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Parameter Set Estimation of Systems with Uncertain Nonparametric
Dynamics and Disturbances

MiING K. Lau*t

Abstract A method is presented for parameter set es-
timation of open-loop stable systems with uncertain pa-
rameters and quasi-stationary disturbances. The system
model is assumed to contain both parametric and non-
parametric uncertainty. Parameter set estimates are ob-
tained from finite data records and they have the property
that the parameter set of the true plant is contained in
the estimated sets with high probability.

1 Introduction

One difficulty in designing an adaptive control system is
that the system which generated the measured data is not
in the model set used to develop the parameter estimator,
e.g., [12], [1]. The model set involves some unknown pa-
rameters where their values are presumed to account for
the measured data. An alternate approach is to configure
an adaptive control system which specifically accounts for
this model uncertainty. Depicted in Figure 1 is one such
scheme where the usual parameter estimator is replaced
with an estimator that produces a model set. This type
of estimator is referred to as an uncertainty estimatoror a
set estimator. The robust control design rule then accepts
the model set in the form produced by the set estimator.
Under these conditions, if the system which generated the
measured data is contained in the estimated set, then the
adaptive system is not only stable, but if carefully de-
signed may achieve the maximum performance possible
given the estimated set of uncertainty.

Proceeding in this way we have transformed the prob-
lem of adaptive control design into separate synthesis
problems in set estimation and robust control design.

At present, methodologies for the design of set estima-
tors are under development, e.g., (15], [11], [9], [8], [10],
and [17]. On the other hand, there is a reasonable maturi-
ty of methodologies for robust control design, particularly
for plants with uncertain nonparametric linear dynamics,
e.g., (14], [4], [7]. Methods for robust control design of
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plants with parametric uncertainty are described in [2, 3]
and the references therein.

In this paper we address the problem of parameter set
estimation where the system model contains both para-
metric and nonparametric uncertainty as well as quasi-
stationary disturbances. As a result, parameter set es-
timates, which are computable from finite data records,
have the property that the true parameter set is in the
estimated sets with high probability. This work follows
that described in [16, 17, 10] for the disturbance free case
with nonparametric uncertainty. The case with no non-
parametric uncertainty but with bounded disturbances
has been examined in [5, 6, 13)].
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Figure 1: Adaptive control with set estimator.

Notation and Preliminaries We consider sampled-
data systems with transfer functions in the complex vari-
able z. A transfer function G(z) is stable if all its poles
are strictly inside the unit circle |z| = 1. The frequency
response of G(z) is {G(e/*) : lw| < 7} where w is the fre-
quency variable normalized with respect to the sampling
frequency. For a stable transfer function G(z), the Hq
norm is given by

A jw
IGll3., = Sup |G(e')]

A sequence z is evaluated at discrete time points, i.e.,
z = {z(t) : t = 1,2,...}. To reduce notation, we also
use z to denote the shift operator, so z¥z(t) = z(t + k),
g~*z(t) = z(t - k), and we sometimes write G(z)z(t).

Let £(-) denote the expectation operator. Following
[12], a sequence z is quasi-stationary if the following limit
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exists:
1 &
rez(7) = lim = Efz(t)z(t — ), Vr
N—oo N t:zl

The power spectrum of z is defined as

o]

Su(w)é Z r,,,(r)e‘j‘"

T=—00

Similar definitions apply to the cross spectrum Sy (w) of

the sequences = and y. Note that by the definition of the
inverse Fourier transform,

£(z?) = r20(0) = -QLW /_: Szo(w)dw (1)

We also use the sample-mean operator En(-),

N

En(z) & % S a()

t=1

2 Problem Formulation

The problem is to use the measured sampled data

ZN = {y(t),u@):t=1,...,N} (2)
to identify a model set suitable for robust control design.
The system which produced the data is assumed to have

the input-output form

y(t) ®3)
v() (4)

where u(t) is an applied input, y(t) is the measured out-
put, and v(t) is a disturbance. The disturbance v(?) is
represented as the output of an linear-time-invariant sys-
tem with transfer function H(z) whose input is a random
sequence e. In general the input u(t) could include a
feedback from y(t), but we will assume that no feedback
is present and G(z) and H(z) are stable. Unless required
for clarity, in the sequel, the arguments z and ¢ will usu-
ally be omitted.

G(2)u(t) + v(t)
H(z)e(t)

The model sets for G, H, and e are as follows:

e G has the structure

G =Ge(1+ AgWg) (5)
where Gy is a parametric transfer function with pa-
rameters 6 € IRP and Ag is a stable transfer function
satisfying,

(6)

“AG“Hm <1

e H has the structure

H=AgWy (7)

where Ay is a stable transfer function satisfying,

lAmlly,, <1

(8

e ¢ is a sequence of independent random variables with
zero means such that,
See(w) €02, Seu(w)=0, Vw|<w

9)

The model set is characterized by the parametric struc-
ture of Gy, Wg, Wg, and o. Prior knowledge about the
set is given as follows:

e Gp has the standard parametric ARMA form,
Gy = By/Ag (10)
By = biz7l'+. o 4bpz™ (11)
Ay = 1+a1z'1+~-+anz'" (12)
0 = [ai--an by bm]” (13)

e Wg is stable and known.
e Wiy is stable, stably invertible, and known.

o is known.

The problem we address is to find a set estimate of 6
by using the above model set, prior information, and the
set of measured data (2).

Before proceeding, we remark that the disturbance set
as posed here introduces some limitations. First, since
v is quasi-stationary, it follows that a finite data record
such as (2) can only produce a “soft”-bounding parameter
set, i.e., for large N, the parameter set of the true plant
is contained in the set estimate with high probability.
A second limitation is that the disturbance set does not
depend on the parameters 6. This is adequate when v is
a pure output disturbance, e.g., sensor noise. However, if
v is the result of a disturbance acting through the plant
dynarmics, then our representation provides a potentially
coarse upper bound.

3 Parameter Set Estimation

From the model structure described in the previous sec-
tion, the parameter set of the true plant is given by (5)
and (6):
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True-Plant Parameter Set
o 2 ly. |AG=Be]l
Hoo

We By
The interpretation of the true-plant parameter set is that
for every § € ©*, there exists a Ag satisfying (6) such
that Gg¢(1 + AgWe) is exactly the true G. Note that
computing ©* is not possible because it requires G. In
addition, ©* is the intersection of infinite number of sets
from all frequencies.

(14)

Our goal is to obtain an estimate of ©*. We will start
with the plant model set

y=Go(1+AcWe)u+ AgWye (15)
or equivalently,
Agy — Bou = AW Bgu + AWy Age (16)

To bring the parameter 6 out explicitly, we now define
the following:

¢ £ [=Dny DpulT (17)
Di(z) & [¢7t....7HT (18)
04 2 far---an)” (19)
0 2 [by---b,)T (20)
Yu 2 WeDnu (21)
Y. 2 De (22)

Now (16) can be rewritten as
W'y = 07¢) = AcWi' (05 ¥u) + Ane + 0% 9.) (23)
After squaring both sides of (23) and taking expectations,
we get
EWg'y) = 20T E(Wi'e)(Wi'y)+
0TEWR 6)(Wite) 0 =
&AW 05,)" + £ (Aye)® +
£ (Anthp.)”
where the cross terms disappeared because e and u are

independent and e is independently distributed. We now
use (1), (6), (8), and (9) to obtain

(24)

E(AgWito} ¢u) < eWi0%e)’  (25)
E(Age)® < o° (26)
E(ApbT ¢) < 20%0, (27)
Thus, (24) now becomes
EWi'y)® = 20T EWi $)(Wily)+
0TEWte)(Wir'¢)T0 <
£ (Wi'050.)" + 02 + 02050, (28)

which describes a parameter set computable only from an
infinite data record. This set is now formally defined as
the

Infinite-Data Parameter Set Estimate
O 2 {6:0—2670+67T9 < 0} (29)

where o € IR, 8 € IR?, and T € IRP*? are given by

a = EWgzly)?-o?
B = EWr'e)(Wi'y)
I = &Wg'e)(Wi'e)”

2] 0
0 EWr'du)(Wg'tu)T

Since our goal is to obtain a parameter set estimate
computable from finite data records, we now approximate
the expectations in ©, with sample means and define the

Finite-Data Parameter Set Estimate
On2{0:ay-2850+6TTN0 <0}  (30)
where ay € IR, fv € IRP, and Ty € IRP*? are given by

SN(VVgly)2 —o?

ay =
By = Ex(Wi'e)(Wi'y)
Iy = En(Wg'e)(Wgi'e)™
ZIn
_[ 0 SN(Wz}ltZ’u)(Wﬁlwu)T]

Provided I'y' exists, O x in (30) can also be expressed

as
O ={0:(0—0)"Tn(6~0.)< v}
where
6. = TN'Bn (31)
V = BLTH'Bn —an (32)

Here I'y > 0 implies that © is an ellipsoid in IR? with
center at .. However, it is possible for I'y to have nega-
tive eigenvalues. In that case, O is a hyperboloid in IRP
(see [10] ).

The infinite-data parameter set estimate O, given in
(29) can be interpreted as a time-domain estimate. We
now derive the same set estimate in the frequency do-
main. Observe that ©., is the set of § which satisfies
(28). Rewriting (28) so that 6 does not appear explicitly,
we have

O = {0: € [W5" (40y - Bow))’
<& (W' WeBaw)” + € (4ge)’ }
Substituting (3) in for y,
O = {0: € [W;'(4sG — Bo)u+ Wi AgHe]”

< £ (W' WaBeu)” + € (4ge)?}
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Since u and e are independent,
00 = {0+ € Wiz (49G - Bo)u]® + & (Wi AeHe)”
< £ (Wi'WeBeu)® +€ (Age)z}

Applying (1) and (9), we have
O = {9 : /” (W3 [25(6,w)dw < 0} (33)
where i
F(0,w) = (146G — Bs|* — [Ws By %) Suu(w)

+o?|4* (HI? = [Wa ") (34)

We now have all the pieces to state the following:

Main Result Given that the true plant which generat-
ed ZN has the structure described in (3)~(13), then

OnN — Oy w.pp. las N — o0 (35)

and

0" C 0w (36)
This result is very appealing since although we cannot
compute O, for large N, Oy will contain ©* with high
probability.

Proof of Main Result Since Wy ! is stable and quasi-
stationary disturbances are assumed, from [12], each sam-
ple mean in (30) converges as follows:

N 1 N o
lim —ES(WI}Iy)“
t=1

. 1 _1.72
All_ljlo N Z (Wi'y)” —

t=1

N—oo N
= ¢ (Wfily)?

where the convergence is with probability one as N
tends to co. To show (36), we have from (7) and (8)
that |H(e/?)[? — [Wg(ef*)|* < 0. In addition, from (14),
every § € O* satisfies

|4sG — By|* — [WaBs|* <0, Vw| <7

Thus, § € ©* guarantees the integrand in (33) to be neg-
ative and ©* C Q.

4 Simulation Example

In this section, we will generate the data set 2N and
from them compute or approximate the different param-
eter sets discussed in the previous section. The system
we chose has the following transfer functions:

(1-2YHZ {%P(s)}
0.1
z—-0.9

G(2)

H(2)

where Z denotes the z-transform and

10 10?
s+ 152+ 2(0.005)(10)s + (10)2

The parametric ARMA model is

P(s) =

bz1
Cole) = gt
and
6T =fa b

The remaining transfer functions needed to set up the
problem are

1s+ 111
_ _hzl1
Wg(z) = 65[(1 z )Z{ss+5}]
1 0.1
Wi (2) -6_}1‘2-0.9

where 6y is a constant such that |6g| < 1. The distur-
bance v is the output of H(z) driven by e, a sequence of
independently distributed Gaussian pseudo random vari-
ables with zero mean and o2 variance. The sampling
frequency is chosen to be 10 Hz.

The magnitude response of G is shown in Figure 2 a-
long with one Gy, where § € ©*. Note that the true
system has a resonance at 10 rad/sec and the parametric
model shown has a bandwidth of about 1 rad/sec. Fig-
ure 3 shows the magnitude response of Wg along with two
possible AgW¢, whose corresponding 6 are in ©*. The
plot indicates that [Ag(e?*)| < 1. Note that the chosen
We reflects a low frequency uncertainty of 0.1, and an-
ticipates a rather large resonance at frequencies beyond
about 10 rad/sec.

Three series of experiments are carried out to study the
effects of noise power, mismatch between H and Wy, and
length of data record. In the first two experiments, the
input u is a linearly spaced sinesweep from 0.01 to 0.5
rad/sec over 102.3 seconds, giving N = 1024 data sam-
ples. In the third experiment, N is varied. As mentioned
carlier, the true-plant parameter set ©* as given by (14)
cannot be computed exactly, so the set is approximated
by discrete ’s checked at a finite set of 32 frequencies.
This set is plotted as asterisks in Figures 4, 5, and 6.

To study the effects of noise power, o is varied in this
experiment. As suggested by (33) and (34), the param-
eter set estimate should expand as o increases. This is
supported by Figure 4, where Oy is plotted for o = 0.1,
0.2, and 0.4. Note that in all cases, ©* € On.

In Figure 5, the values of 8y is varied from 0.6 to 1.0.
Again, as suggested by (33), as the mismatch between H
and Wx becomes larger, i.c., |65| becomes smaller, @n
grows.

The effects of different data record lengths are studied
in the last experiment. For the case where N = 1024
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Figure 2: Magnitude responses of the true plant G and
one parametric model Gy.

and 2048 for ¢ = 0.5 and 6 = 1.0, ©* is not in Oy.
This is still in agreement with our results since ©* is only
guaranteed to be in Oy as N tends to infinity. As shown
in Figure 6, ©* is in Oy for N = 4096.

5 Conclusion

A method is presented for parameter set estimation of sys-
tems with parametric and nonparametric uncertainty. In
the presence of quasi-stationary disturbances, the param-
eter set estimate thus obtained from finite data records is
guaranteed to contain the true-plant parameter set as the
data length tends to infinity. Some numerical examples
are given to support the theoretical results.
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Figure 3: Magnitude responses of Wg and two possible Figure 5: ©p for different values of 6y (0 = 0.2, N =
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Figure 4: Oy for diflerent values of o, (N = 1024, 6 = Figure G: Op for different values of N (¢ = 0.5, by =
0.8). 1.0).
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