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Abstract

We derive a second-order ordinary differential equation (ODE), which is the limit
of Nesterov’s accelerated gradient method. This ODE exhibits approximate equiv-
alence to Nesterov’s scheme and thus can serve as a tool for analysis. We show that
the continuous time ODE allows for a better understanding of Nesterov’s scheme.
As a byproduct, we obtain a family of schemes with similar convergence rates.
The ODE interpretation also suggests restarting Nesterov’s scheme leading to an
algorithm, which can be rigorously proven to converge at a linear rate whenever
the objective is strongly convex.

1 Introduction

As data sets and problems are ever increasing in size, accelerating first-order methods is both of
practical and theoretical interest. Perhaps the earliest first-order method for minimizing a convex
function f is the gradient method, which dates back to Euler and Lagrange. Thirty years ago, in a
seminar paper [11] Nesterov proposed an accelerated gradient method, which may take the following
form: starting with x0 and y0 = x0, inductively define

xk = yk−1 − s∇f(yk−1)

yk = xk +
k − 1

k + 2
(xk − xk−1).

(1)

For a fixed step size s = 1/L, where L is the Lipschitz constant of ∇f , this scheme exhibits the
convergence rate

f(xk)− f⋆ ≤ O
(L‖x0 − x⋆‖2

k2

)

.

Above, x⋆ is any minimizer of f and f⋆ = f(x⋆). It is well-known that this rate is optimal among
all methods having only information about the gradient of f at consecutive iterates [12]. This is in
contrast to vanilla gradient descent methods, which can only achieve a rate of O(1/k) [18]. This
improvement relies on the introduction of the momentum term xk−xk−1 as well as the particularly
tuned coefficient (k − 1)/(k + 2) ≈ 1 − 3/k. Since the introduction of Nesterov’s scheme, there
has been much work on the development of first-order accelerated methods, see [12, 13, 14, 1, 2] for
example, and [20] for a unified analysis of these ideas.

In a different direction, there is a long history relating ordinary differential equations (ODE) to opti-
mization, see [6, 4, 8, 19] for references. The connection between ODEs and numerical optimization
is often established via taking step sizes to be very small so that the trajectory or solution path con-
verges to a curve modeled by an ODE. The conciseness and well-established theory of ODEs provide
deeper insights into optimization, which has led to many interesting findings [5, 7, 16].
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In this work, we derive a second-order ordinary differential equation, which is the exact limit of
Nesterov’s scheme by taking small step sizes in (1). This ODE reads

Ẍ +
3

t
Ẋ +∇f(X) = 0 (2)

for t > 0, with initial conditions X(0) = x0, Ẋ(0) = 0; here, x0 is the starting point in Nesterov’s

scheme, Ẋ denotes the time derivative or velocity dX/dt and similarly Ẍ = d2X/dt2 denotes the
acceleration. The time parameter in this ODE is related to the step size in (1) via t ≈ k

√
s. Case

studies are provided to demonstrate that the homogeneous and conceptually simpler ODE can serve
as a tool for analyzing and generalizing Nesterov’s scheme. To the best of our knowledge, this work
is the first to model Nesterov’s scheme or its variants by ODEs.

We denote by FL the class of convex functions f with L–Lipschitz continuous gradients defined on
R

n, i.e., f is convex, continuously differentiable, and obeys

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖
for any x, y ∈ R

n, where ‖ · ‖ is the standard Euclidean norm and L > 0 is the Lipschitz constant
throughout this paper. Next, Sµ denotes the class of µ–strongly convex functions f on R

n with

continuous gradients, i.e., f is continuously differentiable and f(x)− µ‖x‖2/2 is convex. Last, we
set Sµ,L = FL ∩ Sµ.

2 Derivation of the ODE

Assume f ∈ FL for L > 0. Combining the two equations of (1) and applying a rescaling give

xk+1 − xk√
s

=
k − 1

k + 2

xk − xk−1√
s

−
√
s∇f(yk). (3)

Introduce the ansatz xk ≈ X(k
√
s) for some smooth curve X(t) defined for t ≥ 0. For fixed t,

as the step size s goes to zero, X(t) ≈ xt/
√
s = xk and X(t +

√
s) ≈ x(t+

√
s)/

√
s = xk+1 with

k = t/
√
s. With these approximations, we get Taylor expansions:

(xk+1 − xk)/
√
s = Ẋ(t) +

1

2
Ẍ(t)

√
s+ o(

√
s)

(xk − xk−1)/
√
s = Ẋ(t)− 1

2
Ẍ(t)

√
s+ o(

√
s)

√
s∇f(yk) =

√
s∇f(X(t)) + o(

√
s),

where in the last equality we use yk −X(t) = o(1). Thus (3) can be written as

Ẋ(t) +
1

2
Ẍ(t)

√
s+ o(

√
s)

=
(

1− 3
√
s

t

)(

Ẋ(t)− 1

2
Ẍ(t)

√
s+ o(

√
s)
)

−
√
s∇f(X(t)) + o(

√
s). (4)

By comparing the coefficients of
√
s in (4), we obtain

Ẍ +
3

t
Ẋ +∇f(X) = 0

for t > 0. The first initial condition is X(0) = x0. Taking k = 1 in (3) yields (x2 − x1)/
√
s =

−√s∇f(y1) = o(1). Hence, the second initial condition is simply Ẋ(0) = 0 (vanishing initial
velocity). In the formulation of [1] (see also [21]), the momentum coefficient (k − 1)/(k + 2) is

replaced by θk(θ
−1
k−1 − 1), where θk are iteratively defined as

θk+1 =

√

θ4k + 4θ2k − θ2k
2

(5)

starting from θ0 = 1. A bit of analysis reveals that θk(θ
−1
k−1 − 1) asymptotically equals 1 − 3/k +

O(1/k2), thus leading to the same ODE as (1).
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Classical results in ODE theory do not directly imply the existence or uniqueness of the solution to
this ODE because the coefficient 3/t is singular at t = 0. In addition, ∇f is typically not analytic
at x0, which leads to the inapplicability of the power series method for studying singular ODEs.
Nevertheless, the ODE is well posed: the strategy we employ for showing this constructs a series of
ODEs approximating (2) and then chooses a convergent subsequence by some compactness argu-
ments such as the Arzelá-Ascoli theorem. A proof of this theorem can be found in the supplementary
material for this paper.

Theorem 2.1. For any f ∈ F∞ , ∪L>0FL and any x0 ∈ R
n, the ODE (2) with initial conditions

X(0) = x0, Ẋ(0) = 0 has a unique global solution X ∈ C2((0,∞);Rn) ∩ C1([0,∞);Rn).

3 Equivalence between the ODE and Nesterov’s scheme

We study the stable step size allowed for numerically solving the ODE in the presence of accumu-
lated errors. The finite difference approximation of (2) by the forward Euler method is

X(t+∆t)− 2X(t) +X(t−∆t)

∆t2
+

3

t

X(t)−X(t−∆t)

∆t
+∇f(X(t)) = 0, (6)

which is equivalent to

X(t+∆t) =
(

2− 3∆t

t

)

X(t)−∆t2∇f(X(t))−
(

1− 3∆t

t

)

X(t−∆t).

Assuming that f is sufficiently smooth, for small perturbations δx, ∇f(x + δx) ≈ ∇f(x) +
∇2f(x)δx, where ∇2f(x) is the Hessian of f evaluated at x. Identifying k = t/∆t, the char-
acteristic equation of this finite difference scheme is approximately

det
(

λ2 −
(

2−∆t2∇2f − 3∆t

t

)

λ+ 1− 3∆t

t

)

= 0. (7)

The numerical stability of (6) with respect to accumulated errors is equivalent to this: all the roots
of (7) lie in the unit circle [9]. When∇2f � LIn (i.e., LIn−∇2f is positive semidefinite), if ∆t/t

small and ∆t < 2/
√
L, we see that all the roots of (7) lie in the unit circle. On the other hand, if

∆t > 2/
√
L, (7) can possibly have a root λ outside the unit circle, causing numerical instability.

Under our identification s = ∆t2, a step size of s = 1/L in Nesterov’s scheme (1) is approximately

equivalent to a step size of ∆t = 1/
√
L in the forward Euler method, which is stable for numerically

integrating (6).

As a comparison, note that the corresponding ODE for gradient descent with updates xk+1 = xk −
s∇f(xk), is

Ẋ(t) +∇f(X(t)) = 0,

whose finite difference scheme has the characteristic equation det(λ − (1 −∆t∇2f)) = 0. Thus,
to guarantee −In � 1 − ∆t∇2f � In in worst case analysis, one can only choose ∆t ≤ 2/L for

a fixed step size, which is much smaller than the step size 2/
√
L for (6) when ∇f is very variable,

i.e., L is large.

Next, we exhibit approximate equivalence between the ODE and Nesterov’s scheme in terms of
convergence rates. We first recall the original result from [11].

Theorem 3.1 (Nesterov). For any f ∈ FL, the sequence {xk} in (1) with step size s ≤ 1/L obeys

f(xk)− f⋆ ≤ 2‖x0 − x⋆‖2
s(k + 1)2

.

Our first result indicates that the trajectory of ODE (2) closely resembles the sequence {xk} in terms
of the convergence rate to a minimizer x⋆.

Theorem 3.2. For any f ∈ F∞, let X(t) be the unique global solution to (2) with initial conditions

X(0) = x0, Ẋ(0) = 0. For any t > 0,

f(X(t))− f⋆ ≤ 2‖x0 − x⋆‖2
t2

.
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Proof of Theorem 3.2. Consider the energy functional defined as

E(t) , t2(f(X(t))− f⋆) + 2‖X +
t

2
Ẋ − x⋆‖2,

whose time derivative is

Ė = 2t(f(X)− f⋆) + t2〈∇f, Ẋ〉+ 4〈X +
t

2
Ẋ − x⋆,

3

2
Ẋ +

t

2
Ẍ〉. (8)

Substituting 3Ẋ/2 + tẌ/2 with −t∇f(X)/2, (8) gives

Ė = 2t(f(X)− f⋆) + 4〈X − x⋆,− t

2
∇f(X)〉 = 2t(f(X)− f⋆)− 2t〈X − x⋆,∇f(X)〉 ≤ 0,

where the inequality follows from the convexity of f . Hence by monotonicity of E and non-

negativity of 2‖X + tẊ/2 − x⋆‖2, the gap obeys f(X(t)) − f⋆ ≤ E(t)/t2 ≤ E(0)/t2 =
2‖x0 − x⋆‖2/t2.

4 A family of generalized Nesterov’s schemes

In this section we show how to exploit the power of the ODE for deriving variants of Nesterov’s
scheme. One would be interested in studying the ODE (2) with the number 3 appearing in the

coefficient of Ẋ/t replaced by a general constant r as in

Ẍ +
r

t
Ẋ +∇f(X) = 0, X(0) = x0, Ẋ(0) = 0. (9)

Using arguments similar to those in the proof of Theorem 2.1, this new ODE is guaranteed to assume
a unique global solution for any f ∈ F∞.

4.1 Continuous optimization

To begin with, we consider a modified energy functional defined as

E(t) = 2t2

r − 1
(f(X(t))− f⋆) + (r − 1)

∥

∥

∥

∥

X(t) +
t

r − 1
˙X(t)− x⋆

∥

∥

∥

∥

2

.

Since rẊ + tẌ = −t∇f(X), the time derivative Ė is equal to

4t

r − 1
(f(X)− f⋆) +

2t2

r − 1
〈∇f, Ẋ〉+ 2〈X +

t

r − 1
Ẋ − x⋆, rẊ + tẌ〉

=
4t

r − 1
(f(X)− f⋆)− 2t〈X − x⋆,∇f(X)〉. (10)

A consequence of (10) is this:

Theorem 4.1. Suppose r > 3 and let X be the unique solution to (9) for some f ∈ F∞. Then X
obeys

f(X(t))− f⋆ ≤ (r − 1)2‖x0 − x⋆‖2
2t2

and
∫ ∞

0

t(f(X(t))− f⋆)dt ≤ (r − 1)2‖x0 − x⋆‖2
2(r − 3)

.

Proof of Theorem 4.1. By (10), the derivative dE/dt equals

2t(f(X)−f⋆)−2t〈X−x⋆,∇f(X)〉− 2(r − 3)t

r − 1
(f(X)−f⋆) ≤ −2(r − 3)t

r − 1
(f(X)−f⋆), (11)

where the inequality follows from the convexity of f . Since f(X) ≥ f⋆, (11) implies that E is
non-increasing. Hence

2t2

r − 1
(f(X(t))− f⋆) ≤ E(t) ≤ E(0) = (r − 1)‖x0 − x⋆‖2,
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yielding the first inequality of the theorem as desired. To complete the proof, by (10) it follows that
∫ ∞

0

2(r − 3)t

r − 1
(f(X)− f⋆)dt ≤ −

∫ ∞

0

dE
dt

dt = E(0)− E(∞) ≤ (r − 1)‖x0 − x⋆‖2,

as desired for establishing the second inequality.

We now demonstrate faster convergence rates under the assumption of strong convexity. Given a
strongly convex function f , consider a new energy functional defined as

Ẽ(t) = t3(f(X(t))− f⋆) +
(2r − 3)2t

8

∥

∥

∥

∥

X(t) +
2t

2r − 3
Ẋ(t)− x⋆

∥

∥

∥

∥

2

.

As in Theorem 4.1, a more refined study of the derivative of Ẽ(t) gives

Theorem 4.2. For any f ∈ Sµ,L(Rn), the unique solution X to (9) with r ≥ 9/2 obeys

f(X(t))− f⋆ ≤ Cr
5

2 ‖x0 − x⋆‖2
t3
√
µ

for any t > 0 and a universal constant C > 1/2.

The restriction r ≥ 9/2 is an artifact required in the proof. We believe that this theorem should be
valid as long as r ≥ 3. For example, the solution to (9) with f(x) = ‖x‖2/2 is

X(t) =
2

r−1

2 Γ((r + 1)/2)J(r−1)/2(t)

t
r−1

2

x0, (12)

where J(r−1)/2(·) is the first kind Bessel function of order (r−1)/2. For large t, this Bessel function

obeys J(r−1)/2(t) =
√

2/(πt)(cos(t− (r − 1)π/4− π/4) +O(1/t)). Hence,

f(X(t))− f⋆ . ‖x0 − x⋆‖2/tr,
in which the inequality fails if 1/tr is replaced by any higher order rate. For general strongly convex
functions, such refinement, if possible, might require a construction of a more sophisticated energy
functional and careful analysis. We leave this problem for future research.

4.2 Composite optimization

Inspired by Theorem 4.2, it is tempting to obtain such analogies for the discrete Nesterov’s scheme
as well. Following the formulation of [1], we consider the composite minimization:

minimize
x∈Rn

f(x) = g(x) + h(x),

where g ∈ FL for some L > 0 and h is convex on R
n with possible extended value∞. Define the

proximal subgradient

Gs(x) ,
x− argminz

[

‖z − (x− s∇g(x))‖2/(2s) + h(z)
]

s
.

Parametrizing by a constant r, we propose a generalized Nesterov’s scheme,

xk = yk−1 − sGs(yk−1)

yk = xk +
k − 1

k + r − 1
(xk − xk−1),

(13)

starting from y0 = x0. The discrete analog of Theorem 4.1 is below, whose proof is also deferred to
the supplementary materials as well.

Theorem 4.3. The sequence {xk} given by (13) with r > 3 and 0 < s ≤ 1/L obeys

f(xk)− f⋆ ≤ (r − 1)2‖x0 − x⋆‖2
2s(k + r − 2)2

and
∞
∑

k=1

(k + r − 1)(f(xk)− f⋆) ≤ (r − 1)2‖x0 − x⋆‖2
2s(r − 3)

.

5



The idea behind the proof is the same as that employed for Theorem 4.1; here, however, the energy
functional is defined as

E(k) = 2s(k + r − 2)2(f(xk)− f⋆)/(r − 1) + ‖(k + r − 1)yk − kxk − (r − 1)x⋆‖2/(r − 1).

The first inequality in Theorem 4.3 suggests that the generalized Nesterov’s scheme still achieves
O(1/k2) convergence rate. However, if the error bound satisfies

f(xk′)− f⋆ ≥ c

k′2

for some c > 0 and a dense subsequence {k′}, i.e., |{k′} ∩ {1, . . . ,m}| ≥ αm for any positive
integer m and some α > 0, then the second inequality of the theorem is violated. Hence, the second
inequality is not trivial because it implies the error bound is in some sense O(1/k2) suboptimal.

In closing, we would like to point out this new scheme is equivalent to setting θk = (r−1)/(k+r−1)
and letting θk(θ

−1
k−1 − 1) replace the momentum coefficient (k − 1)/(k + r − 1). Then, the equal

sign “ = ” in (5) has to be replaced by “ ≥ ”. In examining the proof of Theorem 1(b) in [21], we
can get an alternative proof of Theorem 4.3 by allowing (5), which appears in Eq. (36) in [21], to be
an inequality.

5 Accelerating to linear convergence by restarting

Although an O(1/k3) convergence rate is guaranteed for generalized Nesterov’s schemes (13), the
example (12) provides evidence that O(1/poly(k)) is the best rate achievable under strong con-
vexity. In contrast, the vanilla gradient method achieves linear convergence O((1 − µ/L)k) and

[12] proposed a first-order method with a convergence rate of O((1 −
√

µ/L)k), which, however,
requires knowledge of the condition number µ/L. While it is relatively easy to bound the Lipschitz
constant L by the use of backtracking [3, 20], estimating the strong convexity parameter µ, if not
impossible, is very challenging. Among many approaches to gain acceleration via adaptively esti-
mating µ/L, [15] proposes a restarting procedure for Nesterov’s scheme in which (1) is restarted
with x0 = y0 := xk whenever ∇f(yk)T (xk+1 − xk) > 0. In the language of ODEs, this gradi-

ent based restarting essentially keeps 〈∇f, Ẋ〉 negative along the trajectory. Although it has been
empirically observed that this method significantly boosts convergence, there is no general theory
characterizing the convergence rate.

In this section, we propose a new restarting scheme we call the speed restarting scheme. The un-

derlying motivation is to maintain a relatively high velocity Ẋ along the trajectory. Throughout this
section we assume f ∈ Sµ,L for some 0 < µ ≤ L.

Definition 5.1. For ODE (2) with X(0) = x0, Ẋ(0) = 0, let

T = T (f, x0) = sup{t > 0 : ∀u ∈ (0, t),
d‖Ẋ(u)‖2

du
> 0}

be the speed restarting time.

In words, T is the first time the velocity ‖Ẋ‖ decreases. The definition itself does not imply that
0 < T < ∞, which is proven in the supplementary materials. Indeed, f(X(t)) is a decreasing
function before time T ; for t ≤ T ,

df(X(t))

dt
= 〈∇f(X), Ẋ〉 = −3

t
‖Ẋ‖2 − 1

2

d‖Ẋ‖2
dt

≤ 0.

The speed restarted ODE is thus

Ẍ(t) +
3

tsr
Ẋ(t) +∇f(X(t)) = 0, (14)

where tsr is set to zero whenever 〈Ẋ, Ẍ〉 = 0 and between two consecutive restarts, tsr grows just as
t. That is, tsr = t− τ , where τ is the latest restart time. In particular, tsr = 0 at t = 0. The theorem
below guarantees linear convergence of the solution to (14). This is a new result in the literature
[15, 10].

Theorem 5.2. There exists positive constants c1 and c2, which only depend on the condition number
L/µ, such that for any f ∈ Sµ,L, we have

f(Xsr(t))− f(x⋆) ≤ c1L‖x0 − x⋆‖2
2

e−c2t
√
L.
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5.1 Numerical examples

Below we present a discrete analog to the restarted scheme. There, kmin is introduced to avoid
having consecutive restarts that are too close. To compare the performance of the restarted scheme
with the original (1), we conduct four simulation studies, including both smooth and non-smooth
objective functions. Note that the computational costs of the restarted and non-restarted schemes are
the same.

Algorithm 1 Speed Restarting Nesterov’s Scheme

input: x0 ∈ R
n, y0 = x0, x−1 = x0, 0 < s ≤ 1/L, kmax ∈ N

+ and kmin ∈ N
+

j ← 1
for k = 1 to kmax do

xk ← argminx(
1
2s‖x− yk−1 + s∇g(yk−1)‖2 + h(x))

yk ← xk + j−1
j+2 (xk − xk−1)

if ‖xk − xk−1‖ < ‖xk−1 − xk−2‖ and j ≥ kmin then
j ← 1

else
j ← j + 1

end if
end for

Quadratic. f(x) = 1
2x

TAx+bTx is a strongly convex function, in which A is a 500×500 random
positive definite matrix and b a random vector. The eigenvalues of A are between 0.001 and 1. The
vector b is generated as i. i. d. Gaussian random variables with mean 0 and variance 25.

Log-sum-exp.

f(x) = ρ log
[

m
∑

i=1

exp((aTi x− bi)/ρ)
]

,

where n = 50,m = 200, ρ = 20. The matrix A = {aij} is a random matrix with i. i. d. standard
Gaussian entries, and b = {bi} has i. i. d. Gaussian entries with mean 0 and variance 2. This function
is not strongly convex.

Matrix completion. f(X) = 1
2‖Xobs − Mobs‖2F + λ‖X‖∗, in which the ground truth M is a

rank-5 random matrix of size 300 × 300. The regularization parameter is set to λ = 0.05. The 5
singular values of M are 1, . . . , 5. The observed set is independently sampled among the 300× 300
entries so that 10% of the entries are actually observed.

Lasso in ℓ1–constrained form with large sparse design. f = 1
2‖Ax− b‖2 s.t. ‖x‖1 ≤ δ, where

A is a 5000 × 50000 random sparse matrix with nonzero probability 0.5% for each entry and b is
generated as b = Ax0+ z. The nonzero entries of A independently follow the Gaussian distribution
with mean 0 and variance 1/25. The signal x0 is a vector with 250 nonzeros and z is i. i. d. standard
Gaussian noise. The parameter δ is set to ‖x0‖1.

In these examples, kmin is set to be 10 and the step sizes are fixed to be 1/L. If the objective is in
composite form, the Lipschitz bound applies to the smooth part. Figures 1(a), 1(b), 1(c) and 1(d)
present the performance of the speed restarting scheme, the gradient restarting scheme proposed in
[15], the original Nesterov’s scheme and the proximal gradient method. The objective functions
include strongly convex, non-strongly convex and non-smooth functions, violating the assumptions
in Theorem 5.2. Among all the examples, it is interesting to note that both speed restarting scheme
empirically exhibit linear convergence by significantly reducing bumps in the objective values. This
leaves us an open problem of whether there exists provable linear convergence rate for the gradient
restarting scheme as in Theorem 5.2. It is also worth pointing that compared with gradient restarting,
the speed restarting scheme empirically exhibits more stable linear convergence rate.

6 Discussion

This paper introduces a second-order ODE and accompanying tools for characterizing Nesterov’s
accelerated gradient method. This ODE is applied to study variants of Nesterov’s scheme. Our
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Figure 1: Numerical performance of speed restarting (srN), gradient restarting (grN) proposed in
[15], the original Nesterov’s scheme (oN) and the proximal gradient (PG)

approach suggests (1) a large family of generalized Nesterov’s schemes that are all guaranteed to
converge at the rate 1/k2, and (2) a restarted scheme provably achieving a linear convergence rate
whenever f is strongly convex.

In this paper, we often utilize ideas from continuous-time ODEs, and then apply these ideas to
discrete schemes. The translation, however, involves parameter tuning and tedious calculations.
This is the reason why a general theory mapping properties of ODEs into corresponding properties
for discrete updates would be a welcome advance. Indeed, this would allow researchers to only
study the simpler and more user-friendly ODEs.
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Supplementary Materials

A Proof of Theorem 2.1

The proof is divided into two parts, namely, existence and uniqueness.

A.1 Existence

In this section we aim to prove

Lemma A.1. For any f ∈ F∞(Rn) and any x0 ∈ R
n, ODE (2) with initial conditions X(0) =

x0, Ẋ(0) = 0 has at least one solution X in C2(0,∞) ∩ C1[0,∞). Recall C2(0,∞) is the set of
functions, taking values in R

n, defined on [0,∞) and twice continuously differentiable on (0,∞).
Similarly C1[0,∞) is the set of continuously differentiable functions from [0,∞) to R

n.

To begin with, for any δ > 0 consider the smoothed ODE

Ẍ +
3

max(δ, t)
Ẋ +∇f(X) = 0 (15)

with X(0) = x0, Ẋ(0) = 0. Denoting by Z = Ẋ , then (15) is equivalent to

d

dt

(

X
Z

)

=

(

Z
− 3

max(δ,t)Z −∇f(X)

)

.

As functions of (X,Z), both (Z and −3Z/max(δ, t) − ∇f(X)) are Lipschitz continuous with
constant at most max(1, L)+3/δ. Hence by standard ODE theory (15) has a unique global solution

in C2[0,∞), which is denoted by Xδ . Note that Ẍδ is also well defined at t = 0. Next, introduce

Mδ(t) to be the supremum of ‖Ẋδ(u)‖/u over u ∈ (0, t]. We remark that Mδ(t) is finite because

‖Ẋδ(u)‖/u = (‖Ẋδ(u) − Ẋδ(0)‖)/u = ‖Ẍδ(0)‖ + o(1) for u = o(1). We given an upper bound
for Mδ(t) in the following lemma.

Lemma A.2. For δ <
√

6/L one has

Mδ(δ) ≤
‖∇f(x0)‖
1− Lδ2/6

.

The proof of Lemma A.2 relies on a simple lemma.

Lemma A.3. For any u > 0, the following inequality holds

‖∇f(Xδ(u))−∇f(x0)‖ ≤
1

2
LMδ(u)u

2.

Proof of Lemma A.3. By Lipschitz continuity,

‖∇f(Xδ(u))−∇f(x0)‖ ≤ L‖Xδ(u)−x0‖ =
∥

∥

∥

∫ u

0

Ẋδ(v)dv
∥

∥

∥
≤

∫ u

0

v
‖Ẋδ(v)‖

v
dv ≤ 1

2
LMδ(u)u

2.

Proof of Lemma A.2. For 0 < t ≤ δ, the smoothed ODE reads

Ẍδ +
3

δ
Ẋδ +∇f(Xδ) = 0,

which yields

Ẋδe
3t/δ = −

∫ t

0

∇f(Xδ(u))e
3u/δdu = −∇f(x0)

∫ t

0

e3u/δdu−
∫ t

0

(∇f(Xδ(u))−∇f(x0))e
3u/δdu.

10



Hence, by Lemma A.3

‖Ẋδ(t)‖
t

≤ 1

t
e−3t/δ‖∇f(x0)‖

∫ t

0

e3u/δdu+
1

t
e−3t/δ

∫ t

0

1

2
LMδ(u)u

2e3u/δdu

≤ ‖∇f(x0)‖+
LMδ(δ)δ

2

6
.

Taking the supremum of ‖Ẋδ(t)‖/t over 0 < t ≤ δ and rearranging the inequality give the desired
result.

Next, we give an upper bound for Mδ(t) with t > δ.

Lemma A.4. For δ <
√

6/L and δ < t <
√

12/L, one has

Mδ(t) ≤
(5− Lδ2/6)‖∇f(x0)‖

4(1− Lδ2/6)(1− Lt2/12)
.

Proof of Lemma A.4. When t > δ the smoothed ODE reads

Ẍδ +
3

t
Ẋδ +∇f(Xδ) = 0,

which is equivalent to

dt3Ẋδ(t)

dt
= −t3∇f(Xδ(t)).

By integration,

t3Ẋδ(t) = −
∫ t

δ

u3∇f(Xδ(u))du+δ3Ẋδ(δ) = −
∫ t

δ

u3∇f(x0)du−
∫ t

δ

u3(∇f(Xδ(u))−∇f(x0))du+δ3Ẋδ(δ).

Therefore by Lemmas A.3 and A.2 we have

‖Ẋδ(t)‖
t

≤ t4 − δ4

4t4
‖∇f(x0)‖+

1

t4

∫ t

δ

1

2
LMδ(u)u

5du+
δ4

t4
‖Ẋδ(δ)‖

δ

≤ 1

4
‖∇f(x0)‖+

1

12
LMδ(t)t

2 +
‖∇f(X0)‖
1− Lδ2/6

,

where the last expression is an increasing function of t. So for any δ < t′ < t, it follows that

‖Ẋδ(t
′)‖

t′
≤ 1

4
‖∇f(x0)‖+

1

12
LMδ(t)t

2 +
‖∇f(x0)‖
1− Lδ2/6

,

which also holds for t′ ≤ δ. Taking the supremum over t′ ∈ (0, t) gives

Mδ(t) ≤
1

4
‖∇f(x0)‖+

1

12
LMδ(t)t

2 +
‖∇f(X0)‖
1− Lδ2/6

.

The desired result follows from rearranging the inequality.

Lemma A.5. Consider the set of continuous functions F = {Xδ : [0,
√

6/L] → R
n
∣

∣δ =
√

3/L/2m,m = 0, 1, . . .} is uniformly bounded and equicontinuous.

Proof of Lemma A.5. By Lemmas A.2 and A.4, for any t ∈ [0,
√

6/L], δ ∈ (0,
√

3/L) the gradient
is uniformly bounded by

‖Ẋδ(t)‖ ≤
√

6/LMδ(
√

6/L) ≤
√

6/Lmax
{‖∇f(x0)‖

1− 1
2

,
5‖∇f(x0)‖

4(1− 1
2 )(1− 1

2 )

}

= 5
√

6/L‖∇f(x0)‖.

Thus it immediately implies that F is equicontinuous. To establish the uniform boundedness, note
that

‖Xδ(t)‖ ≤ ‖Xδ(0)‖+
∫ t

0

‖Ẋδ(u)‖du ≤ ‖x0‖+ 30‖∇f(x0)‖/L.

11



Now it is ready to give

Proof of Lemma A.1. By the Arzelá–Ascoli theorem and Lemma A.5, F contains a sequence con-

verge uniformly on [0,
√

6/L]. Denote by {Xδmi
}i∈N the convergent sequence and X̆ the limit.

Above, δmi
=

√

3/L/2mi decreases as i increases. We will prove that X̆ satisfies (2) and the initial

conditions X̆(0) = x0,
˙̆
X(0) = 0.

Fix an arbitrary t0 ∈ (0,
√

6/L). Since ‖Ẋδmi
(t0)‖ is bounded, we can pick a subsequence of

Ẋδmi
(t0) which converges to a limit denoted by XD

t0 . Without loss of generality, assume the sub-

sequence is the original sequence. Denote by X̃ the local solution to (2) with X(t0) = X̆(t0) and

Ẋ(t0) = XD
t0 . On the other hand, recall Xδmi

is the solution to (2) with X(t0) = Xδmi
(t0) and

Ẋ(t0) = Ẋδmi
(t0) when δmi

< t0. Since both Xδmi
(t0) and Ẋδmi

(t0) go to X̆(t0) and XD
t0 ,

respectively, there exits ǫ0 > 0 such that

sup
t∈(t0−ǫ0,t0+ǫ0)

‖Xδmi
(t)− X̃(t)‖ → 0

as i→∞. However, by definition we have

sup
t∈(t0−ǫ0,t0+ǫ0)

‖Xδmi
(t)− X̆(t)‖ → 0.

Therefore X̆ and X̃ have to be identical on (t0 − ǫ0, t0 + ǫ0). So X̆ satisfies (2) at t0. Since t0 is

arbitrary, we conclude that X̆ is a solution to (2) on (0,
√

6/L). By extension, X̆ can be a global
solution to (2) on (0,∞). It only leaves to verify the initial conditions to complete the proof.

The first condition X̆(0) = x0 is a direct consequence of Xδmi
(0) = x0. To check the second one,

pick a small t > 0 and note that

‖X̆(t)− X̆(0)‖
t

= lim
i→∞

‖Xδmi
(t)−Xδmi

(0)‖
t

= lim
i→∞

‖Ẋδmi
(ξi)‖ ≤ lim sup

i→∞
tMδmi

(t) ≤ 5t
√

6/L‖∇f(x0)‖,

where ξi ∈ (0, t) is by the mean value theorem. The desired result follows from taking t→ 0.

A.2 Uniqueness

In this section we prove the uniqueness of the solution to (2).

Lemma A.6. For any initial point x0 ∈ R
n, ODE (2) with initial conditions X(0) = x0, Ẋ(0) = 0

has at most one local solution near t = 0.

Suppose on the contrary there are two solutions, namely, X and Y defined on (0, α) for some α > 0.

Define M̃(t) to be the supremum of ‖Ẋ(u) − Ẏ (u)‖ over u ∈ [0, t), where t is between ǫ and α.
To proceed, we need a simple auxiliary lemma.

Lemma A.7. For any t ∈ (0, α) one has

‖∇f(X(t))−∇f(Y (t))‖ ≤ LtM̃(t).

Proof of Lemma A.7. By Lipschitz continuity of the gradient, one has

‖∇f(X(t))−∇f(Y (t))‖ ≤ L‖X(t)− Y (t)‖ = L
∥

∥

∥

∫ t

0

Ẋ(u)− Ẏ (u)du+X(0)− Y (0)
∥

∥

∥

≤ L

∫ t

0

‖Ẋ(u)− Ẏ (u)‖du ≤ LtM̃(t).
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Proof of Lemma A.6. Similar to the proof of Lemma A.4, one has

t3(Ẋ(t)− Ẏ (t)) = −
∫ t

0

u3(∇f(X(u))−∇f(Y (u)))du.

Applying Lemma A.7 gives

t3‖Ẋ(t)− Ẏ (t)‖ ≤
∫ t

0

Lu4M̃(u)du ≤ 1

5
Lt5M̃(t),

which reads ‖Ẋ(t)− Ẏ (t)‖ ≤ Lt2M̃(t)/5. Thus for any t′ ≤ t it is true that ‖Ẋ(t′)− Ẏ (t′)‖ ≤
Lt2M̃(t)/5. Taking the supremum of ‖Ẋ(t′)− Ẏ (t′)‖ over t′ ∈ (0, t) gives M̃(t) ≤ Lt2M̃(t)/5.

Therefore M̃(t) = 0 for t < min(α,
√

5/L), which is equivalent to saying Ẋ = Ẏ on

[0,min(α,
√

5/L)). With the same initial value X(0) = Y (0) = x0 and the same gradient, we

conclude that X and Y are identical on (0,min(α,
√

5/L)), a contradiction.

Proof of Theorem 2.1. Lemma A.1 together with Lemma A.6 completes the proof of Theorem 2.1.

B Proof of Theorem 4.2

Proof of Theorem 4.2. The derivative of Ẽ reads

dẼ(t)
dt

= 3t2(f(X)− f⋆) + t3〈Ẋ,∇f(X)〉+ (2r − 3)2

8

〈

X +
2t

2r − 3
Ẋ − x⋆,

4t2

2r − 3
Ẍ +

4rt

2r − 3
Ẋ +X − x⋆

〉

= 3t2(f(X)− f⋆)− (2r − 3)t2

2
〈X − x⋆,∇f(X)〉+ (2r − 3)2

8
‖X − x⋆‖2 + (2r − 3)t

4
〈Ẋ,X − x⋆〉.

(16)
By convexity and strong convexity of f , the second term of the RHS of (16) meets

(2r − 3)t2

2
〈X − x⋆,∇f(X)〉 ≥ (2r − 3)t2

2
(f(X)− f⋆) +

µ(2r − 3)t2

4
‖X − x⋆‖2.

Since r ≥ 4, substituting the above into (16) yields

dẼ(t)
dt
≤

[

3t2 − (2r − 3)t2

2

]

(f(X)− f⋆)− 2(2r − 3)µt2 − (2r − 3)2

8
‖X − x⋆‖2 + (2r − 3)t

8

d‖X − x⋆‖2
dt

≤ −2(2r − 3)µt2 − (2r − 3)2

8
‖X − x⋆‖2 + (2r − 3)t

8

d‖X − x⋆‖2
dt

.

Hence if t ≥ t′ ,
√

(2r − 3)/(2µ), we obtain

dẼ(t)
dt
≤ (2r − 3)t

8

d‖X − x⋆‖2
dt

. (17)

For t > t′, integrating (17) over (t′, t) gives

Ẽ(t) ≤ Ẽ(t′) + 2r − 3

8
t‖X(t)− x⋆‖2 − 2r − 3

8
t′‖X(t′)− x⋆‖2 − 2r − 3

8

∫ t

t′
‖X(u)− x⋆‖2du

≤ Ẽ(t′) + 2r − 3

8
t‖X(t)− x⋆‖2 ≤ Ẽ(t′) + 2r − 3

4µ
t(f(X(t))− f⋆)

≤ Ẽ(t′) + (2r − 3)(r − 1)2‖x0 − x⋆‖2
8µt

≤ Ẽ(t′) + (2r − 3)(r − 1)2‖x0 − x⋆‖2
8µt′

,

(18)

13



where the second last inequality follows from Theorem 4.1. We can make use of E(t′) to bound

Ẽ(t′) in (18). Indeed we have

Ẽ(t′) = t′3(f(X(t′))− f⋆) +
(2r − 3)2t′

8
‖X(t′) +

2t′

2r − 3
Ẋ(t′)− x⋆‖2

≤ t′3(f(X(t′))− f⋆) +
(2r − 3)2t′

4

∥

∥

∥

2r − 2

2r − 3
X(t′) +

2t′

2r − 3
Ẋ(t′)− 2r − 2

2r − 3
x⋆

∥

∥

∥

2

+
(2r − 3)2t′

4

∥

∥

∥

1

2r − 3
X(t′)− 1

2r − 3
x⋆

∥

∥

∥

2

≤ (r − 1)t′E(t′) + t′

4
‖X(t′)− x⋆‖2 ≤ (r − 1)2t′‖x0 − x⋆‖2 + (r − 1)2‖x0 − x⋆‖2

4µt′
,

which combined with (18) yields

Ẽ(t) ≤ (r − 1)2t′‖x0 − x⋆‖2 + (2r − 1)(r − 1)2‖x0 − x⋆‖2
8µt′

= O(
r

5

2 ‖x0 − x⋆‖2√
µ

).

It completes the proof for t ≥
√

(2r − 3)/(2µ) by noting f(X(t)) − f⋆ ≤ Ẽ(t)/t3, whereas for

t <
√

(2r − 3)/(2µ) by Theorem 4.1 we have

f(X(t))−f⋆ ≤ (r − 1)2‖x0 − x⋆‖2
2t2

≤ (r − 1)2
√
µ
√

(2r − 3)/(2µ)

2Cr
5

2

Cr
5

2 ‖x0 − x⋆‖2
t3
√
µ

≤ Cr
5

2 ‖x0 − x⋆‖2
t3
√
µ

.

C Proof of Theorem 4.3

Proof of Theorem 4.3. In parallel to the proof of Theorem 4.1, we propose an energy function de-
fined as

E(k) = 2(k + r − 2)2s

r − 1
(f(xk)− f⋆) + (r − 1)‖zk − x⋆‖2,

where zk = (k + r − 1)yk/(r − 1)− kxk/(r − 1). Suppose we have

E(k) + 2s[(r − 3)(k + r − 2) + 1]

r − 1
(f(xk−1)− f⋆) ≤ E(k − 1). (19)

Then it immediately yields the desired results by summing over (19). To be specific, by recursively
applying (19) we see

E(k)+
k

∑

i=1

2s[(r − 3)(i+ r − 2) + 1]

r − 1
(f(xi−1)−f⋆) ≤ E(0) = 2(r − 2)2s

r − 1
(f(x0)−f⋆)+(r−1)‖x0−x⋆‖2,

which is equivalent to

E(k) +
k−1
∑

i=1

2s[(r − 3)(i+ r − 1) + 1]

r − 1
(f(xi)− f⋆) ≤ (r − 1)‖x0 − x⋆‖2. (20)

Noting that the LHS of (20) is lower bounded by 2s(k+ r− 2)2(f(xk)− f⋆)/(r− 1) gives the first
desired inequality. With E(k) ≥ 0, the second one is obtained via taking the limit k → ∞ in (20)
and replacing (r − 3)(i+ r − 1) + 1 by (r − 3)(i+ r − 1).

To complete, we aims to establish (19) in the rest of the proof. For s ≤ 1/L it is well-known in
proximal gradient literature, for example [17], that

f(y − sGs(y)) ≤ f(x) +Gs(y)
T (y − x)− s

2
‖Gs(y)‖2 (21)
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for any x and y. Note that yk−1− sGs(yk−1) actually coincides with xk. Summing of (k−1)/(k+
r − 2) × (21) with x = xk−1, y = yk−1 and (r − 1)/(k + r − 2) × (21) with x = x⋆, y = yk−1

gives

f(xk) ≤
k − 1

k + r − 2
f(xk−1) +

r − 1

k + r − 2
f⋆

+
r − 1

k + r − 2
Gs(yk−1)

T
(k + r − 2

r − 1
yk−1 −

k − 1

r − 1
xk−1 − x⋆

)

− s

2
‖Gs(yk−1)‖2

=
k − 1

k + r − 2
f(xk−1) +

r − 1

k + r − 2
f⋆ +

(r − 1)2

2s(k + r − 2)2

(

‖zk−1 − x⋆‖2 − ‖zk − x⋆‖2
)

,

where we use zk−1 − s(k + r − 2)Gs(yk−1)/(r − 1) = zk. Rearranging the above inequality with
multiplying by 2s(k + r − 2)2/(r − 1) gives the desired (19).

D Proof of Theorem 5.2

Remark D.1. Indeed the linear convergence of Xsr remains for generalized ODE (9) with r > 3.
Only minor modifications in proof such as replacing u3 with ur in the definition of I(t) in Lemma
D.1 are required to get analogous convergence rate for the speed restarting version of (9).

Lemma D.1. The speed restarting time T obeys

T (x0, f) ≥
4

5
√
L
.

Proof. Denote by M(t) the supremum of ‖Ẋ(u)‖/u over u ∈ (0, t] and

I(t) ,

∫ t

0

u3(∇f(X(u))−∇f(x0))du.

By the proof of Lemma A.5 it is guaranteed that M defined above is finite. M is useful in that it
gives a bound on the gradient of f :

‖∇f(X(t))−∇f(x0)‖ ≤ L‖X(t)− x0‖ = L
∥

∥

∥

∫ t

0

Ẋ(u)du
∥

∥

∥
≤ L

∫ t

0

u
‖Ẋ(u)‖

u
du ≤ LM(t)t2

2
.

(22)
By (22), it is easy to see that I can also be bounded via M :

‖I(t)‖ ≤
∫ t

0

u3‖∇f(X(u))−∇f(x0)‖du ≤
∫ t

0

LM(u)u5

2
du ≤ LM(t)t6

12
. (23)

To fully facilitate these bounds, we need to bound M as

M(t) ≤ ‖∇f(x0)‖
4(1− Lt2/12)

(24)

for any t <
√

12/L.

To this end, note that indeed ODE (2) is equivalent to d(t3Ẋ(t))/dt = −t3∇f(X(t)), which by
integration leads to

t3Ẋ(t) = − t4

4
∇f(x0)−

∫ t

0

u3(∇f(X(u))−∇f(x0))du = − t4

4
∇f(x0)− I(t). (25)

Dividing (25) by t4 and applying (23), we obtain

‖Ẋ(t)‖
t

≤ ‖∇f(x0)‖
4

+
‖I(t)‖
t4

≤ ‖∇f(x0)‖
4

+
LM(t)t2

12
.

Note that the RHS of the above is monotonically increasing in t. Hence by taking the supremum of
the LHS over (0, t] we obtain

M(t) ≤ ‖∇f(x0)‖
4

+
LM(t)t2

12
,
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which gives the desired (24) by rearranging the inequality for t <
√

12/L.

Having established (24), we proceed to lower bound T via studying 〈Ẋ(t), Ẍ(t)〉. Dividing (25) by

t3, one has an expression for Ẋ , which reads

Ẋ(t) = − t

4
∇f(x0)−

1

t3

∫ t

0

u3(∇f(X(u))−∇f(x0))du. (26)

Differentiating the above, we also obtain an expression for Ẍ:

Ẍ(t) = −∇f(X(t)) +
3

4
∇f(x0) +

3

t4

∫ t

0

u3(∇f(X(u))−∇f(x0))du. (27)

Using the two expressions for Ẋ and Ẍ we will show that d‖Ẋ‖2/dt = 2〈Ẋ(t), Ẍ(t)〉 > 0 for

0 < t < 4/(5
√
L). To this end, noting that (26) and (27) yield

〈Ẋ(t), Ẍ(t)〉 =
〈

− t

4
∇f(x0)−

1

t3
I(t), −∇f(X(t)) +

3

4
∇f(x0) +

3

t4
I(t)

〉

≥ t

4
〈∇f(x0),∇f(X(t))〉 − 3t

16
‖∇f(x0)‖2 −

1

t3
‖I(t)‖

(

‖∇f(X(t))‖+ 3

2
‖∇f(x0)‖

)

− 3

t7
‖I(t)‖2

≥ t

4
‖∇f(x0)‖2 −

t

4
‖∇f(x0)‖‖∇f(X(t))−∇f(x0)‖ −

3t

16
‖∇f(x0)‖2

− LM(t)t3

12

(

‖∇f(X(t))−∇f(x0)‖+
5

2
‖∇f(x0)‖

)

− L2M(t)2t5

48

≥ t

16
‖∇f(x0)‖2 −

LM(t)t3‖∇f(x0)‖
8

− LM(t)t3

12

(LM(t)t2

2
+

5

2
‖∇f(x0)‖

)

− L2M(t)2t5

48

=
t

16
‖∇f(x0)‖2 −

LM(t)t3

3
‖∇f(x0)‖ −

L2M(t)2t5

16
,

where we use (23) and (22). To complete the proof, applying (24) in the above inequality yields

〈Ẋ(t), Ẍ(t)〉 ≥
( 1

16
− Lt2

12(1− Lt2/12)
− L2t4

256(1− Lt2/12)2

)

‖∇f(x0)‖2t ≥ 0

for t < min{
√

12/L, 4/(5
√
L)} = 4/(5

√
L), where the positiveness follows from the fact that

1

16
− Lt2

12(1− Lt2/12)
− L2t4

256(1− Lt2/12)2
> 0

for 0 < t ≤ 4/(5
√
L).

Next we give a lemma which claims that the objective function decays by a constant through each
speed restarting.

Lemma D.2. There is a universal constant C > 0 such that

f(X(T ))− f(x⋆) ≤
(

1− Cµ

L

)

(f(x0)− f(x⋆)).

Proof. By (25), (23) and (24) in Lemma D.1, for t <
√

12/L one has

‖Ẋ(t) +
t

4
∇f(x0)‖ =

1

t3
‖I(t)‖ ≤ LM(t)t3

12
≤ L‖∇f(x0)‖t3

48(1− Lt2/12)
,

which gives

0 ≤ t

4
‖∇f(x0)‖ −

L‖∇f(x0)‖t3
48(1− Lt2/12)

≤ ‖Ẋ(t)‖ ≤ t

4
‖∇f(x0)‖+

L‖∇f(x0)‖t3
48(1− Lt2/12)

(28)

for t <
√

12/L. By Lemma D.1 d‖Ẋ‖2/dt ≥ 0 for 0 < t < 4/(5
√
L) because T ≥ 4/(5

√
L).

Hence for 0 < t < 4/(5
√
L) it yields that

df(X(t))

dt
= −3

t
‖Ẋ‖2−1

2

d

dt
‖Ẋ‖2 ≤ −3

t
‖Ẋ‖2 ≤ −3

t

( t

4
‖∇f(x0)‖−

L‖∇f(x0)‖t3
48(1− Lt2/12)

)2

≤ −ct‖∇f(x0)‖2,
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where c > 0 is an absolute constant and the second last inequality follows from (28). Therefore we
have

f(X
( 4

5
√
L

)

)− f(x0) ≤
∫ 4

5
√

L

0

−cu‖∇f(x0)‖2du

= −c′

L
‖∇f(x0)‖2 ≤ −

2c′µ

L
(f(x0)− f⋆),

where the last step follows from the µ–strong convexity of f . Above c′ > 0 is an absolute constant.
Thus we have

f(X
( 4

5
√
L

)

)− f⋆ ≤
(

1− 2c′µ

L

)

(f(x0)− f⋆).

Last, recall that f(X(t)) decreases on (4/(5
√
L), T ), which finishes the proof by noting

f(X(T ))− f⋆ ≤ f(X
( 4

5
√
L

)

)− f⋆ ≤
(

1− 2c′µ

L

)

(f(x0)− f⋆).

To establish the linear convergence, we also need to ensure that T can not be too large. To this end,
we give the following lemma.

Lemma D.3. The speed restarting time T satisfies

T ≤ 4

5
√
L
exp

C ′L

µ
.

Proof. For 4/(5
√
L) ≤ t ≤ T , we have

df(X(t))

dt
≤ −3

t
‖Ẋ(t)‖2 ≤ −3

t
‖Ẋ(4/(5

√
L))‖2,

which implies

f(X(T ))− f(x0) ≤ f(X(T ))− f(X(4/(5
√
L))) ≤ −

∫ T

4

5
√

L

3

t
‖Ẋ(4/(5

√
L))‖2dt

= −3‖Ẋ(4/(5
√
L))‖2 log 5T

√
L

4
.

Hence we get an upper bound for T which reads

T ≤ 4

5
√
L
exp

(f(x0)− f(X(T ))

3‖Ẋ(4/(5
√
L))‖2

)

≤ 4

5
√
L
exp

( f(x0)− f⋆

3‖Ẋ(4/(5
√
L))‖2

)

. (29)

Plugging t = 4/(5
√
L) in (28) gives

‖Ẋ(4/(5
√
L))‖ ≥ c√

L
‖∇f(x0)‖ (30)

for some universal constant c > 0. Substituting (30) in (29) yields

T ≤ 4

5
√
L
exp

(L(f(x0)− f⋆)

3c2‖∇f(x0)‖2
)

≤ 4

5
√
L
exp

L

6c2µ
.

It readily gives the proof of Theorem 5.2 by combining Lemmas D.2 and D.3.

17



Proof of Theorem 5.2. According to Lemma D.3, by time t there are at least n⋆ ,
⌊5t
√
Le−C′L/µ/4⌋ restartings for Xsr. By Lemma D.2 and monotonically decreasing of f before

restarting, we have

f(Xsr(t))− f(x⋆) ≤ f(Xsr(

n⋆

∑

i=1

Ti))− f(x⋆)

≤ (1− Cµ

L
)(f(Xsr(

n⋆−1
∑

i=1

Ti))− f(x⋆))

≤ . . .

≤ (1− Cµ

L
)n

⋆

(f(x0)− f(x⋆))

≤ exp(−Cµn⋆

L
)(f(x0)− f(x⋆))

≤ c1(f(x0)− f(x⋆))e−c2t
√
L,

where c1 = exp(Cµ/L) and c2 = 5Cµe−C′µ/L/(4L).
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