
Dynamic Network Utility Maximization with Delivery

Contracts

N. Trichakis A. Zymnis S. Boyd

August 31, 2007

Abstract

We consider a multi-period variation of the network utility maximization problem
that includes delivery constraints. We allow the flow utilities, link capacities and
routing matrices to vary over time, and we introduce the concept of delivery contracts,
which couple the flow rates across time. We describe a distributed algorithm, based
on dual decomposition, that solves this problem when all data is known ahead of time.
We briefly describe a heuristic, based on model predictive control, for approximately
solving a variation on the problem, in which the data are not known ahead of time.
The formulation and algorithms are illustrated with numerical examples.

1 Introduction

A network with m links supports n flows, that vary over time t, which takes (discrete) values
t = 1, . . . , T . At time t, each flow is associated with a fixed route in the network, i.e.,
a subset of the network links. We describe these (possibly time-varying) routes using the
routing or link-route matrix Rt ∈ Rm×n, t = 1, . . . , T , defined as

(Rt)ij =

{

1 route of flow j passes over link i at time t
0 otherwise.

In the most common case, the route of a flow will be a path, from a source node to a
destination node. But our definition of a route as any subset of links is more general, and
can be used to model, for example, a multicast flow (where the route links form a tree).

At time t, flow j has a nonnegative flow rate, which we denote fjt. Each flow rate fjt as
a maximum permissible value given by fmax

jt . We define F ∈ Rn×T (with entries fjt) as the
rate matrix. We also define Fmax (with entries fmax

jt) as the rate constraint matrix. The tth
column of F , denoted ft ∈ Rn, gives the vector of all flow rates at time t, i.e., a snapshot
of the flow distribution in the network at time t. Similarly, the jth row of F , which we will
denote fj ∈ RT , gives the rate schedule for flow j, i.e., the jth flow rate for t = 1, . . . , T .
We distinguish between ft (a flow snapshot) and fj (a flow schedule) by their indices.

1

With the flow rate fjt we associate a strictly concave, increasing, differentiable utility
function Ujt, with domUjt ⊇ (0, fmax

jt]. The utility derived by flow rate fjt is Ujt(fjt); the
total utility, over all flows and over time, is

U(F) =
n

∑

j=1

T
∑

t=1

Ujt(fjt).

One common choice of utility function is Ujt(x) = log x; but we allow here the possibility
that the utility functions differ for different flows, and can be time-varying as well.

The total traffic on link i at time t is the sum of the flow rates at time t, over all flows
whose route includes link i. The link traffic vector, at time t, is given by Rtft ∈ Rm. Each
link in the network has a (positive) capacity. Let ct ∈ Rm be the vector of the link capacities
at time t. The traffic on a link cannot exceed its capacity, i.e., we have

Rtft ≤ ct, t = 1, . . . , T,

where ≤ denotes componentwise inequality.
So far the problem setup is not coupled across time. The utility function U is separable

across t, and the constraints for different values of t are independent (i.e., involve different
variables). It follows that we can maximize the utility, subject to the link capacity con-
straints, by solving T separate problems, once for each time t = 1, . . . , T . At this point,
however, we introduce some constraints that couple the flow rates at different times.

A delivery contract is the requirement that the total of some particular flow j, over some
particular time interval [tinit, tfin], should meet or exceed some specified minimum quantity
q:

tfin

∑

t=tinit

fjt ≥ q.

Suppose flow j has kj delivery contracts, with qj ∈ Rkj the vector of the associated contract
quantity amounts. The contract constraints for flow j can be compactly written using the
contract indicator matrix Cj ∈ Rkj×T , defined as

(Cj)kt =

{

1 kth contract of flow j is active at time step t
0 otherwise.

(Here ‘is active’ means that t lies in the time interval of the contract.) We can express
the delivery contract requirements for flow j as the vector inequality Cjfj ≥ qj. (We have
described contracts as involving a sum of flow rates over an interval in time, but everything
in what follows works when contracts are any linear inequality on the flow rates across time.)
The constraints that all contracts are met can be expressed as

Cjfj ≥ qj, j = 1, . . . , n.

Now we can define the problem of network utility maximization, with delivery contracts
(NUMDC). The goal is to choose the flow rates, for all time steps, in order to maximize total

2

utility, subject to the flow rate, link capacity, and delivery contract constraints:

maximize U(F)
subject to Rtft ≤ ct, t = 1, . . . , T

Cjfj ≥ qj, j = 1, . . . , n
0 ≤ F ≤ Fmax.

(1)

The optimization variable in this problem is rate matrix F . The problem data are the rate
constraint matrix Fmax, the utility functions Ujt, the route matrices Rt, the link capacities
ct, the delivery contract matrices Cj, and the delivery contract quantities qj. The NUMDC
problem is a convex optimization problem, and has at most one solution, since the objective
is strictly concave. It can, however, be infeasible.

The constraints on the variable matrix F have an interesting structure. The link capacity
constraints impose constraints on each of the t columns of F , separately. The delivery
contracts impose constraints on the rows of F , separately. With delivery contracts, the
problem cannot be split into separate subproblems; the choice of all flow rates, over all
times, must be coordinated.

There are a number of ways to solve problem (1), such as interior-point methods [BV04,
NW99, Wri97], which are efficient, but centralized algorithms. In this paper we propose a
method based on dual decomposition, which is decentralized, and so scales to very large
problem sizes.

Decomposition is the standard method used to solve a large problem (or in this case
its dual) by breaking it up into a set of smaller subproblems that can be solved locally.
In some cases this leads to decentralized algorithms. Decomposition has a long history
in optimization, going back to the Dantzig-Wolfe decomposition [DW60] and the Benders
decomposition [Ben62]. A more recent reference on decomposition methods is [Ber99].

We combine the dual decomposition approach with the projected subgradient method,
which is a simple algorithm to minimize a nondifferentiable convex function on a convex set.
Some classic references on subgradient methods are [Sho85, Pol87, Sho98]. For more recent
work on subgradient methods, we refer the reader to [NB01, NO07] as well as the thesis
[Ned02].

Network utility maximization (NUM), i.e., the problem (1) for a single time step (T = 1),
and with no contract constraints, has been extensively analyzed. In the seminal paper
[KMT97], the authors propose a dual decomposition solution to the NUM problem and
interpret this as a distributed algorithm, whereby each link sets a price for flow that passes
through it, and each flow adjusts its rate to locally maximize its utility. This work has led to
a large body of research in decomposition methods in the context of networking problems.
We refer the reader to [LL99, Low03, CLCD07], as well as the books [Ber98, Sri04]. For
a tutorial on decomposition methods applied to network utility maximization problems see
[PC06].

In §2, we descibe a decentralized algorithm for solving the NUMDC problem based on dual
decomposition, establish its convergence, and interpret the algorithm in terms of contract
pricing. We give a numerical example to illustrate the method in §3. In §4 we consider the

3

much harder problem that arises when the problem data (such as link capacities) are not
known ahead of time, and describe a simple heuristic, model predictive control, that can be
used to get a good, if not optimal, choice of rates even when future problem data are not
fully known. We illustrate this method with the same example used to illustrate the basic
NUMDC problem.

2 Solution via Dual Decomposition

2.1 Dual Problem

In this section we derive a dual of problem (1). Let λt ∈ Rm
+ be the dual variable associated

with the capacity constraints at time t, and µj ∈ R
kj

+ the dual variable associated with the
contract constraints for flow j. The partial Lagrangian (see, e.g., [BV04, Ch.5]) of problem
(1) is

L(F, λ, µ) = U(F) −
T

∑

t=1

λT
t (Rtft − ct) +

n
∑

j=1

µT
j (Cjfj − qj),

where λ = (λ1, . . . , λT) and µ = (µ1, . . . , µn).
The dual function of problem (1) is

g(λ, µ) = sup
0≤F≤Fmax

L(F, λ, µ)

=
T

∑

t=1

λT
t ct −

n
∑

j=1

µT
j qj +

n
∑

j=1

T
∑

t=1

(−Ujt)
∗(pjt),

where pjt = (RT
t λt)j − (CT

j µj)t, with (RT
t λt)j and (CT

j µj)t denoting the jth and tth elements

of vectors RT
t λt and CT

j µj, respectively. We define P ∈ Rn×T to be the price matrix, i.e.,
the matrix with elements pjt. The function (−Ujt)

∗ is the conjugate of the negative utility
function Ujt (see [BV04, §3.3]),

(−Ujt)
∗(y) = sup

0≤z≤fmax

jt

(Ujt(z) − yz).

For future reference we define

f ⋆
jt(y) = argmax

0≤z≤fmax

jt

(Ujt(z) − yz) =

{

(U ′
jt)

−1(y), (U ′
jt)

−1(y) ∈ (0, fmax
jt]

fmax
jt , (U ′

jt)
−1(y) /∈ (0, fmax

jt].

(The argmax is unique, since Ujt is assumed to be strictly concave.) Using this definition we
have that

(−Ujt)
∗(y) = Ujt(f

⋆
jt(y)) − yf ⋆

jt(y).

The functions (−Ujt)
∗ are convex, since by definition they are pointwise suprema of affine

functions (see [BV04, Chap. 3]). The dual function g(λ, µ) is also convex since it is a sum
of convex functions.

4

The dual of problem (1) is

minimize g(λ, µ)
subject to λ ≥ 0, µ ≥ 0.

(2)

This is a convex optimization problem, with variables λ and µ. Any feasible point for this
dual gives an upper bound on the optimal value of the (primal) NUMDC problem: for any
λ ≥ 0, µ ≥ 0 and any feasible F we have

g(λ, µ) ≥ U(F).

This implies that if the dual NUMDC problem is unbounded below, the primal NUMDC
problem is infeasible. Conversely, if the dual problem is bounded below, the primal problem
is feasible.

We can reconstruct F ⋆, the optimal solution of the NUMDC problem (1) from (λ⋆, µ⋆),
an optimal solution of the dual NUMDC problem (2) as follows:

f ⋆
jt = f ⋆

jt(p
⋆
jt) = argmax

0≤z≤fmax

jt

(

Ujt(z) − p⋆
jtz

)

.

2.2 Dual Decomposition

In this section we describe a simple distributed algorithm for solving problem (2). We start
with any nonnegative λ1, . . . , λT , and any nonnegative µ1, . . . , µn, and repeatedly carry out
the update

fjt := f ⋆
jt(pjt) = argmax0≤z≤fmax

jt
(Ujt(z) − zpjt) , t = 1, . . . , T, j = 1, . . . , n

λt := (λt − α (ct − Rtft))+
, t = 1, . . . , T

µj := (µj − α (Cjfj − qj))+
, j = 1, . . . , n,

where α > 0 is the step size, an algorithm parameter, and (z)+ denotes the positive part of
z, i.e., max{0, z}. The terms ct −Rtft, Cjfj − qj appearing in the updates are the slacks in
the link capacity and contract constraints respectively (and can have negative terms during
the algorithm execution). If we stack up these terms, we form exactly the gradient of the
dual objective function.

We will later show that for α small enough, this algorithm will converge to a solution of
the NUMDC problem, as long as the problem is feasible. By this we mean that

fjt → f ⋆
jt, j = 1, . . . , n, t = 1, . . . , T

λt → λ⋆
t , t = 1, . . . , T

µj → µ⋆
j , j = 1, . . . , n,

where F ⋆ is the solution of the primal NUMDC problem and (λ⋆, µ⋆) is a solution to the
dual NUMDC problem. At each algorithm iteration, we have a dual feasible point (λ, µ);
but F is generally not feasible. (Indeed, if F is feasible, it must be optimal.) Thus, at each

5

iteration we have an upper bound on the optimal value of the NUMDC (1), obtained by
evaluating the dual objective function.

The algorithm above is decentralized. We can interpret λt as the vector of link prices
at time t and µj as the vector of contract subsidies for flow j. All the updates are carried
out based on local information. Each flow updates its rates based on information obtained
from the links it passes over, and its contracts; each link price vector is updated based only
on the schedules of the flows that pass over it. The contract subsidies are updated (by each
flow, separately) based on the slack in the contract constraints.

The algorithm also has a natural economic interpretation. We can imagine that at each
time t, flow j is charged a price for utilizing each of its links. The total of these prices is
(RT

t λt)j; this price multiplied by the flow rate (at time t) gives a total link usage charge. At
each time step t, the flow receives a subsidy for each of its contracts that is active, given by
the associated value µjt. The sum of these subsidies is given by (CT

j µj)t. This subsidy rate,
multiplied by the flow, gives the total contract subsidy. The net price per unit rate, from
link usage and contract subsidies, is thus given by pjt. The total charge, pjtfjt, is subtracted
from the utility, and the maximum net utility flow rate is chosen.

The links update their usage prices for each time t, depending on their capacity margin
ct − Rtft; if the margin is positive, the link price is decreased (but not below zero); if it is
negative, which means the link capacity constraint is violated, the link price is increased. In
a similar way, flow j updates its contract subsidies based on the contract delivery margin
Cjfj − qj.

2.3 Convergence

In this section we establish convergence of the algorithm. A standard result is that the dual
projected gradient algorithm converges for 0 < α < 2/K, where K is a Lipschitz constant
for the dual objective function (see, e.g., [Pol87, §7.2.1] or [Sho85, §3.4]). So in this section
we derive a valid Lipschitz constant for the dual objective function.

We define a single dual variable

ν = (λ1, . . . , λT , µ1, . . . , µn).

We have

∇λt
g(ν) = ct − Rtf

⋆
t (ν), t = 1, . . . , T

∇µj
g(ν) = Cjf

⋆
j (ν) − qj, j = 1, . . . , n.

We define
sR = max

t
‖Rt‖, sC = max

j
‖Cj‖,

where ‖·‖ denotes the usual matrix norm, i.e., the maximum singular value. By construction
of ∇g we have

‖∇g(ν1) −∇g(ν2)‖2 ≤ (sR + sC)‖F ⋆(ν1) − F ⋆(ν2)‖F , (3)

6

flow 1

flow 2

flow 3

Figure 1: Network topology.

where ‖ · ‖F denotes the matrix Frobenius norm. Let P1 and P2 be the price matrices
corresponding to ν1 and ν2. Define

pcrit
jt = U ′

jt(f
max
jt), Vjt(p) = (U ′

jt)
−1(p).

We have
‖F ⋆(ν1) − F ⋆(ν2)‖F ≤ max

j,t

∣

∣

∣V ′
jt(p

crit
jt)

∣

∣

∣ ‖P1 − P2‖F . (4)

Finally,
‖P1 − P2‖F ≤ 2 max(sR, sC)‖ν1 − ν2‖2. (5)

Combining inequalities (3), (4), and (5) we get

‖∇g(ν1) −∇g(ν2)‖2 ≤ 2(sR + sC) max(sR, sC) max
j,t

∣

∣

∣V ′
jt(p

crit
jt)

∣

∣

∣ ‖ν1 − ν2‖2. (6)

Thus a Lipschitz constant for ∇g is

K = 2(sR + sC) max(sR, sC) max
j,t

∣

∣

∣V ′
jt(p

crit
jt)

∣

∣

∣ . (7)

3 Numerical Example

In this section we give a simple numerical example to illustrate the NUMDC problem and
the distributed dual decomposition algorithm. Our example has m = 3 links and n = 3
flows, with time horizon T = 10. The routes do not vary with time and are shown in figure
1; these correspond to routing matrices

Rt =







1 0 1
1 1 1
0 1 1






, t = 1, . . . , 10.

The utility functions are logarithmic: Ujt = log fjt for all j and t. The link capacities cjt are
chosen randomly, from a uniform distribution on [4, 6] for links 1 and 3 and [4, 10] for link
2. We set fmax

jt = 4.5 for all j and t.
Our example has four delivery contracts. Flow 1 must deliver an average rate of at least

4 (per time step) in the period [1, 3] and an average rate of at least 10/3 in the period [6, 8].

7

Flow 2 must deliver an average rate of at least 3 over the period [3, 6]. Flow 3 must deliver
an average rate of 1.5 over the period [2, 10]. The associated contract matrices and quantities
are thus

C1 =

[

1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0

]

, q1 =

[

12
10

]

,

C2 =
[

0 0 1 1 1 1 0 0 0 0
]

, q2 = 12,

C3 =
[

0 0 1 1 1 1 1 1 1 1
]

, q3 = 12.

For this example we found a Lipschitz constant K = 600 for ∇g using (7), which implies
that our proposed algorithm will converge as long as 0 < α < 0.0033. Numerical experiments
suggest that the algorithm converges for α ≤ 0.022, and diverges for α ≥ 0.025. Figures 2
and 3 show the convergence of the algorithm, started with λt = 0 and µj = 0, with step size
α = 0.01. Figure 2 shows the dual objective value (which is an upper bound on the optimal
objective value) versus iteration, and the optimal value. Figure 3 shows the maximum link
capacity and contract violations versus iteration.

The optimal flow rates are shown in figure 4. Each of the 4 delivery contract periods
is depicted graphically as a shaded area. We can see that the flow rates generally increase
during their contract periods, as we would expect, and are generally lower outside contract
periods (to make room for other flows with contracts to meet). Figure 5 shows a set of
optimal prices pjt. We can see that the price generally drops when a contract is in force,
dues to the contract subsidy, in order to encourage increased flow.

8

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

d
u
al

ob
je

ct
iv

e

iteration

Figure 2: Dual objective value versus iteration. The dashed line shows the optimal
value.

50 100 150 200 250 300 350 400 450 500
10

−2

10
0

10
2

50 100 150 200 250 300 350 400 450 500
10

−2

10
0

10
2

ca
p
ac

it
y

v
io

la
ti

on
co

n
tr

ac
t

v
io

la
ti

on

iteration

Figure 3: Maximum link capacity violation (top) and contract violation (bottom),
versus iteration.

9

1 2 3 4 5 6 7 8 9 10
0

2

4

1 2 3 4 5 6 7 8 9 10
0

2

4

1 2 3 4 5 6 7 8 9 10
0

2

4

f 1
t

f 2
t

f 3
t

t

Figure 4: Optimal flow rates. The delivery contract periods are shown as the
shaded areas.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1 2 3 4 5 6 7 8 9 10
0

0.5

1

p 1
t

p 2
t

p 3
t

t

Figure 5: Optimal prices. The delivery contract periods are shown shaded.

10

Figure 6 shows the total traffic and capacity for each link. Figure 7 shows a set of optimal
link prices λit. These prices are zero whenever a link operates under full capacity.

11

1 2 3 4 5 6 7 8 9 10
0

5

10

1 2 3 4 5 6 7 8 9 10
0

5

10

1 2 3 4 5 6 7 8 9 10
0

5

10

t

li
n
k

1
li
n
k

2
li
n
k

3

Figure 6: Link capacity (dashdot) and total traffic (solid).

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

t

λ
1
t

λ
2
t

λ
3
t

Figure 7: Optimal link prices.

12

1 2 3 4 5 6 7 8 9 10
0

10

20

30

1 2 3 4 5 6 7 8 9 10
0

10

20

30

1 2 3 4 5 6 7 8 9 10
0

10

20

30

f21 + · · · + f2t

f11 + · · · + f1t

f31 + · · · + f3t

t

Figure 8: Cumulative rates, with delivery contracts shown as dashed line segments.

Figure 8 shows the cumulative rate for each flow versus time, so the total rate over a
contract period is given by the vertical increase in the curve over the period. The deliv-
ery contracts are shown as tilted line segments, with horizontal span showing the delivery
period, and height showing required delivery quantity. The delivery contract requires that
the cumulative rate lie above the righthand endpoint of the line segment. In this case all 4
delivery contracts are tight. Optimal contract subsidy prices are

µ1 =

[

0.63
0.54

]

, µ2 = 0.39, µ3 = 0.17.

13

4 Stochastic Dynamic NUM

In this section we describe an extension to the NUMDC problem, where the problem data
is not fully known ahead of time. As above we assume that the flow utility functions and
upper bounds, the routing matrices, and the contracts are known for all time steps. The link
capacities, however, are random, and revealed only at each time step; future link capacities
are not known. We impose a causality constraint: the flow rates at time t must be a function
of the link capacities up to time t. Finding the flow rate policy that maximizes expected
utility, subject to the rate, contract, and causality constraints is a convex stochastic control
problem (see, e.g., [BS96]). It can be solved in principle, for example by solving the Bellman
equation for the optimal cost-to-go, but this is practical only for simple and small problems.

We instead consider a heuristic flow policy, based on model predictive control (MPC)
[Mac02, CB04, MRRS00]. To compute the flow rate at time τ we proceed as follows. Let
the flow rates up to time τ − 1 (which have already been decided, and so are fixed) be
f̄1, . . . , f̄τ−1. We know c1, . . . , cτ , but we do not know cτ+1, . . . , cT . Define

ĉ(t|τ) = E[c(t)|c(1), . . . , c(τ)], t = τ + 1, . . . , T.

The vector ĉ(t|τ) is the expected value of the link capacities, given the information available
at time τ . We solve the following optimization problem:

maximize
∑T

t=τ

∑

j Ujt(fjt)
subject to Rτfτ ≤ cτ

Rtft ≤ ĉ(t|τ), t = τ + 1, . . . , T
Cjfj ≥ qj, j = 1, . . . , n
0 ≤ fjt ≤ fmax

jt , t = τ, . . . , T, j = 1, . . . , n.

(8)

Here we use the exact value of the current capacity, cτ (which is known); but for future
capacities (which are unknown) we use instead the conditional mean ĉ(t|τ). The contract
inequalities, Cjfj ≥ qj, must be interpreted carefully. If a contract has expired, i.e., its final
time is less than τ , then it can be ignored. If a contract has not begun, i.e., its initial time
is greater than or equal to τ , then the contract inequality only involves future flows, and can
be interpreted exactly as written. When a contract has already begun, and is still in force,
i.e., its start time is less than τ and its final time is at least τ , the contract inequality is
interpreted as follows: the flows fjt for t < τ are taken to be f̄jt, the previously chosen flow
rates (which are constants). In this case Cjfj ≥ qj is essentially a contract on flow j that
requires it to have, over the remaining contract period, a cumulative flow that is at least the
remaining balance left on the contract.

The problem (8) is another NUMDC problem, which could be solved using the distributed
dual decomposition algorithm. Let F ⋆ be a solution of (8) Our choice of flow rates at time
τ is then f̄τ = f ⋆

τ .
To find the flow rates at any given time, then, we solve a NUMDC problem, that covers

the remaining time up to T , and inherits any as yet unfilled contracts from the original
problem. In this NUMDC problem, we substitute the expected future capacity for the
actual future capacity (which we do not know).

14

1 2 3 4 5 6 7 8 9 10
0

2

4

1 2 3 4 5 6 7 8 9 10
0

2

4

1 2 3 4 5 6 7 8 9 10
0

2

4

f 1
t

f 2
t

f 3
t

t

Figure 9: Flow rates from MPC heuristic (solid), and the prescient solution
(dashed). Delivery contract periods are shown as shaded areas.

We have described here only the simplest MPC-based heuristic. More sophisticated
versions include some risk aversion or robustness in the problem solved at each step, for
example by solving a stochastic programming problem, or a robust utility maximization
problem. In the problem described, for example, we might replace the conditional mean
ĉ(t|τ) with the conditional mean ĉ(t|τ) − κσ(t|τ), where κ > 0 is a risk aversion parameter,
and σ(t|τ) is the conditional variance of ct given the information available at time τ .

4.1 Example

We illustrate the MPC algorithm on the same problem instance from §3. In the MPC
heuristic, we use ĉ1(t|τ) = 5, ĉ2(t|τ) = 7, and ĉ3(t|τ) = 5 for all τ , and t > τ .

Figure 9 shows the flow rates obtained from the MPC heuristic, as well as the flows found
from solving the original NUMDC problem. We can think of the solution of the original
NUMDC problem as the prescient solution; it gives the (globally) optimal flow rates when
the future capacities are fully known ahead of time. The MPC heuristic is a suboptimal, but
causal, policy. In this example, the resulting flows are quite similar. The utility obtained
by the MPC heuristic is 23.16; the utility obtained by the prescient solution is 23.33. The
difference divided by nT gives the average utility loss per flow and time step, and is 0.06 for
this example.

15

5 Conclusions

In this paper we presented a multi-period variation of the network utility maximization
problem that includes delivery contract constraints, which couple flow rates across time. We
described a distributed algorithm to solve this problem based on dual decomposition and
established its convergence. We also looked at the case when some problem data is not
known ahead of time and described a heuristic based on model predictive control.

There are many possible variations and extensions of these ideas and methods. We can
modify the formulation in several ways. As a practical example, we can allow contract
violations, imposing a penalty for contract violation. Here we subtract the total contract
violation penalty charge

q
∑

j=1

ωT
j (qj − Cjfj)+

from the over all utility U(f), where ωj > 0 is the (vector of) penalty prices for contract j.
(With contract penalties, the problem is always feasible.) Here the penalty is linear in the
amount of contract shortfall; but any convex penalty function (e.g., quadratic) can be used.

We can use more sophisticated algorithms to solve the dual problem. Our algorithm
requires all rate, price, and subsidy updates to occur synchronously. If we use an incre-
mental subgradient method [NB01] to solve the dual NUMDC problem, we would obtain an
algorithm in which updates can occur asynchronously, still with guaranteed convergence.

Acknowledgments

This material is based on work supported by JPL award I291856, NSF award 0529426,
DARPA award N66001-06-C-2021, NASA award NNX07AEIIA, and AFOSR award FA9550-
06-1-0312.

References

[Ben62] J. F. Benders. Partioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

[Ber98] D. Bertsekas. Network Optimization: Continuous and Discrete Models. Athena
Scientific, 1998.

[Ber99] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 1999.

[BS96] D. P. Bertsekas and S. E. Shreve. Stochastic Optimal Control: The Discrete-Time
Case. Athena Scientific, 1996.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

16

[CB04] E. F. Camacho and C. Bordons. Model Predictive Control. Springer, second
edition, 2004.

[CLCD07] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as optimiza-
tion decomposition: A mathematical theory of network architectures. Proceedings
of the IEEE, 95(1):255–312, January 2007.

[DW60] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Oper-
ations Research, 8:101–111, 1960.

[KMT97] F. Kelly, A. Maulloo, and D. Tan. Rate control for communication networks:
Shadow prices, proportional fairness and stability. Journal of the Operational
Research Society, 49:237–252, 1997.

[LL99] S. H. Low and D. E. Lapsley. Optimization flow control I: Basic algorithms and
convergence. IEEE/ACM Transactions on Networking, 7(6):861–874, December
1999.

[Low03] S. H. Low. A duality model of TCP and queue management algorithms.
IEEE/ACM Transactions on Networking, 11(4):525–536, August 2003.

[Mac02] J. M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.

[MRRS00] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained
model predictive control: stability and optimality. Automatica, 36:789–814, 2000.

[NB01] A. Nedić and D. P. Bertsekas. Incremental subgradient methods for nondifferen-
tiable optimization. SIAM J. on Optimization, 12:109–138, 2001.

[Ned02] A. Nedić. Subgradient methods for convex minimization. MIT Thesis, 2002.

[NO07] A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent
optimization. LIDS report 2760, submitted for publication, 2007.

[NW99] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.

[PC06] D. Palomar and M. Chiang. A tutorial on decomposition methods and distributed
network resource allocation. IEEE Journal of Selected Areas in Communication,
24(8):1439–1451, August 2006.

[Pol87] B. Polyak. Introduction to Optimization. Optimization Software, Inc., 1987.

[Sho85] N. Z. Shor. Minimization Methods for Non-Differentiable Functions. Springer-
Verlag, 1985.

[Sho98] N. Z. Shor. Nondifferentiable Optimization and Polynomial Problems. Kluwer
Academic Publishers, 1998.

17

[Sri04] R. Srikant. The Mathematics of Internet Congestion Control. Birkäuser, 2004.

[Wri97] S. J. Wright. Primal-Dual Interior-Point Methods. Society for Industrial and
Applied Mathematics, 1997.

18

