
Efficient Nonlinear Optimizations of Queuing Systems 
Mung Chiang, Arak Sutivong, and Stephen Boyd 

Electrical Engineering Department, Stanford University, CA 94305 

Absfrad- We present B systematic ireatment of efficient non- 
linear optimizations oi queuing systems. The suite of formula- 
tions uses the computational tool of convex optimization, with 
fast polynomial time algorithms to obtain the global optimum 
for these nonlinear problems under various constraints. We first 
show Convexity structures of several queuing systems, including 
some surprising transition patterns, followed by formulating and 
showing numerical examples of several convex performance op- 
timizations for both single queues and queuing networks. Block- 
ing probability minimization and service rate allocation through 
the effective bandwidth appmach is also presented. 

I. INTRODUCTION 

Queuing systems form a fundamental part for different types 
of networks, including computer multiprocessor networks and 
communications data networks. Queuing systems are also an 
integral part of various network elements, such as the input 
and output buffers of a packet switch. We oflen would like to 
optimize some performance metrics of queuing systems, for 
example, buffer occupancy, overall delay, jittering, workload, 
and probabilities of certain slates. In a network of queues, 
we may also have multiple conflicting objectives that need 
to be optimally balanced. However, optimizing the perfor- 
mance of even simple queues like the MIMlmlm queue is 
in general a difficult problem because of the nonlinearity of 
the performance mehics as functions of the arrival and ser- 
vice rates. Nonlinear optimization in general takes running 
time that scales exponentially with the problem size. 
We show how convexity properties of queuing systems can be 
used to turn some of these intractable problems into polyno- 
mial time solvable ones. By using the tool of convex optimiza- 
tion, and in particular, geometric programming, we provide a 
suite of formulations to efficiently optimize the performance 
of queuing systems under Quality of Service (QoS) and fair- 
ness constraints, first for single queues in section 111, then for 
blocking probability minimization and service rate allocation 
through the effective bandwidth approach in section IV, then 
for networks of queues in section V, and for optimal feedback 
control in simple queuing networks in section V. The distin- 
guishing characteristics of the formulations in this paper is 
that they are nonlinear problems that can be solved as easily 
as linear problems by using convex optimization. 
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11. CONVEX OPTIMIZATION AND GEOMETRIC 
PROGRAMMING 

Convex optimization refers to minimizing a convex objective 
function subject to upper bound inequalities on convex con- 
straint functions. The objective function can be generalized to 
be vector-valued, where the minimization is with respect to a 
convex cone. These'convex multiple-objective optimizations 
are useful for tradeoff analysis, and the notion of optimality 
now becomes Pareto optimality [l]. 
Convex optimization problems can be easy to solve, both in 
theory and in practice. TheoreticalIy, showing an optimiza- 
tion problem to be a strictly convex problem proves that there 
is a unique global optimal solution, and leads to performance 
bounds and sensitivity analysis through the dual problem. 
Practically, when put in the right form, convex optimization 
can be globally solved by fast polynomial time algorithms 
[9].  It also gives a good starling point to develop even simpler 
heuristics and establishes the optimal benchmark to compare 
heuristics with. 
There is a particular type of convex optimization used in sec- 
tions 111, IV and V called geometric programming [ I ] ,  [4], 
which has also been applied to solve other network resource 
allocation problems 161. First, we have 
Definition I: A monomial is a function f : R" - R, where 
the domain contains all real vectors with positive components, 
and constants c 2 0, a; E R: 

Definition 2: A posynomial is a sum of monomials f (x) = 

Geometric programming is an optimization problem in the 
following form: 

CkCkX;''X? ' . ' X Z k ,  

minimize f o ( x )  
subject to f , ( x )  5 1, (2) 

h j ( x )  = 1 

where fo and f;are posynomials and hj are monomials. Geo- 
metric programming in the above form is not a convex op- 
timization problem. However, with a change of variables: 
y; = logx; and b;k = l ogC;k ,  it can be shown that the re- 
formulated problem is a convex optimization problem [I]. 
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111.. CONVEX OPTIMIZATIONS OF SINGLE Q U E L J ~ : ~  B. Optimizing M I M l m J m  queues 

A. optimizing for average delay and queue occupancy 

We start the suite of convex optimization formulations with a 
simple example of minimizing the service load of a M,'M/l 
queue with constraints on average queuing delay W, total de- 
lay D, and queue occupancy Q: 
Proposition I :  The following nonlinear optimization is a ge- 
ometric program, and therefore can be turned into a convex 
optimization and efficiently solved for its global optimum: 

minimize 
subject to W 5 W,.,, 

D 5 D,,,, 
Q 5 Qmoz, 

A t Xmin, 

CL 5 h" 

(3) 

where the optimization variables are the arrival rate A and the 
service rate p. The constant parameters are the performance 
upper bounds W,,,, D,,, and Qmor, and practical con- 
straints on the maximum service rate pmOl. of the queue that 
cannot be exceeded, and the minimum incoming traffic rate 
A,;, that must be supported. The objective is to minimize 
the service load. We can also show that even a joint opti- 
mization over both (A, p)  and (W,,,, D,,,, QmaZ) is still a 
geometric program. 
The above formulation can be extended to a Markovian queu- 
ing system with N queues sharing a pool of servic: rate 
bounded by pmar (for example, connected to a common out- 
going link). The arrival rate to be supported for each indi- 

We now optimize specific queue occupancy probabilities by 
first considering an M I M J m l m  queue. The steady state 

probability ofstate k is given by pk = &. In many 

applications of queuing systems to network design, we would 
like to maximize the probability of a particular desirable state, 
without making the probabilities of other states too small. For 
example, we may want to design a telephone call service cen- 
ter so as to maximize the probability that a particular number 
of telephone lines (e.g., 90%) are in use at any given time. We 
also want to jointly optimize the fairness parameters Cj that 
hounds p,. 
Proposition 2: The following nonlinear optimization of 
M I M l m l m  queues is a geometric program: 

maximize pk 
subject to pj 2 C,, Yj, 

( A p  1 

.=o P 

cj t Cj,"..,, v i  ( 5 )  
2 Ami,, 

p 5 p m a  

where the optimization variables are A, p and Cj, and the con- 
stant parameters are A,,,, p,,, and the fairness constraints 
Cj,,,,;",j = 1,2 , . . . ,m . 
This geometric programming formulation can be extended to 
maximize the probability for the state with the lowest prob- 
ability to enforce maxmin fairness. Similar formulations can 
be done for parallel M J M l m l m  queues and a general MJG 
queue. 

vidual queue i is bounded by A,,,,n. There are delay and 
uueue O C C U D ~ ~ C V  bounds W,,,,. D4-"* and Qi -.,* for 

c, M I M I ]  queues .~ ...._ . _, . . 
each queue i. 
weighted sum of the service loads for all the queues: 
Corollary I: The following nonlinear optimization is 
metric program: 

The objective now becomes minimizing a 

gee- 

We now turn to M I M I 1  queues, where the convexity property 
is, surprisingly, more complicated than that of queues with fi- 
nite buffer size. We first prove the convexity properties of 
the relevant quantities and then show the appropriate nonlin- 
ear ontimization formulations. For M I M I 1  queues. the state 

minimize xc1 ai 
subject to W; 5 W,,,,,, 

Di 5 Di,,,,, 
Qt 5 Qi,mor, 

Xi 2 k , , i " ,  

(4) 

cc, Ll; 5 pmar 

where the optimization variables are the arrival rates Ai and 
the service rates pi. 
A simple numerical example for N = 2 with weights 
a,  = l ,aZ = 2 is summarized as follows. If we set 
the delay and queue occupancy constraints as = 
4,QZ.moz = 5,Wl,mez = 2.5,Wzp.z~ 
2, Dz,,,, = 2, and service and arrival rate constraints as 

= 0.5,A~,,;~ = 0.8,pm,, = 3, geometric program- 
ming gives the optimizen: p; = 1.328, p; = 1.672, A; = 
0.828, A; = 1.172 and the optimized objective value is 4.457. 

3 3 D ~ , m a z  

I , .  

probability pk can be viewed as a function of either the traffic 
load p = $ or of X and p. 
The state probability pl is always a concave function of p .  
However, there is an interesting transition from convexity to 
concavity as load increases for pk, k 2 2,  derived from the 
second derivative test of convexity and shown in the following 
Lemma I: The state probability pk, k t 2 is a convex func- 
tion of load p if and only if (k - 1) - ( k  + I ) p  2 0. 
Therefore, there is a transition from convexity to concavity 
across the states in ascending order as load increases from $ 
to 1. In order for pk to be convex in p for all k greater than or 
equal to a critical b, the traffic load p must be smaller than a 
critical po(k0). Numerically evaluating the above condition, 
we obtain the convexity transition curve shown in Figure I ,  
where the critical load PO can be read for any given k ~ .  
We now turn to the more useful design problem where we can 
vary the arrival rate and service rate independently, instead of 

2426 



--.--....- 
I 

.... 
Fig. I .  Threshold loads for basilion ofp*(p) from convexity to concavity 
fora MIMI1 queue. 

just their ratio p. Unlike M I M l m l m  queues where geomet- 
ric programming can be used for optimizing over X and p, the 
state probabilities p k  of an MIMI1 queues are not in general 
convex functions of X and p. There is a similar, though more 
complicated, panem of this transition when pk is viewed as 
a function of two variables X and p. Interestingly enough, 
this transition pattem still only depends on p. as shown in the 

Lemma 2: The functionpk, k 2 2, is convex in X and p ifand 
only if ( k 2 + k )  - ( k 2 + k ) p +  (k' - k)p2 - (k2 +k+2)p3 2 0. 

following 

8-1 Since p g  = 1 - pi, this heuristics essentially min- 
imizes the blocking probability. It is also known that due to 
the superadditive effect of buffer size on pe, allocating a fixed 
buffer space among several queues to minimize the overall 
blocking probability is also a convex optimization. 
An altemative way to characteiize buffer overflow is through 
the large deviation approach, where the blocking probability is 
guaranteed statistically: for a connection X with a prescribed 
service rate R in the queue, we would like to ensure that the 
probability of overflow (receiving more than R bps from X) 
over a time scale o f t  is exponentially small: 

Prob c X ( i )  2 R 5 exp(-sR) (7) LI, I 
where s 2 0 is the undersuhscription factor. Smaller s im- 
plies more aggressive statistical multiplexing of multiple con- 
nections to one queue. This number R is called the effective 
bandwidth EB of X (as first proposed in [SI, used in many 
papers since, and nicely reviewed in [7]). 
Using the Chemoff bound, the effective bandwidth is given by 

(8) 
1 
st 

EB(X) = -logE[exp(sX)],  

and in practice, the expectation is replaced by empirical data 
collected Over a time period of i that is much larger than the 
time scale factor t: 

This lemma leads to the following 
Proposition 3: The following nonlinear optimization of 
M I M I 1  queues is a convex optimization problem: 

minimize pk 
subjectto pj 5 C;, j > k ,  

p 5 Pm.z, (6) 
A 2 Ami,, 

P < d k )  
where 0 5 po(k)  < 1 solves the equation (k' + k) - (k' + 
k ) p  + (k' - k)p' - ( k 2  + k + Z)p3 = 0. The optimiza- 
tion variables are X and p, and the constant parameters are 
Cj, Amin, pmaZ and k.  

Iv. OPTIMIZATIONS WITH BUFFER OVERFLOW 
CONSTRAINTS THROUGH EFFECTIVE BANDWIDTH 

One approach to study the buffer overflow probability is 
through the blocking probability ofan M I M I 1 I B  queue with 
a fixed buffer of size B: 

Therefore, minimizing ps is equivalent to maximizing a 
posynomial of X and p, which is in tum equivalent to max- 
imizing a convex function. Therefore, it is not a convex opti- 
mization problem. One possible heuristics is to use geomet- 
ric programming to maximize the probability of some state 
k, k < B, subject to lower bounds on pj for all other j < B. 

where X( i )  is the number ofbits produced by connection X 
during the ith time slot. 
We want to either minimize the assigned service rate EB(X) 
subject to constraints that lower bound the traffic intensity 
X( i )  to be supported (i.e., exponentially small probability of 
overflow or blocking), or maximize the traffic intensity sub- 
ject to constraints upper bounding the service rate that can be 
assigned to X. Both problems are geometric programs, and 
we focus on the first formulation for the rest of this section 
(since it is also connected with information theoretic channel 
capacity [3]), where we put various constraints (indexed by j 
and induced by the stochasticity of other connections sharing 
the queue buffer) on the minimal level of traffic intensity to be 
supported by EB(X). 
Proposition 4: The following problem of constrained buffer 
allocation through the effective bandwidth approach is a geo- 
metric program: 

(9) 
minimize EB(X) 
subject to xi P, jX( i )  2 X,,,,;, V j  

where the optimization variables are X ( i ) ,  and the constant 
parameters are Pij and Xmin,;. 
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An illustrative numerical example is summarized as follows. 
With s = 0.5, t = 5ms, we impose a set of I O  differeni con- 
straints to specify the type of an arrival curve a queue should 
be able to support without blocking. The geometric program- 
ming solution returns the minimized effective bandwidth as 
EB'(X) = 1.7627Mbps, and the envelope of supportable ar- 
rival curves is shown in Figure 2. Connections with zmval 
curves below this envelope will not cause buffer overflow or 
queue blocking with a probabilistic guarantee as in (7). 

I,-&- 

Fig. 2. The envelope ofarrival curves suppottable by EB'(X) = 1.7627. 

V. CONVEX OPTIMIZATIONS OF QUEUING NETWORKS 

In some queuing problems, a fixed number of customers or 
tasks circulate indefinitely in a closed network of queues. For 
example, some computer system models assume that ;at any 
given time a fixed number of programs occupy the resource. 
Such problems can be modelled by a closed queuing network 
consisting of K nodes, where each node k consists of m k  
identical exponential servers, each with average service rate 
p k .  There are always exactly N customers in the system. 
Once served at node k, a customer goes to node j with prob- 
ability p k j .  Then for each node k, the average arrival rate to 
the node, X k ,  is given by X k  = E,"=, p k j X j .  

The steady state probability that there are n k  customers in 
node k, fork = 1,2, .  . . , K, is given by [ 8 ]  (a closed network 
Jackson's theorem): 

where 

and the normalization constant G ( K )  is given by 

where the summation is taken over all s'dte vectors 
( n l , n z , .  . . , n K )  satisfying N 

n k  = N .  We have 

Proposifion 5: The nonlinear problem of maximizing the 
probability of state (nl = n;, . . . , n~ = n>) with 
Cf=, nk = N ,  subject to fairness constraints on other states, 
is a geometric program: 

maximize p(nl = n i , .  . . , n K  = n;O 
subject to p ( n 1 , .  - .  , n ~ )  2 Fairness constants, 

P, 5 pi,maz, (10) 
Pi 2 Pi"", 

K 
ck=1 mkpk 5 Ptatol 

where there is a constraint of the first type for each steady 
state probability p ( n l , .  . . , n K ) .  The optimization variables 
are pk ,  and the constant parameters are p;,,,.,,,, and 
ptot.1. 

The above convex optimization problem can be viewed as a 
problem of resource (i.e., service capacity p k )  allocation in a 
closed queuing network. The goal is to maximize the proba- 
bility that the system is in a particular state subject to faimess 
constraints on other states and the limited system resource. 
At first glance, it may seem that the above formulations can 
be readily extended to an open queuing network. How- 
ever, because of a more complicated convexity structure of 
an open network (in particular, the steady state probability 
p ( n l ,  11.2, . . . , n K )  is neither concave nor convex in p k ) ,  a sim- 
ilar formulation can be intractable for a general open network 
of queues. For a simple example, consider an open queu- 
ing network with two interconnected MJMf 1 queues, each 
with an exponential service rate pk and an external arrival 
rate a k ,  k = 1,Z. After being served by queue k, a customer 
chooses to go to the other queue with probability pk or leave 
the queuing system with probability 1 - P I .  It can be shown 
that p ( n l ,  nz)  is neither concave nor convex. 

VI. CONVEX OPTIMIZATIONS OF FEEDBACK CONTROL 
IN QUEUING NETWORKS 

In this section, we extend the convex optimization formula- 
tions to a particular type of queuing networks with feedback. 
Although the formulations are no longer in the special form 
of geometric program, we can still tum them into a general 
convex optimization problem. 
As a first example, consider a simple network of queues 
shown in Figure 3. 

In c o m in 
Packets 

Qucve I 

Fig. 3. A net-& of queues with feedback. 

The incoming traffic to the overall system is i i d .  - 
Poisson(X). With probability p l ,  an incoming packet leaves 
the system after the feedforward queue 1, which has an ex- 
ponential service time pl, and with probability pz = 1 - p l ,  
the packet is feed back through queue 2, which has an expo- 
nential service time pz. This queuing model can be used for 
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a variety of systems where we would like to process as many 
packets through the feedback loop as allowed under a delay 
constraint on the total time spent in the system. For example, 
in some optical packet switch architectures, the problem of 
wavelength contention can be solved by cycling packets not 
switched in a time slot through the buffer again. Clearly, there 
is a tradeoff between maximizing the feedback queue traffic 
load p2 (or equivalently, minimizing the service load L) and 
minimizing the total time T spent in the system. We have 
Proposifion 6: The nonlinear optimization problem of mini- 
mizing both T and by varying p z ,  subject to the following 
constraints: p, < 1,pz < 1,andO 5 pz 5 1 is a convex 
multi-objective optimization problem, where all the Pareto 
optimal solutions can be found through a scalarization tech- 
nique as follows. 
The problem of minimizing a weighted sum of T and A, sub- 
ject to stability constraints for each individual queue, is a con- 
vex optimization problem in variable pz: 

minimize T + a &  
subject to p1 < 1, 

PZ < 1 ,  (1 1) 
P2 5 1, 
Pa 2 0 

P2 

Therefore, the nonlinear problem of finding the best feedback 

solution for a fixed U. Note that only points to the right of the 
Pareto optimality curve are achievable. 

Fig. 5 .  Pareto opthality tadeaff curve as 01 varies. 

With two parallel feedback queues, maximizing a weighted 
sum of feedback queue loads subject to upper bounds on the 
feedfonvard queue load is a convex optimization, so is mini- 
mizing the ratio of the feedforward load and the sum of feed- 
back loads. However, due to more involved convexity smc-  
tures of the queuing system, extending the above analysis to a 
general case with n feedback queues is not straightforward, 

VII. CONCLUSIONS - 
parameter ~4 and Pi = 1 - P; to minimize the total system 
time and maximize the feedback queue traffic load under indi- 
vidual queue stability constraints can be efficiently solved for 

Based on resulb on convexity properties of queuing 
systems and computationally eficient algorithms for 
ootimization, we DreSent a suite of fomulations to oDtimize ~ . . .~ . . . . 

carried out globally in polynomial time for network queuing 
systems under Qos and fairness 

weighting factor a = 0.5 for X = 5 .pL  = 8 and p2 = 8. As 
shown in Figure 4, the convex optimization algorithm finds 
the global optimum value for the objective function as 3.933 
through the optimal feedback probability p;  = 0.2755 

- m < . . . - . l o . l l l l - >  

I 

i l  

Fig. 4. Optimizing T + E overpz ford fixed (1. 

Now we solve the multi-objective problem as in Proposition 6 
through scalarization of this convex Pareto optimization. Due 
to the convexity structure, by varying a we can obtain the en- 
tire tradeoff curve shown in Figure 5, where each point on the 
curve corresponds to the result of a convex scalar optimization 
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