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Nonlinear Q-Design for Convex Stochastic Control

Joëlle Skaf and Stephen Boyd, Fellow, IEEE

Abstract—In this note we describe a version of the Q-design method that
can be used to design nonlinear dynamic controllers for a discrete-time
linear time-varying plant, with convex cost and constraint functions and
arbitrary disturbance distribution. Choosing a basis for the nonlinear
Q-parameter yields a convex stochastic optimization problem, which can
be solved by standard methods such as sampling. In principle (for a large
enough basis, and enough sampling) this method can solve the controller
design problem to any degree of accuracy; in any case it can be used
to find a suboptimal controller, using convex optimization methods. We
illustrate the method with a numerical example, comparing a nonlinear
controller found using our method with the optimal linear controller, the
certainty-equivalent model predictive controller, and a lower bound on
achievable performance obtained by ignoring the causality constraint.

Index Terms—Convex optimization, nonlinear control, Q-parameter, sto-
chastic control.

I. INTRODUCTION

We consider the stochastic control problem for a finite-horizon
discrete-time linear time-varying system with convex objective and
constraints. The optimal controller can be described recursively via dy-
namic programming, but this gives a practical method for implementing
the controller only in a few special cases, such as when the state-space
dimension is very low (say, no more than two or three), or when the
objective is quadratic and there are no constraints. On the other hand
there are many methods for finding a suboptimal controller, including
classical control techniques, model predictive control, and approximate
dynamic programming (which will be described in more detail later).

In this note we show how the Youla or Q-parametrization, suitably
extended, can be used to convert the controller design problem into
an equivalent stochastic convex optimization problem. By choosing a
large enough basis of nonlinear functions, and approximate solution of
the resulting stochastic convex optimization problem, we can (at least
in principle), solve the controller design problem to any desired ac-
curacy, using standard (finite-dimensional) convex optimization tech-
niques. In any case, our method can be used to find a suboptimal con-
troller, using standard convex optimization methods. We illustrate our
method with an example, in which the synthesized controller yields
substantially better performance than a linear controller, or a model
predictive controller, despite an ad hoc choice of basis. A more de-
tailed version of this note, including the data and source code for the
numerical example, can be found in [1].

II. SYSTEM MODEL

A. Signals and Plant

We consider a discrete-time linear time-varying plant, over the time
interval , with control or actuator signal
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, sensor signal , disturbance or exogenous input
signal , and output signal . As ex-
plained in [2, Chap. 2], the exogenous input signal can represent plant
and measurement noise, as well as command, reference, or tracking sig-
nals; the exogenous output signal can represent the regulated variables
or tracking errors. We will use , , , and to denote the associated
trajectories:

The plant is linear, and so can be described by

(1)

where , the matrix above, is the plant input-output matrix.

B. Causality

To describe causality assumptions and restrictions we will need the
idea of block lower triangularity. Suppose we write a matrix

in block form, where denotes the
block. If for , we say that is block lower
triangular. If in addition the diagonal blocks vanish, i.e.,
for , we say the matrix is block strictly lower triangular.
We extend these concepts to (possibly nonlinear) functions as follows.
Suppose that , with ,
where , and , with . We
say that is block lower triangular if depends only on

, and block strictly lower triangular if depends
only on . When is block lower triangular, we write
as , to emphasize that it depends only on .
When the indices represent time, block lower triangularity corresponds
to causality, and block strict lower triangularity corresponds to strict
causality.

We will assume in what follows that is block strictly
lower triangular, which means that the mapping from actuator to sensor
is strictly causal. It often occurs that , , and are also block
lower triangular, but we do not need this assumption.

C. Causal Controller

We will consider causal feedback controllers (or control policies),
for which , where is block lower
triangular. We can write this out as

Since is block strictly lower triangular, the system equations are
always well-posed. Indeed, the trajectories of and are readily found
from the recursion

...

We can then find from . Once we fix the controller
, the actuator signal and output become functions of the exoge-
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nous input . We refer to these as the closed-loop exogenous input to
actuator mapping, and the closed-loop exogenous input to output map-
ping, respectively.

III. STOCHASTIC CONTROL PROBLEM

We assume that is random, with known distribution. Via the
closed-loop mappings, the actuator signal and the output are also
random variables. Let be a convex (objective)
function. We judge our control performance by the expected value of
this objective function, , where the expectation is over .
We treat constraints in a similar way. Let ,

, be a set of convex (constraint) functions. Our control
design constraints are , . Such con-
straints, which require the expected value of a function to be less
than zero (say) are called stochastic constraints. But the same form
can be used to enforce an almost-sure constraint, such as
almost surely. Here we simply define for , and

for ; the stochastic constraint
is then equivalent to almost surely.

The stochastic controller design problem can then be expressed as

(2)

where the expectation is over , and the (infinite dimensional) opti-
mization variable is the function (control policy) .

The stochastic control problem can be solved in a few very special
cases. For example, in the linear quadratic Gaussian (LQG) problem
(i.e., when there are no constraints, is Gaussian, and is (convex)
quadratic), the optimal policy is an affine function, i.e., a linear func-
tion of the past measurements, plus a constant, and can be found from
dynamic programming (see [3], [4]) or by the method described below.
Another case in which the optimal control policy is known, and affine,
is when the cost is the exponential of a quadratic function, and the
disturbances are Gaussian, which is the linear exponential quadratic
Gaussian (LEQG) or risk-sensitive LQG problem [5, vol. 1, §19].

A. Controller Design Methods

There is a large number of heuristic methods for solving the sto-
chastic control problem, also called stochastic optimization with re-
course [5]–[9]. Perhaps the simplest methods are those from classical
linear feedback control techniques, such as PID (proportional-integral-
derivative) control [10]. One very effective technique that can be used
when a noiseless measurement of the state is available is model pre-
dictive control (MPC) [5], [11]–[15], which also goes by many other
names, including dynamic matrix control [16], rolling horizon planning
[17], and dynamic linear programming (DLP) [18]. MPC is based on
solving a convex optimization problem at each step, with the unknown
future disturbances replaced with some kind of estimates available at
the current time (such as conditional means); but only the current action
or input is used. At the next step, the same problem is solved, this time
using the exact value of the current state, which is now known from
the measurement. Another approach goes under the name approximate
dynamic programming [7], [19], [20], in which some estimate of the
optimal value function, or optimal policy, is found.

We also mention that there is a large literature on multistage stochastic
linear programming, which can be used to solve (exactly or approxi-
mately) some versions of our problem (with piecewise linear objectives
and polyhedral constraints); see [21]–[29]. The proposed methods
range from decomposition and partitioning methods to sampling-based
approximation algorithms, and are usually limited to short horizons.

IV. NONLINEAR Q-PARAMETRIZATION

We define the signal as

We can think of as the sensor signal, with the effect of the actuator
signal removed, i.e., is the direct effect of the exogenous input on
the sensor signal, after compensating for its effect via feedback.

Now let be any block lower triangular
function. We define a causal control policy via the relation

(3)

which can be more explicitly written, using , as the
recursion

...

This recursion shows that is a function of , i.e., is
block lower triangular.

We have seen that from any block lower triangular function
, we can construct an block lower triangular controller . We

will now show that every causal controller can be realized by some
choice of . Let be a given block lower triangular controller.
Using (3) and , we obtain a recursion that defines

as

...

This recursion shows that is block lower triangular. When
the construction above is applied to , we obtain the original causal
controller .

We conclude that the correspondence between and is a bijec-
tion: For each block lower triangular function , there is exactly
one block lower triangular , given by the recursion above. It
follows that we can optimize over in the stochastic control problem,
instead of . In other words, we parametrize by .

We can express and in terms of and , using :

These expressions show that and are (in general) nonlinear func-
tions of , but they are affine functions of , for each . Since expec-
tation preserves convexity, it follows that the objective and constraint
functions:

are convex functions (or, more formally, functionals) of . By using the
variable instead of , we now have an infinite-dimensional stochastic
convex optimization problem.

A. Q-Design Procedure

Our method is related to the classical Q-design procedure, or Youla
parametrization [30], [31] for time-invariant, infinite-horizon linear
controller design [32]–[36]. The book [2] and survey paper [37]
describes this method, and the use of convex optimization to design
continuous-time, time-invariant controllers, in detail; the Notes and
References trace the ideas back into the 1960s. The books [38], [39]
use these methods to minimize the worst-case output, with unknown
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but bounded input, which can be cast (after Q-parametrization) as
an norm minimization problem, and then solved using linear pro-
gramming. The Ph.D. thesis [40] and the article [41] use the Q-design
procedure to formulate the controller design problem as a constrained
convex optimization problem. Our method is also related to the more
recent purified output control method [42], [43].

Although not directly related to our topic, we mention some papers in
which extensions of Q-design are used to design stabilizing controllers
for nonlinear plants; our method, in contrast, concerns linear plants and
nonlinear controllers. In [44], Desoer and Liu show the existence of a
parametrization of stabilizing controllers for stable nonlinear plants.
For unstable nonlinear plants, only partial results have been obtained
(e.g., see [45]–[47]).

V. APPROXIMATE SOLUTION

A. Finite-Dimensional Restriction

We can obtain an approximate solution of the stochastic controller
design problem, with variable , by choosing a basis
of block lower triangular (and generally nonlinear) functions,
and expressing as

(4)

where are the design variables. We now have a finite-di-
mensional stochastic convex optimization problem. If we were to solve
this problem, we would have a suboptimal solution of the stochastic
controller design problem, obtained by expressing in terms of the
found.

We could also (very roughly) claim that, if the basis were large or
rich enough, that we have ‘nearly’ solved the stochastic controller de-
sign problem; the only limit to our finding the optimal controller is our
choice of basis for . But we will focus here on the less ambitious
claim that this method simply produces a suboptimal controller, just
like the many other methods listed above.

B. Solving the Stochastic Optimization Problem

Once a basis for has been chosen, our problem becomes a finite-
dimensional stochastic convex optimization problem. There is a large
literature on this topic; see, e.g., [5], [7], [8], [48]–[50]. In a few very
special cases we can solve such problems exactly. For example, when
and are quadratic, and the mean and covariance of can be
computed, the controller design problem reduces to a (convex) quadratic
program. But in general, we have to solve the stochastic problem approx-
imately. Typical methods involve a parameter which trades off computa-
tional effort and accuracy; arbitrary accuracy can (in principle) be ob-
tained as the parameter (and computational effort) grows.

We will describe here the simplest approximation method for sto-
chastic optimization, based on sampling. Choose from
the distribution of , and form

for . These are affine functions of . Our approximate
problem is then

(5)

with variable . This is a standard finite dimensional convex
optimization problem, which can be solved using standard techniques;
see, e.g., [51].

Once we solve the convex optimization problem (5), we can check
whether we have taken enough samples, i.e., whether is large
enough, by validation, i.e., evaluating the solution found on another
set of (typically, more) samples. If the empirical means of the objective
or constraint functions substantially differ, between the original sample
set and the validation sample set, we must increase ; if they are near
each other, it gives us confidence that the sampling is adequate.

We note that when sampling is applied to an almost sure constraint,
we are guaranteed that the constraint will hold for the original set of
samples; but with some of the validation samples of , the constraint
can be violated. If the sample size is large enough, however, we expect
that the constraint will hold with very high probability, and that when
the violations occur, they will be small.

To get to the finite-dimensional convex optimization problem (5), we
have made two approximations: We have restricted our search to a -di-
mensional subspace of the infinite dimensional space of block
lower triangular functions, and we have approximately solved the sto-
chastic problem by sampling. The second (sampling) approximation is
generally good, but the first one (restriction to a finite dimension sub-
space) is generally not. For this reason we generally would not claim that
this method solves the stochastic controller design problem in practice,
even when is large; we can simply claim that the method yields a good
controller in a straightforward way, that relies on convex optimization.

Finally, we mention the rough computational complexity of the de-
sign method. The main effort is in solving the problem (5), which has

variables and constraints; each of these, in turn, involves
terms. Evaluating the objective and constraints, and their gradients and
Hessians, requires on the order of operations. Since this is
the dominant effort per iteration of an interior-point method, which in
practice require a few or several tens of iterations, we get an overall
complexity estimate of . We note that this grows linearly with

, the number of samples; this makes is practical to choose a rela-
tively large value of . The complexity estimate above assumes that
no problem structure is exploited; however, if any problem structure is
exploited, the complexity can be reduced further [51].

We note that the final controller is implemented using the recur-
sions above, and so can run at extremely high rates, assuming the basis
functions can be rapidly evaluated. In particular, no optimization
problem is solved at run time, as in MPC. In other words, the run-time
complexity of the method is very low. (But we should mention that the
optimization problems that must be solved in each MPC step can be
solved quite efficiently; see, e.g., [52].)

C. Standardization

Here we describe a method for standardizing the signal , i.e., ap-
plying a causal linear whitening transformation to it. This transforma-
tion is not essential, but it helps in coming up with a reasonable choice
for the basis functions. We define

where is the mean value of , and is the (lower
triangular) Cholesky factor of the covariance of

where is the covariance matrix of . The signal is standard-
ized, i.e., its entries have zero mean, unit variance, and are uncorrelated.
Note that the standardization mapping, from to , is lower trian-
gular. We can (loosely) interpret as an innovations signal, i.e., the
component of the sensor signal that is not (linearly) predictable from
the past.
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The standardized signal can be expressed in terms of in a nat-
ural feedback form, which is called forward substitution in the context
of numerical linear algebra

for . Here refers to the block of , interpreted
as a block matrix.

We now choose our basis for as

where are block lower triangular. The functions are
also block lower triangular, since the composition of the
block lower triangular function and the lower triangular function

is also block lower triangular.
Since we know that the entries of have zero mean and unit vari-

ance, we can choose nonlinear functions appropriate for this range
of values. As a simple example, suppose that saturates the th com-
ponent of at the level

where and the saturation function is defined as

A choice of on the order of one would place the saturation level
near the standard deviation of , and is likely to produce an inter-
esting nonlinear function; in contrast, the choice would result
in with probability at least 0.99, by the Cheby-
shev inequality.

VI. EXAMPLE

In this section we describe our numerical example. Space limitations
do not allow us to give a full discussion of, or specification of, our
example here; for much more detail about this example, and all data
and code for it, see [1]. We consider a tracking problem with a scalar
input, disturbance, sensor, and output signals. The tracking error, which
is also the sensor signal, is given by

(Thus and .) Here we interpret as the
signal to track; we assume it has zero mean and covariance . Our
objective is the mean-square tracking error

The actuator input signal must satisfy the (almost sure) constraint

Now we describe (our basis for) . Let be positive sat-
uration levels. We take be to

where are lower triangular coefficient matrices, with last (block) row
zero. (The coefficients are the nonzero entries in .) The
total dimension is thus .

The particular problem instance we consider has horizon ,
with the entries of chosen randomly. We take the actuator signal
limit to be . Our basis for will use two saturated ver-
sions of the standardized signal , with levels and .
The total dimension of our basis is therefore 90. We solve the design
problem using the sampling method, with (training) sam-
ples, and verify the results by simulation on another (validation) set of
10000 samples.

TABLE I
RESULTS

We compare the performance of the nonlinear controller found using
our method to the optimal linear controller, designed using the same
training set (see [53]), and the certainty-equivalent model predictive
control (CE-MPC). We also show the results obtained with a prescient
controller, i.e., a controller that is not causal (which, of course, gives
us a lower bound on achievable performance).

The results are shown in Table I, along with the performance of
the (non-causal) prescient controller, which provides a lower bound on
achievable performance. We can see that the nonlinear controller beats
the optimal linear controller and CE-MPC. Its performance is around
30% higher than the lower bound given by the (non-causal) prescient
controller.

As mentioned in Section V, the almost-sure constraint on
is guaranteed to hold for all samples in the training set, but not for

samples from the validation set. It does however hold with very high
probability. For the optimal linear controller, the constraint is violated
for 0.16% of the samples in the validation set. For the nonlinear con-
troller, it is violated for only 0.04% of the samples, and when these
violations occur, they are very small, with typically a fraction of
one percent larger than .

VII. CONCLUSION

We have shown that the problem of finding the optimal nonlinear
controller, for a stochastic control problem with linear dynamics and
convex cost and constraint functions, can itself be cast as an infinite-di-
mensional convex stochastic optimization problem, after a nonlinear
change of variables. After choosing a finite-dimensional basis, this
problem can be approximately solved using standard techniques for
numerical solution of stochastic convex optimization problems.

The (big) question that remains is: How should one choose the finite-
dimensional basis of nonlinear operators over which to search? Unlike
the case of linear controllers, where this question can be answered, we
know of no satisfactory general method for choosing this basis. The
standardization technique described above at least sets the approximate
range of input values for the basis elements, but does not answer the
general question of how they should be chosen.

Numerical results show that the method (even when the basis is
chosen in an ad hoc way) synthesizes controllers with good, and often
competitive, performance.
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Modification of Mikhaylov Criterion
for Neutral Time-Delay Systems

Tomáš Vyhlídal and Pavel Zítek

Abstract—The main goal of the technical note is to extend the Mikhaylov
criterion to the case of neutral time delay systems. The modification
consists in determining the vertex angle that bounds the argument oscil-
lations of the Mikhaylov hodograph at high frequency ranges. Utilizing
the strong stability concept, the presented stability criterion is examined
from the viewpoint of potential fragility with respect to arbitrarily small
delay changes. To facilitate the more demanding argument assessment, the
Mikhaylov hodograph is converted to Poincaré-like mapping.

Index Terms—Argument principle, linear time-delay system, Mikhaylov
criterion, neutral system, Poincaré mapping, strong stability.

I. INTRODUCTION

The class of neutral time delay systems (NTDS) is characterized by
the presence of delays not only at the system state, but also at its deriva-
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