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Network Utility Maximization

maximize U(f)
subjectto Rf <c¢, f2>0

with variable f

e f=(f1,...,[fn) is vector of flow rates
o U(f)=>_1_,Ui(f:)is (separable) utility function
e R c R™*" is routing matrix

e ¢ € R™ is link capacity vector
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Network Utility Maximization

a resource allocation problem
convex problem if U; are concave
can solve via distributed iterative methods (dual decomposition)

utility function U; models utility derived from flow f;

single period; no concept of time

if ¢ (or U;) ‘change’, iterative methods will ‘adjust’ f
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Typical Utility Functions

0 1 2 3 4 5

f
e best effort (linear): U(f) =wf (w > 0 is weight)

e diminishing returns (logarithmic): U(f) = log f

e contract with penalty (piecewise linear): U(f) =u. — p(fe — )+
u. is contract utility; (f. — f)4 is shortfall; p > 0 is penalty
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Dynamic Network Utility Maximization

now we're going to explicitly add the concept of time

maximize U(f(1),..., f(T))
subject to R(t)f(t) <c(t), f(t)>0, t=1,...,T

o f(t) € R} is vector of flow rates at time ¢
e R(t), c(t) are routing matrix, capacity vector at time ¢

— capacity limits must hold at each time (no buffering)
— captures time-varying network topology, link state, . ..

o we assume U =) U;(fi(1),..., fi(T)) is separable across flows
but not time
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Dynamic Network Utility Maximization

e a multi-period resource allocation problem
e convex problem if U; are concave

e can solve by distributed iterative methods (dual decomposition)
these are not obvious

e utility function U; models utility derived from flow sequence

fi(1), ..., fi(T)

e if U; are also separable in time, can solve DNUM as T' separate NUMs,
once for each ¢
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Typical (Dynamic) Utility Functions
o best effort: U(f(1),...,f(T)) =>_,w(t)f(t)

(w(t) are possibly time-varying weights)

e file transfer: need total flow S over period [t;, 1]

U(f(),-.. f(T) = =p(S = (f(t:) + -+ f(Ly))

assesses (linear) penalty for shortfall

e streaming: need total flow S for successive k-long periods

U(f@),....f(1) = —p&—=UAQ)+--+f(F))
—p (S = (f(k+1)+---+ f(2k))),

(S = (f(T-k+1)+---+ f(T))),
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Typical (Dynamic) Utility Functions

e these utility functions cannot be represented in time-separable form

e they capture what the applications need much better than
time-separable utilities
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Example

flow 1 -~
flow 2 -
flow 3 -
° ° ° °

e 7' = 50 horizon
e c(t) is Markov

e 3 file transfers, with (linear) shortfall penalty

flow start time ¢t; stop timet; file size S

1 11 30 25
2 25 45 30
3 1 50 45
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Markov Link Capacity Model
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e three states: good (¢ =4), OK (¢ =2), bad (¢ =1)

e link capacities evolve independently

e mixing time about 5 periods

e equilibrium distribution is 0.6, 0.3, 0.1; average capacity is ¢ = 3.2

e all links start in OK state
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Optimal Flow Rates
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shortfalls: 0, 0, O; total penalty: 0
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Flow Rates from (Separable) Log Utility

U is log utility over contract periods
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shortfalls: 0, 6.8, 0; total penalty: 6.8
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Streaming

e need S =1, 3, 2 total flow (for f1, f2, f3) in each of 10 successive
5-period long blocks

e we'll compare optimal flows with flows from (separable) log utility

e we'll judge by total penalty, fraction of block contract violations
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Optimal Flows

0 block shortfalls (out of 30); total penalty: 0
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Log Utility Flows
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7 block shortfalls (out of 30); total penalty: 6.5
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Stochastic Dynamic NUM

e so far, we've assumed future c(t), R(t), U are known

e this is the prescient model

e now suppose c¢(t) not perfectly known ahead of time

o we'll let ¢(t|7) be guess of ¢(t) at time 7; for 7 > t, ¢(t|17) = ¢(t)

e let's impose causality constraint: f(t) can only depend on ¢(1),...,c(t)

e DNUM then reduces to (convex) stochastic control problem
(with statistical model of c¢)
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e much known about stochastic control

e prescient solution gives bound on performance of causal scheme

e no analytic solution, but several good heuristics

e model predictive control, a.k.a. rolling horizon control, can work well

e basic idea:

— solve a DNUM problem at each step, using predictions for unknown
future value
— implement/execute only first value of f
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Model Predictive Control

o let fipc(t) denote MPC flows

e for r=1,...,T get solution f* of

maximize U(f(1),..., f(T))
subject to  R(%)f(t) <

e then set fipc(7) = f*(7)

® fupc(t) depends only on ¢(1),...,c(t), te., it is causal
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Results: Rates for Contracts
dashed prescient; solid MPC
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shortfalls: 0, 0.1, O; total penalty: 0.1
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Results: Rates for Streaming

dashed prescient; solid MPC

3 block shortfalls (out of 30); total penalty: 0.4
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Conclusions

e we think that the explicit idea of time (dynamics) needs to be
introduced in the NUM framework

e this allows us to describe different requirements on traffic, urgency, and
scheduling in a sensible way

e many static NUM methods extends to DNUM, e.gq., dual decomposition

e model predictive control gives causal control law

IFAC 7/7/08 20



