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Network Utility Maximization

maximize U(f)
subject to Rf ≤ c, f ≥ 0

with variable f

• f = (f1, . . . , fn) is vector of flow rates

• U(f) =
∑n

i=1 Ui(fi) is (separable) utility function

• R ∈ Rm×n is routing matrix

• c ∈ Rm is link capacity vector
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Network Utility Maximization

• a resource allocation problem

• convex problem if Ui are concave

• can solve via distributed iterative methods (dual decomposition)

• utility function Ui models utility derived from flow fi

• single period; no concept of time

• if c (or Ui) ‘change’, iterative methods will ‘adjust’ f
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Typical Utility Functions
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• best effort (linear): U(f) = wf (w > 0 is weight)

• diminishing returns (logarithmic): U(f) = log f

• contract with penalty (piecewise linear): U(f) = uc − p(fc − f)+
uc is contract utility; (fc − f)+ is shortfall; p > 0 is penalty
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Dynamic Network Utility Maximization

now we’re going to explicitly add the concept of time

maximize U(f(1), . . . , f(T ))
subject to R(t)f(t) ≤ c(t), f(t) ≥ 0, t = 1, . . . , T

• f(t) ∈ Rn
+ is vector of flow rates at time t

• R(t), c(t) are routing matrix, capacity vector at time t

– capacity limits must hold at each time (no buffering)
– captures time-varying network topology, link state, . . .

• we assume U =
∑

i Ui(fi(1), . . . , fi(T )) is separable across flows
but not time
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Dynamic Network Utility Maximization

• a multi-period resource allocation problem

• convex problem if Ui are concave

• can solve by distributed iterative methods (dual decomposition)
these are not obvious

• utility function Ui models utility derived from flow sequence

fi(1), . . . , fi(T )

• if Ui are also separable in time, can solve DNUM as T separate NUMs,
once for each t
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Typical (Dynamic) Utility Functions

• best effort: U(f(1), . . . , f(T )) =
∑

t w(t)f(t)
(w(t) are possibly time-varying weights)

• file transfer : need total flow S over period [ti, tf ]

U(f(1), . . . , f(T )) = −p (S − (f(ti) + · · · + f(tf)))
+

assesses (linear) penalty for shortfall

• streaming : need total flow S for successive k-long periods

U(f(1), . . . , f(T )) = −p (S − (f(1) + · · · + f(k)))+

−p (S − (f(k + 1) + · · · + f(2k)))+
...

−p (S − (f(T − k + 1) + · · · + f(T )))+
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Typical (Dynamic) Utility Functions

• these utility functions cannot be represented in time-separable form

• they capture what the applications need much better than
time-separable utilities
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Example

flow 1
flow 2

flow 3

• T = 50 horizon

• c(t) is Markov

• 3 file transfers, with (linear) shortfall penalty

flow start time ti stop time tf file size S

1 11 30 25
2 25 45 30
3 1 50 45
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Markov Link Capacity Model

PSfrag

c = 4 c = 2 c = 1

0.15 0.1

0.3 0.5

• three states: good (c = 4), OK (c = 2), bad (c = 1)

• link capacities evolve independently

• mixing time about 5 periods

• equilibrium distribution is 0.6, 0.3, 0.1; average capacity is c = 3.2

• all links start in OK state

IFAC 7/7/08 9



Optimal Flow Rates
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shortfalls: 0, 0, 0; total penalty: 0
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Flow Rates from (Separable) Log Utility

U is log utility over contract periods
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shortfalls: 0, 6.8, 0; total penalty: 6.8
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Streaming

• need S = 1, 3, 2 total flow (for f1, f2, f3) in each of 10 successive
5-period long blocks

• we’ll compare optimal flows with flows from (separable) log utility

• we’ll judge by total penalty, fraction of block contract violations
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Optimal Flows
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0 block shortfalls (out of 30); total penalty: 0

IFAC 7/7/08 13



Log Utility Flows

U =
∑

i

∑
t log f(t)i
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7 block shortfalls (out of 30); total penalty: 6.5
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Stochastic Dynamic NUM

• so far, we’ve assumed future c(t), R(t), U are known

• this is the prescient model

• now suppose c(t) not perfectly known ahead of time

• we’ll let ĉ(t|τ) be guess of c(t) at time τ ; for τ ≥ t, ĉ(t|τ) = c(t)

• let’s impose causality constraint: f(t) can only depend on c(1), . . . , c(t)

• DNUM then reduces to (convex) stochastic control problem

(with statistical model of c)
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• much known about stochastic control

• prescient solution gives bound on performance of causal scheme

• no analytic solution, but several good heuristics

• model predictive control, a.k.a. rolling horizon control, can work well

• basic idea:

– solve a DNUM problem at each step, using predictions for unknown
future value

– implement/execute only first value of f

IFAC 7/7/08 16



Model Predictive Control

• let fmpc(t) denote MPC flows

• for τ = 1, . . . , T get solution f⋆ of

maximize U(f(1), . . . , f(T ))
subject to R(t)f(t) ≤ ĉ(t|τ), f(t) ≥ 0, t = 1, . . . , T

f(t) = fmpc(t), t = 1, . . . , τ − 1

• then set fmpc(τ) = f⋆(τ)

• fmpc(t) depends only on c(1), . . . , c(t), i.e., it is causal
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Results: Rates for Contracts
dashed prescient; solid MPC
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shortfalls: 0, 0.1, 0; total penalty: 0.1
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Results: Rates for Streaming
dashed prescient; solid MPC
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3 block shortfalls (out of 30); total penalty: 0.4
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Conclusions

• we think that the explicit idea of time (dynamics) needs to be
introduced in the NUM framework

• this allows us to describe different requirements on traffic, urgency, and
scheduling in a sensible way

• many static NUM methods extends to DNUM, e.g., dual decomposition

• model predictive control gives causal control law
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