 dB
Input-referred spot noise, 1 kHz	$\leq 300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$280 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

Table 6: Design verification with HSPICE level 1. The performance measures obtained by the program are compared with those found by HSPICE level 1 simulation.

HSPICE level 3 verification

In this section we consider another issue: short channel effects. The HSPICE level 1 model used for verification above is itself inadequate when some of the transistors are short, i.e., have lengths smaller than $1 \mu \mathrm{~m}$ or so. When there are short channel devices, an HSPICE level 3 model gives a far better simulation than the square-law type model. Since all of our constraints are based on the square-law model (and the small signal models derived from the square-law model), it is natural to question whether our method breaks down. In fact, our method can be extended to short channel devices by developing more accurate posynomial models. (Such the more accurate, but posynomial approximation of $\tan ^{-1}(a)$ described above.)

A study of the discrepancies between our model and the HSPICE level 3 model shows that the greatest deviation is the value of output conductance as a function of the length, width, and bias current of a transistor. By examining a very wide variety of transistors, we found that the monomial model

$$
\begin{equation*}
g_{\mathrm{d}, \mathrm{NMOS}}=6.9 \cdot 10^{-3} W^{0.5} L^{-3.4} I_{\mathrm{D}}^{0.5} \quad g_{\mathrm{d}, \mathrm{PMOS}}=7.3 \cdot 10^{-3} W^{0.5} L^{-3.4} I_{\mathrm{D}}^{0.5} \tag{45}
\end{equation*}
$$

where the output conductance is given in milisiemens, the bias current is in milliamps, and the width and length are in $\mu \mathrm{m}$, is very accurate, over large ranges of transistor width, length, and bias current.

Using this model instead of the model derived from the square-law model yields another geometric program. Table 7 shows the comparison between the results of this (more sophisticated) geometric programming design and HSPICE level 3 simulation, for the standard problem described in $\S 7.4$. The predicted values are very close to the simulated values.

To show that the posynomial model for the output conductance in (45) works over large ranges of transistor dimensions and bias currents, we show a trade-off curve obtained using this posynomial model and the curves obtained when the design is modeled with HSPICE level 3. In Figure 10 we show the maximum open loop gain versus quiescent power with default values for the rest of specifications/constraints as shown in Table 2. One can see that both curves are very close. The discrepancies are greater when the power is large because the model was obtained supposing a reasonable low-power design $(\leq 5 \mathrm{~mW})$.

Performance measure	Constraint	Program	HSPICE Level 3
Maximum output voltage	$\geq 4.5 \mathrm{~V}$	4.55 V	4.45 V
Minimum output voltage	$\leq 0.5 \mathrm{~V}$	240 mV	260 mV
Quiescent power	$\leq 5 \mathrm{~mW}$	4.99 mW	4.99 mW
Open-loop gain	$\geq 80 \mathrm{~dB}$	80 dB	80.1 dB
Unity-gain bandwidth	maximize	49.5 MHz	45.2 MHz
Phase margin	$\geq 60^{\circ}$	60°	65°
Slew rate	$\geq 10 \mathrm{~V} / \mu \mathrm{s}$	$97 \mathrm{~V} / \mu \mathrm{s}$	$92 \mathrm{~V} / \mu \mathrm{s}$
Common-mode rejection ratio	$\geq 60 \mathrm{~dB}$	96.7 dB	96.8 dB
Input-referred spot noise, 1 kHz	$\leq 300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$289.2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

Table 7: Design verification with HSPICE level 3. Geometric programming is used to solve the standard problem, using the more sophisticated monomial output conductance model (45). The results are compared with a HSPICE level 3 simulation.

Figure 10: Maximum open-loop gain versus power. Comparison of models with HSPICE Level 3 model.

Of course, even more sophisticated posynomial models could be developed. But the point here is that a simple modification of the output conductance model, preserving its monomial form, extends our method to handle short channel designs, for which the simple square-law models are inadequate.

8 Design for process robustness

So far we have assumed that parameters such as transistor threshold voltages, mobilities, oxide parameters, channel modulation parameters, supply voltages, and load capacitance are all known and fixed. In this section we show to how to use the methods of this paper to develop designs that are robust with respect to variations in these parameters, i.e., designs that meet a set of specifications for a set of values of these parameters. The basic idea is to list a set of possible parameters, and to replicate the design constraints for all possible parameter values. The method is practical only because geometric programming can readily handle problems with many hundreds, or even thousands, or constraints; the computational effort grows approximately linearly with the number of constraints.

Let $\alpha \in \mathbf{R}^{k}$ denote a vector of parameters that may vary. Then the objective and constraint functions can be expressed as functions of x (the design parameters) and α (which we will call the process parameters, even if some components, e.g., the load capacitance, are not really process parameters):

$$
f_{0}(x, \alpha), \quad f_{i}(x, \alpha), \quad g_{i}(x, \alpha) .
$$

The functions f_{i} are all posynomial functions of x, for each α, and the functions g_{i} are all monomial functions of x, for each α. Let $\mathcal{A}=\left\{\alpha_{1}, \ldots \alpha_{N}\right\}$ be a (finite) set of possible parameter values. Our goal is to determine a design (i.e., x) that works well for all possible parameter values (i.e., $\alpha_{1}, \ldots, \alpha_{N}$).

First we describe several ways the set \mathcal{A} might be constructed. As a simple example, suppose there are 6 parameters, which vary independently over intervals $\left[\alpha_{\min , i}, \alpha_{\max , i}\right]$. We might sample each interval with 3 values (e.g., the midpoint and extreme values), and then form every possible combinations of parameter values, which results in then $N=3^{6}$.

We do not have to give every possible combination of parameter values, but only the ones likely to actually occur. For example if it is unlikely that the oxide capacitance parameter is at its maximum value while the n-threshold voltage is maximum, then we delete these combinations from our set \mathcal{A}. In this way we can model dependencies between the parameter values.

We can also construct \mathcal{A} in a straightforward way. Suppose we require a design that works, without modification, on several processes, or several variations of processes. Then \mathcal{A} is simply a list of the process parameters for each of the processes.

The robust design is achieved by solving the problem

$$
\begin{array}{ll}
\operatorname{minimize} & \max _{\alpha \in \mathcal{A}} f_{0}(x, \alpha) \\
\text { subject to } & f_{i}(x, \alpha) \leq 1, \quad i=1, \ldots, m, \quad \text { for all } \alpha \in \mathcal{A}, \tag{46}\\
& g_{i}(x, \alpha)=1, \quad i=1, \ldots, p, \quad \text { for all } \alpha \in \mathcal{A} \\
& x_{i}>0, \quad i=1, \ldots, n
\end{array}
$$

This problem can be reformulated as a geometric program with a N times more constraints,
and an additional scalar variable γ :

$$
\begin{array}{ll}
\operatorname{minimize} & \gamma \\
\text { subject to } & f_{0}\left(x, \alpha_{j}\right) \leq \gamma, \quad j=1, \ldots, N, \\
& f_{i}\left(x, \alpha_{j}\right) \leq 1, \quad i=1, \ldots, m, \quad j=1, \ldots, N, \tag{47}\\
& g_{i}\left(x, \alpha_{j}\right)=1, \quad i=1, \ldots, p, \quad j=1, \ldots, N \\
& x_{i}>0, \quad i=1, \ldots, n
\end{array}
$$

The solution of (46) (which is the same as the solution of (47)) satisfies the specifications for all possible values of the process parameters. The optimal objective value gives the (globally) optimal minimax design. (It is also possible to take an average value of the objective over process parameters, instead of a worst-case value.)

Equality constraints have to be handled carefully. Provided the transistor lengths and widths are not subject to variation, equality constraints among them (e.g., matching and symmetry) are likely not to depend on the process parameter α. Other equality constraints, however, can depend on α. When we enforce an equality constraint for each value of α, the result is (usually) an infeasible problem. For example suppose we specify that the openloop gain is exactly 80 dB . Process variation will change the open-loop gain, making it impossible to achieve a design that yields open-loop gain exactly 80 dB for more than a few process parameter values. The solution to this problem is to convert such specifications into inequalities. We might, for example, change our specification to require that the open-loop gain is more than 80 dB , or require it to be between 80 dB and 85 dB . Either way the robust problem now has at least a chance of being feasible.

It's important to contrast a robust design for a set of process parameters $\mathcal{A}=\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}$ with the optimal designs for each process parameter. The objective value for the robust design is worse (or no better than) the optimal design for each parameter value. This disadvantage is offset by the advantage that the design works for all the process parameter values. As a simple example, suppose we seek a design that can be run on two processes (α_{1} and α_{2}). We can compare the robust design to the two optimal designs. If the objective achieved by the robust is not much worse than the two optimal designs, then we have the advantage of a single design that works on two processes. On the other hand if the robust design is much worse (or even infeasible) we will need to have two versions of the amplifier design, each one optimized for the particular process.

So far we have considered the case in which the set \mathcal{A} is finite. But in most real cases it is infinite; for example, individual parameters lie in ranges. We have already indicated above that such situations can be modeled or approximated by sampling the interval. While we believe this will always work in practice, it gives no guarantee, in general, that the design works for all values of the parameter in the given range; it only guarantees performance for the sampled values of the parameters.

There are many cases, however, when we can guarantee the performance for a parameter value in an interval. Suppose that the function $f_{i}(x, \alpha)$ is posynomial not just in x, but in x and α as well, and that α lies in the interval $\left[\alpha_{\min }, \alpha_{\max }\right]$. (We take α scalar here for simplicity.) Then it suffices to impose the constraint at the endpoints of the interval, i.e.:

$$
f_{i}\left(x, \alpha_{\min }\right) \leq 1, \quad f_{i}\left(x, \alpha_{\max }\right) \leq 1 \quad \Rightarrow \quad f_{i}(x, \alpha) \leq 1 \quad \text { for all } \alpha \in\left[\alpha_{\min }, \alpha_{\max }\right] .
$$

This is easily proved using convexity of the $\log f_{i}$ in the transformed variables.
The reader can verify that the constraints described above are posynomial in the parameters $\mathrm{C}_{\mathrm{ox}}, \mu_{\mathrm{n}}, \mu_{\mathrm{p}}, \lambda_{\mathrm{n}}, \lambda_{\mathrm{p}}$, and the parasitic capacitances. Thus, for these parameters at least, we can handle ranges with no approximation or sampling, by specifying the constraints only at the endpoints.

The requirement of robustness is a real practical constraint, and is currently dealt with by many methods. For example, a minimum gate overdrive constraint is sometimes imposed because designs with small gate overdrive tend to be nonrobust. The point of this section is that robustness can be achieved in a more methodical way, which takes into account a more detailed description of the possible uncertainties or parameter variations. The result will be a better design than an ad-hoc method for achieving robustness.

Finally we demonstrate the method with a simple example. In Table 8 we show how a robust design compares to a nonrobust design. We take three process parameters: the bias current error factor, the positive power supply error factor, and oxide capacitance. The bias current error factor is the ratio of the actual bias current to our design value, so when it is one, the true bias current is what we specify it to be, and when it is 1.1 , the true bias current is 10% larger than we specify it to be. Similarly the positive power supply error factor is the ratio of the actual bias current to our design value. The bias current error factor varies between 0.9 and 1.1, the positive power supply error factor varies between 0.9 and 1.1, and the oxide capacitance varies $\pm 10 \%$ around its nominal value. The three parameters are assumed independent, and we sample each with three values (midpoint and extreme values) so all together we have $N=3^{3}$, i.e., 27 different process parameter vectors. In the third column we show the performance of the robust design. For each specification we register the worst performance over all 27 process parameters. In the fourth column we show the performance of the nonrobust design. Again, only the worst case performance over all 27 process parameters is indicated for each specification. The resulting geometric program involves eighteen variables, seven monomial equality constraints (i.e., symmetry and matching) and 756 posynomial inequality constraints.

Specification/Constraint	Requirement	Robust design	Standard design
Quiescent power	$\leq 5 \mathrm{~mW}$	4.99 mW	5.75 mW
Open-loop gain	$\geq 80 \mathrm{~dB}$	89 dB	87 dB
Unity-gain bandwidth	maximize	72 MHz	77 MHz
Phase margin	$\geq 60^{\circ}$	60°	55°
Common-mode rejection ratio	$\geq 60 \mathrm{~dB}$	93 dB	90 dB
Input-referred spot noise, 1 kHz	$\leq 300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$316 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

Table 8: Robust design.
The new design obtains a unity-gain bandwidth of 70 MHz . The design in $\S 7.2$ obtains a worst-case unity gain bandwidth of 77 MHz but since it was specified only for nominal conditions, it fails to meet some constraints when tested over all conditions. For example, the power consumption is increased by 15%, the open-loop gain is decreased by 20%, the input-referred spot noise at 1 kHz is increased by $\% 5$ and the phase margin is decreased by
5°. The robust design, on the other hand, meets all specifications for all 27 sets of process parameters.

9 Discussions and conclusions

We have shown how geometric programming can be used to design and optimize a common CMOS amplifier. The method yields globally optimal designs, is extremely efficient, and handles a very wide variety of practical constraints.

Since no human intervention is required (e.g., to provide an initial 'good' design, or to interactively guide the optimization process), the method yields completely automated synthesis of (globally) optimal CMOS amplifiers, directly from specifications. This implies that the circuit designer can spend more time doing real design, i.e., carefully analyzing the optimal trade-offs between competing objectives, and less time doing parameter tuning, or wondering whether a certain set of specifications can be achieved. The method could be used, for example, to do full custom design for each op-amp in a complex mixed-signal integrated circuit; each amplifier is optimized for its load capacitance, required bandwidth, closed-loop gain, etc.

In fact, the method can handle problems with constraints or coupling between the different op-amps in an integrated circuit. As simple examples, suppose we have 100 op -amps, each with a set of specifications. We can minimize the total area or power by solving a (large) geometric program. In this case, we are solving (exactly) the power/area allocation problem for the 100 op-amps on the integrated circuit. We can also handle direct coupling between the op-amps, i.e., when component values in one op-amp (e.g., input transistor widths) affect another (e.g., as load capacitance). The resulting geometric program will have perhaps hundreds of variables, thousands of constraints, and be quite sparse, so it is well within the capabilities of current interior-point methods.

For example, switched capacitor filters (see [75]) are complex systems where the performance (maximum clock frequency, area, power, etc.) are influenced by both the op-amp and the capacitors. Current CAD tools for switched capacitor filters (FIDES [76],[77, 78]) size the capacitors but use the same op-amp for all integrators. In contrast, we can custom design each op-amp in the switched capacitor filter. Designing optimal op-amps for filters in oversampled converters has also been addressed in [79], but little work has been done to fully automate the design. Limiting amplifiers for FM systems (see [80]) require the design of multiple amplifiers in cascade. Typically the same amplifier is used in all stages because it takes too long to design each stage separately.

Our ability to handle much larger problems than arise from a single op-amp design can be used to develop robust designs. This could increase yield, or result in designs with a longer lifetime (since they work with several different processes).

The method unambiguously determines feasibility of a set of specifications: it either produces a design that meets the specifications, or it provides a proof that the specifications cannot be achieved. In either case it also provides, at essentially no additional cost, the sensitivities with respect to every constraint. This gives a very useful quantitative measure of how tight each constraint is, or how much it affects the objective.

In this paper we only considered one op-amp circuit, but the general method is applicable to many other circuits (see [1]). For the op-amp considered here, the analytical expressions for the constraints and specifications were derived by hand, but in a more general setting this step could be automated by the use of symbolic circuit simulators like ISAAC [81] and SYNAP [82]. A CAD tool for optimization of analog op-amps could be developed. It would consist of a symbolic analyzer, a GP code solver, and a user interface. It could be linked to an automatic layout program (such as ILAC [13] or KOAN/ANAGRAM [14], so the resulting tool could generate mask designs directly from amplifier specifications.

The main disadvantage of the method we have described is that it handles only certain types of constraints and specifications, i.e., monomial equality constraints and posynomial inequality constraints. The main contribution of this paper is to point out that despite this apparently restricted form, we can handle a very wide variety of practical amplifier specifications.

We close our discussion on the topic of circuit models. This paper introduces a new quality of a circuit model, i.e., whether it results in posynomial specifications. The traditional trade-off in circuit modeling is between fidelity and complexity, e.g., simple but not too accurate models for hand analysis and design, versus complex, high fidelity models for design verification. Evidently we have a third quality for a model: whether or not it results in posynomial specifications. Thus we have a trade-off between monomial/posynomial models (for design via GP) and fidelity or accuracy. Note that complexity doesn't matter: a very complex, but posynomial, model is readily handled by GP. We saw one example of this in $\S 7.5$, where we used a MOS model that preserved our ability to use geometric programming, but attained extremely good fidelity for short channel devices. Developing accurate, but posynomial, circuit models is a new area for research.

Acknowledgments

We thank Edo Waks, who wrote the geometric programming solver used for the numerical experiments shown in this paper. We are grateful to Boyd Fowler, Abbas El Gamal, and Ali Hajimiri for useful comments.

A MOSFET models

In this section we describe the MOSFET large and small signal models used in our method. The model is very similar to the standard long channel square law model described in, e.g., [83, 84]. This model can be inadequate for short channel transistors (see, e.g., [85, 86]), in which case better models can be developed that still allow optimization via geometric programming; see $\S 7.5$.

Figure 11: Transistor symbols

A. 1 Large signal models

Correct operation of the op-amp requires all transistors to be in saturation. For an NMOS transistor this means

$$
\begin{equation*}
V_{\mathrm{DS}} \geq V_{\mathrm{GS}}-V_{\mathrm{TN}} \tag{48}
\end{equation*}
$$

When the NMOS transistor is saturated, i.e., (48) holds, the drain current can be expressed as

$$
I_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{W}{L}\left(V_{\mathrm{GS}}-V_{\mathrm{TN}}\right)^{2}\left(1+\lambda_{n} V_{\mathrm{DS}}\right)
$$

where L is the transistor channel length, W is the transistor width, μ_{n} is the electron mobility, C_{ox} is the oxide capacitance per unit area, V_{TN} is the NMOS threshold voltage and λ_{n} is the channel-length modulation parameter.

In developing our bias constraints, we use the simplified large signal equation

$$
\begin{equation*}
I_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{W}{L}\left(V_{\mathrm{GS}}-V_{\mathrm{TN}}\right)^{2}, \tag{49}
\end{equation*}
$$

i.e., we ignore channel modulation. This introduces only a small error.

For a PMOS transistor, the saturation condition is

$$
\begin{equation*}
V_{\mathrm{DS}} \leq V_{\mathrm{GS}}-V_{\mathrm{TP}} \tag{50}
\end{equation*}
$$

The drain current is then given by

$$
I_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}} \frac{W}{L}\left(V_{\mathrm{GS}}-V_{\mathrm{TP}}\right)^{2}\left(1+\lambda_{p} V_{\mathrm{DS}}\right)
$$

where μ_{p} is the hole mobility, V_{TP} is the PMOS threshold voltage, and λ_{p} is the channellength modulation parameter. Here too we ignore the channel modulation effects and use the simplified expression

$$
\begin{equation*}
I_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}} \frac{W}{L}\left(V_{\mathrm{GS}}-V_{\mathrm{TP}}\right)^{2} . \tag{51}
\end{equation*}
$$

A. 2 Small signal models

Figure 12 shows the small signal model around the operating point for a MOSFET transistor in saturation. The derivation of this model can also be found in [83]. The values of the various elements and parameters are described below.

Figure 12: Small signal model for a MOSFET
The transconductance $g_{m} v_{\mathrm{gs}}$ is given by

$$
\begin{equation*}
g_{m}=\frac{\partial I_{\mathrm{D}}}{\partial V_{\mathrm{GS}}}=\sqrt{2 \mu \mathrm{C}_{\mathrm{ox}} I_{D} \frac{W}{L}} \tag{52}
\end{equation*}
$$

(where we ignore, with only small error, channel modulation effects). The output conductance g_{o} is given by

$$
\begin{equation*}
g_{o}=\frac{\partial I_{\mathrm{D}}}{\partial V_{\mathrm{DS}}}=\lambda I_{D} \tag{53}
\end{equation*}
$$

Note that we ignore channel modulation in our transconductance expression, but must include it in the output conductance expression (which would otherwise be zero).

The gate to source capacitance is given by the sum of the gate oxide capacitance and the overlap capacitance:

$$
\begin{equation*}
C_{\mathrm{gs}}=\frac{2}{3} W L \mathrm{C}_{\mathrm{ox}}+W L_{\mathrm{D}} \mathrm{C}_{\mathrm{ox}} \tag{54}
\end{equation*}
$$

where L_{D} is the source lateral diffusion.
The source to bulk capacitance is a junction capacitance and can be expressed as

$$
\begin{equation*}
C_{\mathrm{sb}}=\frac{C_{\mathrm{sb} 0}}{\left(1+\frac{V_{\mathrm{sB}}}{\psi_{o}}\right)^{\frac{1}{2}}} \tag{55}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{\mathrm{sb} 0}=C_{\mathrm{j}} L_{\mathrm{s}} W+C_{\mathrm{jsw}}\left(2 L_{\mathrm{s}}+W\right), \tag{56}
\end{equation*}
$$

ψ_{o} is the junction built-in potential, and L_{s} is the source diffusion length.
The drain to bulk capacitance is also a junction capacitance given by

$$
\begin{equation*}
C_{\mathrm{db}}=\frac{C_{\mathrm{db} 0}}{\left(1+\frac{V_{\mathrm{DB}}}{\psi_{o}}\right)^{\frac{1}{2}}} \tag{57}
\end{equation*}
$$

where $C_{\mathrm{db} 0}=C_{\mathrm{sb} 0}$ for equal source and drain diffusions.
The gate to drain capacitance is due to the overlap capacitance and is given by

$$
\begin{equation*}
C_{\mathrm{gd}}=\mathrm{C}_{\mathrm{ox}} W L_{\mathrm{D}} \tag{58}
\end{equation*}
$$

Equations (54), (56), and (58) are posynomial in the design variables, and therefore are readily handled. The expressions for the junction capacitances (55) and (57) are not posynomial, except in the special case where V_{SB} and V_{DB} do not depend on the design variables. We can take two approaches to approximating these capacitances. One simple method is to take a worst-case analysis, and use the maximum values (which decreases bandwidth, slew rate, phase margin, etc.) This corresponds to the approximation $V_{\mathrm{SB}}=0$ or $V_{\mathrm{DB}}=0$. It is also possible to estimate the various junction voltages as constant, so (55) and (57) are constant.

In our op-amp circuit, the only junction capacitances that appear in the design equations (see $\S 5$) are the drain to bulk capacitances of $M_{1}, M_{2}, M_{3}, M_{4}, M_{6}$ and M_{7}. We have estimated the drain to bulk voltages of transistors $M_{1}, M_{2}, M_{3}, M_{4}, M_{6}$ and M_{7}, and use these estimated voltages for calculating the junction capacitances.

The bulk of the PMOS transistors is connected to the positive supply, V_{DD}, and the bulk of the NMOS transistors is connected to the negative supply, V_{SS}. The drain voltages of M_{1}, M_{2}, M_{3} and M_{4} are the same as the gate voltage of M_{6}, namely $V_{\mathrm{G}, 6}$. In most designs, $V_{\mathrm{G}, 6}$ is a few hundred millivolts above $V_{\mathrm{TN}}+V_{\mathrm{SS}}$. Thus we can write $V_{\mathrm{G}, 6}$ as

$$
\begin{equation*}
V_{\mathrm{G}, 6}=V_{\mathrm{TN}}+V_{\mathrm{SS}}+\Delta V_{o} \tag{59}
\end{equation*}
$$

where we use a typical overdrive voltage of $\Delta V_{o}=200 \mathrm{mV}$. The drain to bulk capacitances of M_{1}, M_{2}, M_{3} and M_{4} are then given by the expressions

$$
\begin{aligned}
& C_{\mathrm{db}, 1}=C_{\mathrm{db}, 2}=\frac{C_{\mathrm{dbo}, 1}}{\left(1+\frac{V_{\mathrm{DD}}-V_{\mathrm{TN}}-V_{\mathrm{SS}}-\Delta V_{o}}{\psi_{o}}\right)^{\frac{1}{2}}} \\
& C_{\mathrm{db}, 3}=C_{\mathrm{db}, 4}=\frac{C_{\mathrm{dbo}, 3}}{\left(1+\frac{V_{\mathrm{TN}}+\Delta V_{o}}{\psi_{o}}\right)^{\frac{1}{2}}} .
\end{aligned}
$$

The drain voltage of M_{6} and M_{7} is the output voltage of the amplifier. The quiescent output voltage is at mid-supply for an op-amp with small offset. Then, we can write $V_{\mathrm{D}, 6}$ as

$$
V_{\mathrm{D}, 6}=\frac{V_{\mathrm{DD}}+V_{\mathrm{SS}}}{2}
$$

and we obtain constant expressions for $C_{\mathrm{db} 6}$ and $C_{\mathrm{db} 7}$

$$
C_{\mathrm{db}, 6}=\frac{C_{\mathrm{dbo}, 6}}{\left(1+\frac{V_{\mathrm{D}-}-V_{\mathrm{SS}}}{2 \psi_{o}}\right)^{\frac{1}{2}}} \quad C_{\mathrm{db}, 7}=\frac{C_{\mathrm{dbo}, 7}}{\left(1+\frac{V_{\mathrm{DD}}-V_{\mathrm{SS}}}{2 \psi_{o}}\right)^{\frac{1}{2}}} .
$$

These approximations can be validated in several ways. First, we have observed that changing these typical voltages has very little effect on the final designs. And second, SPICE simulation (which includes the junction capacitances) reveals that we incur only small errors.

B Derivation of bias conditions

In this section we derive the bias conditions given in section §4.1. We start by noting that the bias current $I_{\text {bias }}$ determines the gate to source voltage of the current source devices M_{8}, M_{5}, and M_{7}. Since these three transistors have the same gate to source voltage their currents are simply related by their dimensions:

$$
I_{5}=\frac{W_{5} L_{8}}{L_{5} W_{8}} I_{\mathrm{bias}}, \quad I_{7}=\frac{W_{7} L_{8}}{L_{7} W_{8}} I_{\mathrm{bias}} .
$$

Since the pair M_{1} and M_{2} is symmetric, the current I_{5} splits equally between them, so $I_{1}=\frac{I_{5}}{2}$.

We now derive the bias condition for each transistor.

- Transistor M_{1}. Transistor M_{1} is in saturation when $V_{\mathrm{D}, 1} \leq V_{\mathrm{G}, 1}-V_{\mathrm{TP}}$. The gate voltage of $M_{3}, V_{\mathrm{G}, 3}$, is the same as the drain voltage of transistor $M_{1}, V_{\mathrm{D}, 1}$. This voltage can be expressed as

$$
V_{\mathrm{G}, 3}=V_{\mathrm{G}, 4}=V_{\mathrm{D}, 1}=\sqrt{\frac{I_{1} L_{3}}{\mu_{\mathrm{n}} C_{\mathrm{ox}} / 2 W_{3}}}+V_{\mathrm{TN}}+V_{\mathrm{ss}} .
$$

Then, the condition for M_{1} being in saturation is

$$
\sqrt{\frac{I_{1} L_{3}}{\mu_{\mathrm{n}} C_{\mathrm{ox}} / 2 W_{3}}} \leq V_{\mathrm{cm}, \min }+V_{\mathrm{ss}}-V_{\mathrm{TP}}-V_{\mathrm{TN}} .
$$

where $V_{\mathrm{cm}, \min }$, the lowest value of common-mode input voltage represents the worst case for keeping transistor M_{1} in saturation.

- Transistor M_{2}. The systematic offset condition (9) makes the drain voltage of M_{1} equal to the drain voltage of M_{2}. Therefore, the condition for M_{2} being saturated is the same as the condition for M_{1} being saturated, i.e., (12). Note that the minimum allowable value of $V_{\mathrm{cm}, \min }$ is determined by M_{1} and M_{2} entering the linear region.
- Transistor $M_{3} . M_{3}$ is connected as a diode so $V_{\mathrm{gd}, 3}=0$, hence it is always saturated.
- Transistor M_{4}. The systematic offset condition also implies that transistors M_{4} and M_{3} have the same drain voltage. Since transistors M_{4} and M_{3} are identical and have the same gate and drain voltages, the fact that M_{3} is always in saturation means that M_{4} is also in saturation.
- Transistor M_{5}. Transistor M_{5} is in saturation when $V_{\mathrm{D}, 5} \leq V_{\mathrm{G}, 5}-V_{\mathrm{TP}}$. The drain voltage of M_{5} is equal to the source voltage of transistors M_{1} and M_{2} and can be expressed as

$$
V_{\mathrm{D}, 5}=V_{\mathrm{S}, 1}=V_{\mathrm{cm}}-V_{\mathrm{TP}}+\sqrt{\frac{I_{1} L_{1}}{\mu_{\mathrm{p}} C_{\mathrm{ox}} / 2 W_{1}}} .
$$

The gate voltage of M_{5} can be expressed as

$$
V_{\mathrm{G}, 5}=V_{\mathrm{DD}}+V_{\mathrm{TP}}-\sqrt{\frac{I_{5} L_{5}}{\mu_{\mathrm{p}} C_{\mathrm{ox}} / 2 W_{5}}} .
$$

Then, the condition for M_{5} being in saturation can be written as

$$
\sqrt{\frac{I_{1} L_{1}}{\mu_{\mathrm{p}} C_{\mathrm{ox}} / 2 W_{1}}}+\sqrt{\frac{I_{5} L_{5}}{\mu_{p} C_{\mathrm{ox}} / 2 W_{5}}} \leq V_{\mathrm{dd}}-V_{\mathrm{cm}, \max }+V_{\mathrm{TP}}
$$

where $V_{\mathrm{cm} \text {, max }}$, the highest value of common-mode voltage, has been used since it represents the worst case for keeping transistor M_{5} in saturation.

- Transistor M_{6}. Transistor M_{6} is in saturation when $V_{\mathrm{D}, 6} \geq V_{\mathrm{G}, 6}-V_{\mathrm{TN}}$. The gate voltage of transistor M_{6} is determined by the dimensions of transistor M_{6} and by its drain current,

$$
V_{\mathrm{G}, 6}=\sqrt{\frac{I_{7} L_{6}}{\mu_{\mathrm{n}} C_{\mathrm{ox}} / 2 W_{6}}}+V_{\mathrm{TN}}+V_{\mathrm{SS}} .
$$

The minimum output voltage, $V_{\text {out,min }}$, is the lowest value for the drain voltage of transistor M_{6} and therefore it determines when transistor M_{6} enters the linear region. The condition for M_{6} being in saturation is then

$$
\sqrt{\frac{I_{7} L_{6}}{\mu_{\mathrm{n}} C_{\mathrm{ox}} / 2 W_{6}}} \leq V_{\mathrm{out}, \min }-V_{\mathrm{ss}}
$$

- Transistor M_{7}. Transistor M_{7} is in saturation when $V_{\mathrm{D}, 7} \leq V_{\mathrm{G}, 7}-V_{\mathrm{TP}}$. The gate voltage of transistor M_{7} is also determined by its dimensions and its drain current,

$$
V_{\mathrm{G}, 7}=-\sqrt{\frac{I_{7} L_{7}}{\mu_{\mathrm{p}} C_{\mathrm{ox}} / 2 W_{7}}}+V_{\mathrm{TP}}+V_{\mathrm{dd}} .
$$

The maximum output voltage, $V_{\text {out, } \max }$, is the highest value for the drain voltage of transistor M_{7} and therefore it determines when transistor M_{7} enters the linear region. The condition for M_{7} being in saturation is then

$$
\sqrt{\frac{I_{7} L_{7}}{\mu_{\mathrm{p}} C_{\mathrm{ox}} / 2 W_{7}}} \leq V_{\mathrm{dd}}-V_{\mathrm{out}, \max }
$$

- Transistor M_{8}. Transistor M_{8} is connected as a diode, $V_{\mathrm{gd}, 8}=0$, and therefore it is always in saturation.

C Technology parameters

Table 9 shows the HSPICE Level 1 parameters for the technology used.

Parameter	Value
Oxide thickness	20 nm
Lateral diffusion	$0.2 \mu \mathrm{~m}$
NMOS	
Threshold voltage	0.7 V
Channel length modulation	0.03^{-1}
Low-field electron mobility	$600 \mathrm{~cm}^{2} /(\mathrm{Vs})$
Body effect factor	$0.298 \mathrm{~V}^{0.5}$
Surface inversion potential	0.688 V
Diffusion sheet resistance	$40 \Omega / \square$
Zero-bias bulk junction capacitance	$271 \mu \mathrm{~F} / \mathrm{m}^{2}$
Zero-bias sidewall bulk junction capacitance	$600 \mu \mathrm{~F} / \mathrm{m}$
Bulk junction grading coefficient	0.5
Bulk junction contact potential	0.904 V
Gate-drain overlap capacitance	$346 \mu \mathrm{~F} / \mathrm{m}$
Gate-source overlap capacitance	$346 \mu \mathrm{~F} / \mathrm{m}$
Flicker noise coefficient	$4 e^{-24} \mathrm{~V}^{2} \mathrm{~F}$
PMOS	
Threshold voltage	-0.9 V
Channel length modulation	0.06^{-1}
Low-field electron mobility	$200 \mathrm{~cm}{ }^{2} /(\mathrm{Vs})$
Body effect factor	$0.471 \mathrm{~V}^{0.5}$
Surface inversion potential	0.730 V
Diffusion sheet resistance	$60 \Omega / \square$
Zero-bias bulk junction capacitance	$423 \mu \mathrm{~F} / \mathrm{m}^{2}$
Zero-bias sidewall bulk junction capacitance	$1.2 \mathrm{nF} / \mathrm{m}$
Bulk junction grading coefficient	0.5
Bulk junction contact potential	0.928 V
Gate-drain overlap capacitance	$346 \mu \mathrm{~F} / \mathrm{m}$
Gate-source overlap capacitance	$346 \mu \mathrm{~F} / \mathrm{m}$
Flicker noise coefficient	$2 e^{-24} \mathrm{~V}^{2} \mathrm{~F}$

Table 9: HSPICE Level 1 technology parameters

References

[1] M. Hershenson, S. P. Boyd, and T. H. Lee. Analog circuit design optimization via geometric programming.
[2] B. K. Ahuja. An improved frequency compensation technique for CMOS operational amplifiers. IEEE Journal of Solid-State Circuits, 18:629-633, December 1983.
[3] J. E. Solomon. The monolithic op amp: a tutorial study. IEEE Journal of Solid-State Circuits, 9:969-982, December 1974.
[4] D. G. Marsh et al. A single-chip CMOS PCM codec with filters. IEEE Journal of Solid-State Circuits, 16:308-315, August 1981.
[5] F. H. Musa and R. C. Huntington. A CMOS monolithic 3.5 digit A/D converter. In International Solid-State Conference, pages 144-145, 1976.
[6] G. F. Landsburg. A charge-balancing monolithic A/D converter. IEEE Journal of Solid-State Circuits, 12:662-673, December 1977.
[7] J. Shieh, M. Patil, and B. J. Sheu. Measurement and analysis of charge injection in MOS analog switches. IEEE Journal of Solid-State Circuits, 22:277-281, April 1987.
[8] R. K. Brayton, G. D. Hachtel, and A. Sangiovanni-Vincentelli. A survey of optimization techniques for integrated-circuit design. Proceedings of the IEEE, 69(10):1334-1362, October 1981.
[9] L. R. Carley and R. A. Rutenbar. How to automate analog IC designs. IEEE Spectrum, 25:26-30, August 1988.
[10] B. A. A. Antao. Trends in CAD of analog ICs. IEEE Circuits and Devices Magazine, 12(5):3141, September 1996.
[11] L. R. Carley, G. G. E. Gielen, R. A. Rutenbar, and W. M. C. Sansen. Synthesis tools for mixed-signal ICs: Progress on front-end and back-end strategies. In Proceedings of the 33rd Annual Design Automation Conference, pages 298-303, 1996.
[12] P. C. Maulik, L. R. Carley, and R. A. Rutenbar. Integer programming based topology selection of cell-level analog circuits. IEEE Transactions on Computer-Aided Design, 14:401-412, April 1995.
[13] J. Rijmenants et al. ILAC: An automated layout tool for analog CMOS circuits. IEEE Journal of Solid-State Circuits, 24:417-425, April 1989.
[14] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley. KOAN/ANAGRAM II: New tools for device-placement and routing. IEEE Journal of Solid-State Circuits, 26, March 1991.
[15] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. User's guide for NPSOL (Version 4.0): A FORTRAN package for nonlinear programming. Technical Report SOL 86-2, Operations Research Dept., Stanford University, Stanford, California 94305, January 1986.
[16] B. A. Murtagh and M. A. Saunders. Minos 5.4 user's guide. Technical Report SOL 83-20R, Systems Optimization Laboratory, Stanford University, Stanford, California 94305, December 1983.
[17] P. C. Maulik and L. R. Carley. High-performance analog module generation using nonlinear optimization. In Proceedings Fourth Annual IEEE International ASIC Conference Exhibit, pages T13-5.1-T13-5.2, 1991.
[18] P. C. Maulik, M. J. Flynn, D. J. Allstot, and L. R. Carley. Rapid redesign of analog standard cells using constrained optimization techniques. In Proceedings IEEE Custom Integrated Circuit Conference, pages 8.1.1-8.1.3, 1992.
[19] H. Chang et al. A top-down constraint-driven design methodology for analog integrated circuits. In Proceedings IEEE Custom Integrated Circuit Conference, pages 8.4.1-8.4.6, 1992.
[20] K. Madsen, O. Niedseln, H. Schjaer-Jakobsen, and H. Tharne. Efficient minimax design of networks without using derivatives. IEEE Transactions on Microwave Theory and Techniques, 23:803-809, October 1975.
[21] P. Heikkilã, M. Valtonen, and K. Mannersalo. CMOS op amp dimensioning using multiphase optimization. In Proceedings IEEE International Symposium on Circuits and Systems, pages 167-170, 1988.
[22] F. Leyn, W. Daems, G. Gielen, and W. Sansen. Analog circuit sizing with constraint programming modeling and minimax optimization. In Proceedings IEEE International Symposium on Circuits and Systems, volume 3, pages 1500-1503, 1997.
[23] H. Onodera, H. Kanbara, and K. Tamaru. Operational amplifier compilation with performance optimization. IEEE Journal of Solid-State Circuits, 25:466-473, April 1990.
[24] H. Y. Koh, C. H. Séquin, and P. R. Gray. OPASYN: A compiler for CMOS operational amplifiers. IEEE Transactions on Computer-Aided Design, 9:113-125, February 1990.
[25] G. Jusuf, P. R. Gray, and A. Sangiovanni-Vincentelli. CADICS- cyclic analog-to-digital converter synthesis. In Proceedings IEEE International Conference on Computer-Aided Design, pages 286-289, 1990.
[26] R. Chadha et al. WAPOPT: An optimizer for circuit applications. IEEE Transactions on Computer-Aided Design, 6:472-479, May 1987.
[27] J. P. Harvey, M. I. Elmasry, and B. Leung. STAIC: An interactive framework for synthesizing CMOS and BiCMOS analog circuits. IEEE Transactions on Computer-Aided Design, 11:14021417, November 1992.
[28] W. Nye, D. C. Riley, A. Sangiovanni-Vincentelli, and A. L. Tits. DELIGTH.SPICE: An optimization-based system for the design of integrated circuits. IEEE Transactions on Computer-Aided Design, 7:501-518, April 1988.
[29] W. T. Nye, E. Polak, and A. Sangiovanni-Vincentelli. DELIGTH: An optimization-based computer-aided design system. In Proceedings IEEE International Symposium on Circuits and Systems, pages 851-855, 1981.
[30] J. Shyu and A. Sangiovanni-Vincentelli. ECSTASY: A new environment for IC design optimization. In Digest of Technical Papers IEEE International Conference on Computer-Aided Design, pages 484-487, 1988.
[31] Z. Ning, T. Mouthaan, and H. Wallinga. SEAS: A simulated evolution approach for analog circuit synthesis. In Proceedings IEEE Custom Integrated Circuit Conference, pages 5.2.15.2.4, 1991.
[32] W. Kruiskamp and D. Leenaerts. DARWIN: CMOS op amp synthesis by means of a genetic algorithm. In Proceedings of the 32nd Annual Design Automation Conference, pages 433-438, 1995.
[33] M. Wójcikowski, J. Glinianowicz, and M. Bialko. System for optimization of electronic circuits using genetic algorithm. In Proceedings IEEE International Conference on Electronics, Circuits and Systems, pages 247-250, 1996.
[34] A. Torralba and J. Chávez andl L. G. Franquelo. FASY: A fuzzy-logic based tool for analog synthesis. IEEE Transactions on Computer-Aided Design, 15:705-715, July 1996.
[35] M. Hashizume, H. Y. Kawai, K. Nii, and T. Tamesada. Design automation system for analog circuits based on fuzzy logic. In Proceedings IEEE Custom Integrated Circuit Conference, pages 4.6.1-4.6.4, 1989.
[36] M. G. R. Degrauwe et al. IDAC: An interactive design tool for analog CMOS circuits. IEEE Journal of Solid-State Circuits, 22:1106-115, December 1987.
[37] M. G. R. Degrauwe et al. Towards an analog system design environment. IEEE Journal of Solid-State Circuits, 24:1587-1597, December 1989.
[38] R. Harjani, R. A. Rutenbar, and L. R. Carley. OASYS: A framework for analog circuit synthesis. IEEE Transactions on Computer-Aided Design, 8:1247-1265, December 1989.
[39] F. El-Turky and E. E. Perry. BLADES: An artificial intelligence approach to analog circuit design. IEEE Transactions on Computer-Aided Design, 8:680-692, June 1989.
[40] S. K. Gupta and M. M. Hasan. KANSYS: A CAD tool for analog circuit synthesis. In Proceedings of the 9th International Conference on VLSI Design, pages 333-334, 1996.
[41] C. Xinghao and M. L. Bushnell. Efficient branch and bound search with application to computer-aided design. Kluwer Academic Publishers, 1996.
[42] D. F. Wong, H. W. Leong, and C. L. Liu. Simulated Annealing for VLSI design. Kluwer, 1988.
[43] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and Applications. D. Reidel, 1987.
[44] E. S. Ochotta, R. A. Rutenbar, and L. R. Carley. Synthesis of high-performance analog circuits in ASTRX/OBLX. IEEE Transactions on Computer-Aided Design, 15:273-293, March 1996.
[45] G. G. E. Gielen, H .C. C. Walscharts, and W. M. C. Sansen. Analog circuit design optimization based on symbolic simulation and simulated annealing. IEEE Journal of Solid-State Circuits, 25:707-713, June 1990.
[46] K. Swings, G. Gielen, and W. Sansen. An intelligent analog IC design system based on manipulation of design equations. In Proceedings IEEE Custom Integrated Circuit Conference, pages 8.6.1-8.6.4, 1990.
[47] F. Medeiro, F.V. Fernández, R. Domínguez-Castro, and A.Rodríguez-Vázquez. A statistical optimization-based approach for automated sizing of analog cells. In Proceedings of the 31st Annual Design Automation Conference, pages 594-597, 1994.
[48] H. Z. Yang, C. Z. Fan, H. Wang, and R. S. Liu. Simulated annealing algorithm with multimolecule: an approach to analog synthesis. In Proceedings of the 1996 European Design \mathcal{B}^{3} Test Conference, pages 571-575, 1996.
[49] J. Chávez, M. A. Aguirre, and A. Torralba. Analog design optimization: a case study. In Proceedings IEEE International Symposium on Circuits and Systems, volume 3, pages 20832085, 1993.
[50] M. A. Aguirre, J. Chávez, , A. Torralba, and L. G. Franquelo. Analog design optimization by means of a tabu search approach. In Proceedings IEEE International Symposium on Circuits and Systems, volume 1, pages 375-378, 1994.
[51] Yu. Nesterov and A. Nemirovsky. Interior-point polynomial methods in convex programming, volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia, PA, 1994.
[52] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, 1997.
[53] S. Boyd and L. Vandenberghe. Introduction to convex optimization with engineering applications. Course Notes, 1997. http://www-leland.stanford.edu/class/ee364/.
[54] J. P. Fishburn and A. E. Dunlop. TILOS: a posynomial programming approach to transistor sizing. In Proceedings ICCAD'85, pages 326-328, 1985.
[55] J.-M. Shyu, A. Sangiovanni-Vincentelli, J. P. Fishburn, and A. E. Dunlop. Optimization-based transistor sizing. IEEE Journal of Solid-State Circuits, 23(2):400-409, 1988.
[56] S. Sapatnekar, V. B. Rao, P. Vaidya, and S.-M. Kang. An exact solution to the transistor sizing problem for CMOS circuits using convex optimization. IEEE Transactions on Computer-Aided Design, 12:1621-1634, 1993.
[57] S. S. Sapatnekar. Wire sizing as a convex optimization problem: exploring the area-delay tradeoff. IEEE Transactions on Computer-Aided Design, 15(8):1001-1011, 1996.
[58] P. C. Maulik, L. R. Carley, and D. J. Allstot. Sizing of cell-level analog circuits using constrained optimization techniques. IEEE Journal of Solid-State Circuits, 28:233-241, March 1993.
[59] I. Vassiliou et al. A video-driver system designed using a top-down, constraint-driven, methodoly. In Proceedings of the 33rd Annual Design Automation Conference, 1996.
[60] H. Su, C. Michael, and M. Ismail. Statistical constrained optimization of analog MOS circuits using empirical performance tools. In Proceedings IEEE International Symposium on Circuits and Systems, volume 1, pages 133-136, 1994.
[61] R. J. Duffin, E. L. Peterson, and C. Zener. Geometric Programming - Theory and Applications. Wiley, 1967.
[62] C. Zener. Engineering Design by Geometric Programming. Wiley, 1971.
[63] C. S. Beightler and D. T. Phillips. Applied Geometric Programming. John Willey \& Sons, 1976.
[64] J. Ecker. Geometric programming: methods, computations and applications. SIAM Rev., 22(3):338-362, 1980.
[65] J. Ecker and M. Kupferschmid. Introduction to Operations Research. Krieger, 1991.
[66] D. Wilde and C. Beightler. Foundations of Optimization. Prentice-Hall, Englewood Cliffs, NJ, 1967.
[67] K. O. Kortanek, X. Xu, and Y. Ye. An infeasible interior-point algorithm for solving primal and dual geometric progams. Mathematical Programming, 76:155-181, 1996.
[68] W.C. Black et al. A high performance low power CMOS channel filter. IEEE Journal of Solid-State Circuits, 15:929-938, December 1980.
[69] D. A. Johns and K. Martin. Analog integrated circuit design. John Wiley \& Sons, 1st. edition, 1997.
[70] B. Wooley. EE315 course notes. 1996.
[71] S. Rabii and B. A. Wooley. A $1.8-\mathrm{V}$ digital-audio sigma-delta modulator in $0.8 \mu \mathrm{~m}$ CMOS. IEEE Journal of Solid-State Circuits, 32:783-795, June 1997.
[72] K. R Laker and W. M. C. Sansen. Design of Analog integrated circuits and systems. McGrawHill, 1st. edition, 1994.
[73] L. P. Huelsman and G. E. Gielen. Symbolic Analysis of Analog Circuits: Techniques and Applications. Kluwer Academic Publishers, 1993.
[74] P. R. Gray and R. G. Meyer. MOS operational amplifier design-a tutorial overview. IEEE Journal of Solid-State Circuits, 17:969-982, December 1982.
[75] R. Gregorian and G. C. Temes. Analog MOS integrated circuits for signal processing. John Wiley \& Sons, 1st. edition, 1986.
[76] L. Trontelj, J. Trontelj, T. Slivnik, R. Sosic, and D. Strle. Analog silicon compiler for switched capacitor filters. In Proceedings IEEE International Conference on Computer-Aided Design, pages 506-509, 1987.
[77] A. Barlow, K. Takasuka, Y. Nambu, T. Adachi, and J. Konno. An integrated switchedcapacitor filter design system. In Proceedings IEEE Custom Integrated Circuit Conference, pages 4.5.1-4.5.5, 1989.
[78] J. Assael, P. Senn, and M. S. Tawfik. A switched-capapcitor filter silicon compiler. IEEE Journal of Solid-State Circuits, 23:166-174, February 1988.
[79] F. Wang and R. Harjani. Optimal design of opamps for oversampled converters. In Proceedings IEEE Custom Integrated Circuit Conference, pages 15.5.1-15.5.4, 1996.
[80] S. Khorram, A. Rofougaran, and A. A. Abidi. A CMOS limiting amplifier and signal-strength indicator. In Symposium on VLSI Circuits Deigest of Technical Papers, pages 95-96, 1995.
[81] G. G. E. Gielen, H. C. C. Walscharts, and W. M. C. Sansen. ISAAC: A symbolic simulator for analog integrated circuits. IEEE Journal of Solid-State Circuits, 24:1587-1597, December 1989.
[82] S. J. Seda, M. G. R. Degrauwe, and W. Fichtner. A symbolic tool for analog circuit design automation. In Digest of Technical Papers IEEE International Conference on Computer-Aided Design, pages 488-491, 1988.
[83] P. R. Gray and R. G. Meyer. Analysis and Design of Analog Integrated Circuits. John Wiley \& Sons, 3rd. edition, 1993.
[84] P. E. Allen and D. R. Holberg. CMOS analog circuit design. Oxford Univeristy Press, 1st. edition, 1987.
[85] R. S. Muller and T. H. Kamins. Device Electronics for Integrated Circuits. John Wiley \& Sons, 2nd. edition, 1986.
[86] S. M. Sze. Physics of Semiconductor Devices. John Wiley \& Sons, 2nd. edition, 1981.

