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Abstract: We consider the control of a commercial multi-zone refrigeration system, consisting
of several cooling units that share a common compressor. The goal is to minimize the total
energy cost, using real-time electricity prices, while obeying temperature constraints on the
zones. We propose a variation on model predictive control to achieve this goal. When the right
variables are used, the dynamics of the system are linear, and the constraints are convex. The
cost function, however, is nonconvex. To handle this nonconvexity we propose a sequential
convex optimization method, which typically converges in fewer than 5 or so iterations. We
employ a fast convex quadratic programming solver to carry out the iterations, which is more
than fast enough to run in real-time. We demonstrate our method on a realistic model, with a
full year simulation, using real historical data. These simulations show substantial cost savings,
and reveal how the method exhibits sophisticated response to real-time variations in electricity
prices. This demand response is critical to help balance real-time uncertainties associated with
large penetration of intermittent renewable energy sources in a future smart grid.

Keywords: Predictive Control, Optimization, Nonlinear Control, Smart Power Applications.

1. INTRODUCTION

To obtain an increasing amount of electricity from inter-
mittent energy sources such as solar and wind, we must
not only control the production of electricity, but also the
consumption, in an efficient, flexible and proactive manner.
The smart grid will be the future intelligent electricity grid
that incorporates this. The Danish transmission system
operator (TSO) defines it as: “Intelligent electrical systems
that can integrate the behavior and actions of all con-
nected users—those who produce, those who consume and
those who do both—to provide a sustainable, economical
and reliable electricity supply efficiently” (Energinet.dk,
2011).

In Denmark around 4500 supermarkets consume more
than 550,000 MWh annually. This corresponds roughly to
2% of the entire electricity consumption in the country.
Refrigerated goods constitute a large capacity in which
energy can be stored in the form of ’coldness’. As this is
not exploited by the thermostat (hysteresis) control policy
most commonly used today, we propose an economic opti-
mizing model predictive controller, economic MPC, to ad-
dress this. MPC based on optimizing economic objectives
has only recently emerged as a general methodology with
efficient numerical implementations and provable stability
properties (Diehl et al., 2011; Angeli et al., 2011) and in,
e.g., Hovgaard et al. (2012a) we demonstrated its capabil-
ity to minimize the total cost of energy for a commercial
refrigeration system while enabling it to participate in

demand response schemes. The economic MPC has the
ability to choose the optimal cooling strategy by utilizing
the thermal capacity to shift the consumption in time,
while keeping the temperatures within certain bounds.

An underlying challenge in applying MPC to vapor
compression refrigeration systems is that the classical
thermodynamics models are quite complex, and include
many nonlinearities. One approach, called nonlinear MPC
(NMPC), is to accept the optimization problem to be
solved as nonlinear and nonconvex, and use generic non-
linear optimization methods, such as sequential quadratic
programming (SQP) (Boggs and Tolle, 1995). This is the
approach taken in Hovgaard et al. (2012a), which used
ACADO (Houska et al., 2010), a generic nonlinear optimal
control code, to solve the optimization problems. NMPC
is widely used in the chemical process industry (see, e.g.,
Biegler (2009)) but in general it requires special attention
to ensure (local) convergence, and the computational com-
plexity can be prohibitively high. Our method differs from
NMPC: Instead of a generic SQP (or other) method, we
use a a sequential convex programming (SCP) method, in
which the objective is approximated by a convex function
in each iteration; the convex parts are preserved, giving us
the speed and reliability of solvers for convex optimization
(Boyd and Vandenberghe, 2004). Our method, like SQP,
involves the solution of a sequence of (convex) quadratic
programs (QPs), but differs very much in how the QPs
are formed. In SQP, an approximation to the Lagrangian
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of the problem is used; the linearization required in each
step can end up dominating the computation (Dinh et al.,
2011). In our SCP method, the convexification step is quite
straightforward. We use the tool CVXGEN (Mattingley
and Boyd, 2012) to generate fast custom solvers for the
QPs that arise in our method, achieving solution times
measured in milliseconds.

We show careful numerical simulations on a realistic su-
permarket refrigeration system using prediction models
for outdoor temperatures and real-time electricity prices
based on actual data. CVXGEN transforms the original
optimization problem into a standard form quadratic pro-
gram that solves in a couple of milliseconds. This extreme
speed allows us to carry out a simulation for a full year
with 15-minute increments in around 4 minutes on a single-
core processor. The results are quite interesting too. Im-
mediately we see cost savings in the order of 30%. We show
that our MPC controller exhibits a sophisticated form of
demand response to prices, reducing consumption when
the prices are high and pre-cooling when prices are low.
Further details and results are provided in Hovgaard et al.
(2012b).

Several publications have reported the use of NMPC
to control refrigeration systems. See, e.g., Leducq et al.
(2006); Elliott and Rasmussen (2008); Sonntag et al.
(2008). Predictive control for energy cost reductions in
vapor compression cycles have to some extend been in-
vestigated for building temperature regulation too. Old-
ewurtel et al. (2010); Ma et al. (2012b,a) all use weather
predictions or time of use pricing to optimize the energy
efficiency. However, most of these confine themselves to
simple descriptions of the energy consumption, disregard-
ing the interdependency of the control variables and the
efficiency. Ma and Borrelli (2012) uses sequential quadratic
programming (SQP) to solve this problem. These methods
yield long computational times, e.g., starting from 10–13
seconds per step on a 3.00GHz dual-core processor. For
general reviews of the use of thermal storage and for the
importance of MPC in demand response schemes see, e.g.,
Camacho et al. (2011); Arteconi et al. (2012). The need
for computationally efficient optimization in MPC applied
to systems with either fast sampling or limited compu-
tational resources is considered in an increasing num-
ber of publications such as Diehl et al. (2002); Zeilinger
et al. (2008); Diehl et al. (2009); Wang and Boyd (2010).
Embedded convex optimization applications have recently
become more available to non-experts by the introduction
of the automatic code generator CVXGEN (Mattingley
and Boyd, 2012).

2. COMMERCIAL REFRIGERATION

In this section we describe the dynamic model of a com-
mercial multi-zone refrigeration system. Such systems can
include supermarkets, warehouses, or air-conditioning.

2.1 Model

The model describes a system with multiple cold rooms in
which a certain temperature for the stored foodstuff has to
be maintained. We describe the temperature dynamics and
the energy cost of the system using SI units throughout.

The refrigeration system considered utilizes a vapor com-
pression cycle in which a refrigerant circulates in a closed
loop consisting of a compressor, an expansion valve and
two heat exchangers, an evaporator in the cold storage
room, as well as a condenser/gas cooler located in the
surroundings. When the refrigerant evaporates, it absorbs
heat from the cold reservoir which is rejected to the hot
reservoir. To sustain these heat transfers, the evaporation
temperature Te(t) has to be lower than the temperature
in the cold reservoir Tair(t) and the condensation temper-
ature has to be higher than the temperature at the hot
reservoir Ta(t). Low pressure refrigerant, with the pressure
Pe(t), from the outlet of the evaporator is compressed in
the compressors to a high pressure Pc(t) at the inlet to the
condenser to increase the saturation temperature. In these
expressions t denotes time. To lighten notation, we will
drop the time argument (t) in time-dependent functions in
the sequel. The setup is sketched in Fig. 1, with one cold
storage room and one frost room connected to the system.
Usually, several cold storage rooms, e.g., display cases,
connect to a common compressor rack and condensing
unit. Because of this, the individual display cases see the
same evaporation temperature; whereas each unit has its
own inlet valve for individual temperature control.

2.2 Temperature dynamics

We use a first principles model and describe the dynamics
in the cold room by simple energy balances. The temper-
ature of the foodstuff is denoted by Tfood(t) and satisfies
the differential equation,

mfoodcp,food
dTfood

dt
= Q̇food−air, (1)

where Q̇food−air(t) is the energy flow from the air in the
cold room to the foodstuff,mfood is the (assumed constant)
mass of food, and cp,food is the constant specific heat
capacity of the food. The temperature of the air in the
cold room Tair(t) satisfies the differential equation,

maircp,air
dTair

dt
= Q̇load − Q̇food−air − Q̇e, (2)

where Q̇food−air(t) is the energy flow from the air to the

foodstuff, Q̇e(t) is the applied cooling capacity (energy

absorbed in the evaporator), Q̇load(t) is heat load from the
surroundings to the air, mair is the constant mass of air,
and cp,air is the constant specific heat capacity of the air.
We describe the heat flows using Newton’s law of cooling,

Q̇food−air = kfood−air(Tair − Tfood),

Q̇load = kamb−cr(Tamb − Tair) + Q̇dist,

Q̇e = kevap(Tair − Te),

where k is the constant overall heat transfer coefficient
between two media, Tamb(t) is the temperature of the
ambient air which puts the heat load on the refrigeration
system, and Q̇dist(t) is a disturbance to the load (e.g., an
injection of heat into the cold room).

2.3 Energy cost

The energy used by the compressor, denoted Ẇc(t), dom-
inates the power consumption in the system. It can be

IFAC NMPC'12
Noordwijkerhout, NL. August 23-27, 2012

515



MT

LT

T
C

T
C

P
C

P
C

TcrTcrF Ta

TeF

SurroundingsCold roomFrost room

Qc

QeQeF

WcWcF

Condensor

. .

.

..

CompressorsFrost

Compressors

Evaporators

Te

Tamb
Heat load

Fig. 1. Schematic layout of basic refrigeration system.

expressed by the mass flow of refrigerant mref(t) and the
change in energy content. We describe energy content by
the enthalpy of the refrigerant at the inlet and at the
outlet of the compressor (hic(t) and hoc(t), respectively).
These enthalpies are refrigerant-dependent functions of
Te and Pc (or equivalently, outdoor temperature Ta) as
denoted in (3). They are computed using, e.g., the software
package REFEQNS (Skovrup, 2000), which models the
thermodynamical properties of different refrigerants. We
describe Ẇc as

Ẇc =
mref (hoc(Te, Pc)− hic(Te))

ηis(Pc/Pe)(1− ηheat)
, (3)

where the isentropic efficiency ηis(t) is a function mapping
the pressure ratio over the compressor into compression
efficiency and ηheat is a constant heat loss (in per cent)
from the compressor. The mass flow is determined as the
ratio between cooling capacity and change of enthalpy over
the evaporator (hoe(t)− hie(t)):

mref =
Q̇e

hoe(Te)− hie(Pc)
.

For the efficiency function ηis we fitted a polynomial model
of the form,

ηis(α) = c1 + c2α+ c3α
1.5 + c4α

3 + c5α
−1.5,

where c1, . . . , c5 are constant parameters. We found this
description to be accurate within 1%.

Another compressor sits between the frost evaporator and
the suction side of the other compressors, as seen in Fig. 1.
This compressor decreases the evaporation temperature
for the frost part of the system to a lower level. We use
the subscript F to denote variables related to the frost
part.

We describe the instantaneous energy cost of operating the
system by multiplying power consumption by the real-time
electricity price pel(t). The energy cost C over the period
[T0, Tfinal] is

C =

Tfinal
∫

T0

pel

(

Ẇc + ẆcF

)

dt. (4)

2.4 Control

Manipulated variables: Our controller manipulates the
cooling capacity in each zone and the evaporation tem-
peratures Te and TeF. The latter two are common for
the entire refrigeration part and the entire frost part,
respectively. In practice this is achieved by setting the
set-points for inner control loops which operate with a
high sample rate (compared to our control). This fast
local control system allows us to ignore the complex and
highly nonlinear behavior in the gas-liquid mixture in the
evaporator.

Measured variables: The controller bases its decisions on
measurements of air and food temperatures in each unit,
on the known current outdoor temperature and electricity
price, and on the predicted future values of the latter two.
The heat disturbances are unknown.

2.5 Constraints

We would like the food temperatures to satisfy the inequal-
ities

Tfood,min ≤ Tfood ≤ Tfood,max, (5)

where Tfood,min and Tfood,max are a given allowable range
given for each of the individual units. With randomly
occurring load disturbances, it is not possible to guarantee
that the temperatures are always in this range. So in lieu
of imposing the constraints, we encode (5) as a set of soft
constraints, i.e., as a term added to the cost function,

V =

Tfinal
∫

T0

ρsoft,max(Tfood − Tfood,max)+

+ρsoft,min(Tfood,min − Tfood)+dt.

We choose the positive constants ρsoft,max and ρsoft,min so
that violations are very infrequent in closed-loop opera-
tion. This formulation ensures a feasible problem even in
the presence of uncertain loads. In a stochastic formula-
tion, such as the one presented in Hovgaard et al. (2011),
probabilistic constraints guarantee a feasible problem.

In addition, two constraints that cannot be violated are
given,

0 ≤ Q̇e ≤ kevap,max(Tair − Te), (6)

0 ≤ Ẇc ≤ Ẇc,max, (7)

where kevap,max is the constant overall heat transfer coef-
ficient from the refrigerant to the air when the evaporator
is completely full and Ẇc,max is the constant limit on
maximum energy consumption in the compressors. We
define the set Ω as all (Q̇e, Te) that satisfy the system
dynamics (1)–(2) and the constraints (6)–(7).

2.6 Thermostat control

Today, most display cases and cold rooms are controlled
by a thermostat. This means that maximum cooling is
applied when the cold room temperature reaches an up-
per limit and shut off when the lower limit is reached.
The advantage of this control policy is that it is simple
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Fig. 2. Block diagram of the MPC controller.

and robust. The disadvantages, however, include: a high
operating cost since the controller is completely unaware
of system efficiency and electricity prices, no capability of
demand response, and no specific handling of disturbances.
All of these are addressed in our proposed method by intel-
ligently exploiting the thermal capacity in the refrigerated
mass.

3. METHOD

Fig. 2 outlines the overall structure of the proposed
method and in the following sections we describe the
details of the controller.

3.1 Economic MPC controller

The refrigeration system is influenced by a number of
disturbances which we can predict (with some uncertainty)
over a time horizon into the future. The controller must
obey certain constraints, while minimizing the cost of
operation. Economic MPC addresses all these concerns.
Whereas the cost function in MPC traditionally penalizes
a deviation from a set-point, the proposed economic MPC
directly reflects the actual costs of operating the plant.
This formulation is tractable for refrigeration systems,
where we are interested in keeping the outputs (cold room
temperatures) within certain ranges, while minimizing the
cost of doing so.

Like in traditional MPC, we implement the controller in a
receding horizon manner, where an optimization problem
over N time steps (the control and prediction horizon)
is solved at each step. The result is an optimal input
sequence for the entire horizon, out of which only the first
step is implemented. The controller aims at minimizing the
electricity cost of operation. This cost relates to the energy
consumption but we do not aim specifically at minimizing
this, nor do we focus on tracking certain temperatures
in the cold rooms. The optimization problem is thus
formulated as

minimize C + V,

subject to (Q̇e,Te) ∈ Ω,

TTfinal

food = (Tfood,min + Tfood,max) /2,
(8)

where the variables are Q̇e and Te (both functions of
time). The feasible set Ω imposes the system dynamics
and constraints, and is defined by (1)–(2) and (6)–(7). We
add a terminal constraint that the final food temperature
TTfinal

food must be at the midpoint of the allowable range of
temperatures.

Instead of (8) we solve a discretized version with N steps
over the time interval [T0, Tfinal],

Q̇e =
{

Q̇k
e

}N−1

k=0
, Te =

{

T k
e

}N−1

k=0
. (9)

The MPC feedback law is the first move in (9). The
controller uses the initial state as well as predictions of the
real-time electricity cost, the outdoor temperature and the
injected heat loads for the time interval.

3.2 Sequential convex programming method

The feasible set Ω, the terminal constraint, and the cost
function term V are all convex. Unfortunately, as C is
nonconvex in the controllable variables Q̇e and Te, the
problem in (8) is not convex. Instead of using a generic
nonlinear optimization tool, we choose to solve the opti-
mization problem iteratively using convex programming,
replacing the nonconvex cost function C with a convex
approximation. We express (4) using the coefficients of
performance, COP,

Ĉi =

Tfinal
∫

T0

pel

(

1

η̂iCOP

Q̇e +
1

η̂iCOP,F

Q̇eF

)

dt, (10)

where the COPs, η̂iCOP and η̂iCOP,F, are complicated func-
tions of the outdoor temperature and of the controllable
variables Q̇e and Te. For any given values of these variables
we can, however, compute the COP. Our approximation in
each step is simple and natural: We use the COP calculated
for the last iteration trajectory. Thus in each iteration we
solve a convex optimization problem, which can be done
very reliably and extremely quickly.

While our proposed method gives no theoretical guarantee
on the performance, we must remember that the optimiza-
tion problem is nothing but a heuristic for computing a
good control and that the quality of closed-loop control
with MPC is generally good without solving each problem
accurately. Indeed, we have found that very early termina-
tion of this sequential convex programming method, well
before convergence, still yields very good quality closed-
loop control.

Algorithm 1 outlines the method. In the algorithm, ϕprox

and ϕroc are regularization terms which we describe in
§3.3.

Algorithm 1 Iterative optimization with nonconvex objective.

Initialize

Q̇0
e , T

0
e , and i = 1.

Compute

η̂i
COP

and η̂i
COP,F

, as functions of {Q̇e, Te}i−1 and Ta.

Solve

minimize Ĉi + V + ϕprox + ϕroc,

subject to (Q̇i
e, T

i
e ) ∈ Ω,

T
Tfinal,i

food
=
(

Tfood,min + Tfood,max

)

/2,

Update

Q̇i
e, T

i
e , and i = i+ 1

Repeat until convergence.

In Hovgaard et al. (2012c) we concluded that a unique
minimum of the power consumption function exists within
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the feasible region. This assures that an iterative approach
will converge to the intended extremum point.

3.3 Regularization

We use two different types of regularization in the opti-
mization problem. To avoid oscillations from iteration to
iteration we add proximal regularization of the form

ϕprox = ρprox

N−1
∑

k=0

‖Q̇k
e − Q̇k,prev

e ‖22, (11)

where the superscript ‘prev’ indicates that it is the solution
from the previous iteration and ρprox is a constant weight
chosen to damp large steps in each iteration. Smaller steps
will of course increase the number of iterations required for
the sequential convex programming method to converge,
but, since we warm-start the algorithm from the soliution
in the previous time step, the difference is negligible.
Without proximal regularization oscillatory behavior can
occur due to the nature of the thermodynamics in the
refrigeration system. In addition, we add a quadratic
penalty on the rate-of-change (roc) of Q̇e,

ϕroc = ρroc

N−1
∑

k=1

‖Q̇k
e − Q̇k−1

e ‖22. (12)

This regularization term serves two purposes: it improves
the convergence of the sequential programming method,
and also discourages rapid changes or switches in com-
pressor levels, which helps reduce wear and tear of the
compressor. Adding (11) and (12) to the linear objective

formed by Ĉ + V results in a QP which we must solve
once in each iteration. Due to the special structure of
the MPC problem this QP is sparse; see, e.g., Jørgensen
(2005); Wang and Boyd (2010).

3.4 Non-homogeneous sampling

Speed of computation is a major concern in this work
and we want to limit the size of the QPs that we solve
in each iteration. A sampling time of 15 minutes directly
gives 96 steps to be computed for a 24-hour prediction
horizon. By using non-homogeneous sampling over the
prediction horizon, exploiting that great accuracy becomes
less important towards the end of the open-loop sequence,
the number of steps can be reduced.

4. CASE STUDY

By simulation of realistic case studies we have verified
the functionality and performance of the proposed MPC
controller.

4.1 Scenario

Data from supermarkets actually in operation in Denmark
have been collected. From these data, typical parameters
such as time constants, heat loads, temperature ranges, ca-
pacities, and normal control policies have been estimated
for three very different units; a milk cold room, a vertical
shelving display case and a frost storage room. These units

differ widely in load, mass of goods, and temperature
demands.

We convert the system in §2.1 to the discrete-time equiv-
alent. Since inner control loops are in place we have found
that a sampling time of 15 minutes for the MPC controller
is appropriate.

We model a contribution from the uncertain load by a
40% increase in the normal heat load. The increase occurs
at random instances in 25% of the 15-minute periods. To
account for this, back-offs from the temperature limits are
introduced. We adjust these such that violations of the
limits occur only 0.5–1% of the time. Less than 0.1◦ is
often sufficient.

In our scenario we use temperature measurements from
a meteorological station in the Danish city Sorø sampled
every 30 minutes, along with hourly electricity spot prices
downloaded from the Nordic electricity market, Nordpool.
We simulate the scenario with data covering an entire
calender year and use three years of data for training the
predictors.

4.2 Algorithm details

We use a prediction horizon augmented of three sequences
with increasing sample time; a 6-hour interval sampled
every 15 minutes, a 6-hour interval sampled every 30
minutes and a 12-hour interval sampled every hour—
resulting in 48 steps to be computed.

For regularization of the optimization problems the best
behavior was observed with parameters in the order of
ρprox = 0.08 and ρroc = 0.06; however, the method seems
to be quite robust to changes in these values.

Recent advances in convex optimization allow for convex
QPs to be solved at millisecond and microsecond time-
scales. We use CVXGEN to generate a custom embedded
solver for ultra fast computation of each convex QP in the
sequential approach. CVXGEN transformed the original
optimization problem into a standard form QP with 573
variables and 1248 constraints. In CVXGEN we specify
and exploit the sparsity of the special problem structure.

4.3 Predictors

A prerequisite to solve the problem in (8) is to have
available predictions of the outdoor temperatures and the
electricity prices for the chosen prediction horizon, N .
Only past values of such parameters can be available to
the controller and in the present work we incorporate
extremely simple predictors that can provide a sufficiently
good estimate of the disturbances using a series of past
measurements. We use historical data to train these pre-
dictors.

First, we use the historical training data set to create a
baseline trajectory. For each month in a year we construct
a typical day that describes the mean daily variation. If,
e.g., price is sampled every hour we get 24 prices for each
of the 12 months. Next we calculate a residual (difference
between baseline and historical data) for each one of the
12 baselines. For each of these, residual predictors are
computed by
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minimize

K
∑

k=1

‖[Rk−n, . . . , Rk]X − [Rk+1, . . . , Rk+N ]‖
2

2,

where K is the number of data points in the training
data set, n is the number of past data points used for
prediction, N is the number of future data points that
we want to predict, X is the n + 1 × N predictor matrix
and R are the residuals. We employ an ℓ1 regularization to
avoid numerical instability that could lead to high variance
models. Following this, a smoothed baseline is computed
using interpolation of two adjacent months. Now, we can
compute the predictions by first predicting the residuals of
two adjacent months, interpolating these and adding them
to the interpolated baseline of the same time window. We
have chosen to use two days of past data for predicting
the outdoor temperature and seven days for the price
prediction. We use an entire week for the latter since
the price pattern is different from weekdays to weekends.
For both outdoor temperatures and electricity prices the
training sets are defined from 1 January 2007 until 31
December 2009 and the simulation/test set covers the
entire year of 2010.

For the unknown disturbance in the heat load we use a
very simple predictor, namely the expected mean value of
the random heat injection.

4.4 Computation times

We have simulated the proposed method with the case
study described in the previous sections. The optimization
problems solve in the order of a handful of milliseconds
per MPC step which is more than fast enough for real-
time implementation. A full year simulates in less than
4 minutes on a 2.8GHz Intel Core i7, excluding the time
needed outside the optimization routine for predictors etc.
The same problem with a generic solver such as ACADO
takes around 4 minutes per MPC step on the same
processor. For implementation in embedded industrial
hardware a rough estimate of the computation time is
around 1000 times of what we have observed here. This
is still way below 10 seconds per time step which certainly
allows for real-time implementation.

4.5 Convergence

When cold-started the proposed method generally con-
verges in 10–20 iterations. In MPC, however, the open-loop
trajectory from the previous run of the optimizer, shifted
one time-step, is an excellent guess on the next outcome
and is well-suited for warm-starting the algorithm. Using
this warm start initialization, the method generally con-
verges in fewer than 5 iterations. In addition, we find that
early termination after, e.g., 2–3 iterations generally gives
good results, degrading the overall performance with less
than 1%.

4.6 Savings

To benchmark the savings gained by introducing the pro-
posed MPC controller, we have performed a simulation
for the same system and conditions but using the conven-
tional thermostat control policy. As in real systems the air
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Fig. 3. Selected trajectory for food temperature and hourly
cost of energy for control by thermostat vs. the
proposed MPC.

temperature surrounding the foodstuff in each unit is the
variable used in the thermostat. We have defined upper
and lower bounds for switching on and off, such that the
interval corresponds to what is normally observed in real
operation. Besides, we determine the upper bound such
that cooling quality is maintained at a minimal cost, i.e.,
such that the food temperatures only violate the upper
allowable limit in 0.5–1% of the time (to be comparable
with the MPC control).

Fig. 3 shows a segment of the simulated system with
thermostat control versus the proposed MPC controller.
We show the trajectory for one unit only and we observe
how the food temperature is pulled down by the MPC
controller at times with low electricity prices, meaning that
pre-cooling is applied. At such times the instantaneous
cost of operating the system might be higher than if the
conventional thermostat is used, as can be seen on the
figure. But this is, however, more than counteracted by
the savings when the electricity prices go up.

In Fig. 4, resulting temperature distributions for a selected
unit are shown for both control by thermostat and by
MPC. While both control policies tend to keep the tem-
peratures close to the upper limit most of the time, we
observe how the MPC controller makes use of the entire
range for storing coldness.

We observe savings in the order of 30%. Adding the
uncertain heat load injections and the appropriate back-
offs from the temperature limits, as described in §4,
increases the overall cost by approximately 10%.

4.7 Demand response

Fig. 5 shows the total cooling energy applied to all three
units plotted as a function of the electricity price at the
time of use. We have selected one month to limit the
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(b) Control by MPC.

Fig. 4. Temperature distribution for selected unit. Simulation over the full year 2010.
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(a) Control by thermostat. The solid line is a linear fit
with almost zero slope.
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(b) Control by MPC. The solid line is a linear fit with a
slope of −53 W/(EUR/MWh).

Fig. 5. Illustration of demand response in systems controlled by MPC vs. thermostat control.

number of data-points but the picture is almost identical
for the entire year of simulation: We observe no correlation
between energy consumption and electricity prices when
the thermostat controls the refrigeration system while we
see a clear tendency to apply more cooling at times with
low prices, and vise versa, if we employ the proposed
MPC scheme. A linear fit is made using a Huber function
regression. The slope is around −50 W/(EUR/MWh)
for the MPC controlled system as opposed to 0 for the
thermostat which clearly illustrates the demand response
behavior of the system. We should remember that the spot
price used here is just an example and not a prerequisite
of our method. In a smart grid the price signal could
be artificially made by the balance responsible party to
promote demand response.

4.8 Plant perturbations

With perturbations of up to at least 20–30% in parameters
such as mass of the refrigerated foodstuff and the heat
transfer coefficients we see essentially no changes in the
closed-loop dynamics.

4.9 Perfect predictions

By again simulating over the full year of 2010, but this
time with a prescient setting assuming knowledge of the
exact future conditions instead of using their predictions,
we are able to compare the performance of the simple
predictors and give a rough judgment on how much the
method relies on the availability of accurate predictions.
We have observed that the extra savings gained by having
the full information available are in the order of 1-2%. This
justifies the use of simple predictors.

5. CONCLUSION

In this paper we have presented an MPC controller for
a commercial multi-zone refrigeration system. We have
based our method on convex optimization, solved itera-
tively to treat a nonconvex cost function. By employing
a fast convex quadratic programming solver to carry out
the iterations, the method is more than fast enough to
run in real-time. Simulation on a realistic scenario reveal
significant savings as well as convincing demand response
capabilities suitable for implementation with smart grid
schemes.
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