
Network Lasso: Clustering and Optimization in Large
Graphs

David Hallac, Jure Leskovec, Stephen Boyd
Stanford University

{hallac, jure, boyd}@stanford.edu

ABSTRACT
Convex optimization is an essential tool for modern data analysis,
as it provides a framework to formulate and solve many problems
in machine learning and data mining. However, general convex op-
timization solvers do not scale well, and scalable solvers are often
specialized to only work on a narrow class of problems. There-
fore, there is a need for simple, scalable algorithms that can solve
many common optimization problems. In this paper, we introduce
the network lasso, a generalization of the group lasso to a network
setting that allows for simultaneous clustering and optimization on
graphs. We develop an algorithm based on the Alternating Direc-
tion Method of Multipliers (ADMM) to solve this problem in a dis-
tributed and scalable manner, which allows for guaranteed global
convergence even on large graphs. We also examine a non-convex
extension of this approach. We then demonstrate that many types
of problems can be expressed in our framework. We focus on three
in particular — binary classification, predicting housing prices, and
event detection in time series data — comparing the network lasso
to baseline approaches and showing that it is both a fast and accu-
rate method of solving large optimization problems.
Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining
General Terms: Algorithms; Experimentation.
Keywords: Convex Optimization, ADMM, Network Lasso.

1. INTRODUCTION
Convex optimization has become an increasingly popular way of

modeling problems in many different fields, ranging from finance
[4, §4.4] to image processing [5]. However, as datasets get larger
and more intricate, classical methods of convex analysis, which of-
ten rely on interior point methods, begin to fail due to a lack of
scalability. In fact, without any known structure to the optimiza-
tion problem, the convergence time will scale with the cube of the
problem size [4]. The challenge of large-scale optimization lies in
developing methods general enough to work well independent of
the input and capable of scaling to the immense datasets that to-
day’s applications require. Presently, solving these problems in a
scalable way requires developing problem-specific solvers to ex-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3664-2/15/08 ...$15.00.
DOI: http://dx.doi.org/10.1145/2783258.2783313 .

ploit structure in the model [27], often an infeasible assumption.
Therefore, it is necessary to formulate general classes of optimiza-
tion solvers that can apply to a variety of relevant problems, and to
develop algorithms for obtaining reliable and efficient solutions.

Present Work: Formulation. Here, we focus on optimization
problems posed on graphs. Consider the following problem on a
graph G = (V, E), where V is the vertex set and E the set of edges:

minimize
∑
i∈V

fi(xi) +
∑

(j,k)∈E
gjk(xj , xk). (1)

The variables are x1, . . . , xm ∈ Rp, where m = |V|. (The total
number of scalar variables is mp.) Here xi ∈ Rp is the variable
at node i, fi : Rp → R ∪ {∞} is the cost function at node i, and
gjk : Rp×Rp → R∪{∞} is the cost function associated with edge
(j, k). We use extended (infinite) values of fi and gjk to describe
constraints on the variables, or pairs of variables across an edge,
respectively. Our focus will be on the special case in which the fi
are convex, and gjk(xj , xk) = λwjk‖xj − xk‖2, with λ ≥ 0 and
user-defined weights wjk ≥ 0:

minimize
∑
i∈V

fi(xi) + λ
∑

(j,k)∈E
wjk‖xj − xk‖2. (2)

The edge objectives penalize differences between the variables at
adjacent nodes, where the edge between nodes i and j has weight
λwij . Here we can think of wij as setting the relative weights
among the edges of the network, and λ as an overall parameter that
scales the edge objectives relative to the node objectives. We call
problem (2) the network lasso problem, since the edge cost is a sum
of norms of differences of the adjacent edge variables.

The network lasso problem is a convex optimization problem,
and so in principle it can be solved efficiently. For small networks,
generic (centralized) convex optimization methods can be used to
solve it. But we are interested in problems with many variables,
with p, m = |V|, and n = |E| all potentially large. For such
problems no adequate solver currently exists. Thus, we develop a
distributed and scalable method for solving the network lasso prob-
lem, in which each vertex variable xi is controlled by one “agent”,
and the agents exchange (small) messages over the graph to solve
the problem iteratively. This approach provides global convergence
for all problems that can be put into this form. We also analyze a
non-convex extension of the network lasso, a slightly different way
to model the problem, and give a similar algorithm that, although it
does not guarantee optimality, tends to perform well in practice.

Present Work: Applications. There are many general settings in
which the network lasso problem arises. In control systems, the
nodes might represent the possible states of a system, and xi the
action or actions to take when we are in state i, so the collection
of variables (x1, . . . , xm) describes a policy. The graph tells us



about state transitions, and the weights express how much we care
about the actions in neighboring states differing. Here the network
lasso problem seeks a solution that minimizes the total cost, but
also does not change much across adjacent states, allowing for a
“simpler” policy. The parameter λ allows us to trade off the total
cost (the node objective) versus a cost for the actions varying across
the states (the edge objective).

Another general setting, one we focus on in this paper, relates
to statistical learning, where the variables xi are parameters in a
statistical model of some data resident at, or associated with, node
i. The objective term fi represents the loss for the model over the
data, possibly with some regularization added in. The edge terms
are regularization that encourages adjacent nodes to have close (or
the same) model parameters. In this setting, the network expresses
our idea that adjacent nodes should have similar (or the same) mod-
els. We can imagine that this regularization allows us to build mod-
els at each node that borrow strength from the fact that neighboring
nodes should have similar, or even identical, models.

It is critical to note that the edge terms in the network lasso prob-
lem involve the norm, not the norm squared, of the difference. If the
norms were squared, the edge objective would reduce to (weighted)
Laplacian regularization [25]. The sum-of-norms regularization
that we use is like group lasso [28]; it encourages not just xi ≈ xj
for edge (i, j) ∈ E , but xi = xj , i.e., consensus across the edge.
Indeed, we will see that there is often a (finite) value of λ above
which the solution has x1 = · · · = xm, i.e., all the vectors are
in consensus. For smaller values of λ, the solution of the network
lasso problem breaks into clusters of nodes, with xi the same across
all nodes in the cluster. In the policy setting, we can think of this
as a combination of state aggregation or clustering, together with
policy design. In the modeling setting, this is a combination of
clustering the data collections and fitting a model to each cluster.

Present Work: Use Case. As a running example, which we later
analyze in detail, consider the problem of predicting housing prices.
One common approach is linear regression. That is, we learn the
weights of each feature (number of bedrooms, square footage, etc...)
and use these same weights for each house to estimate the price.
However, due to location-based factors such as school district or
distance to a highway, similar houses in different locations can have
drastically different prices. These factors are often unknown a pri-
ori and difficult to quantify, so it is inconvenient to attempt to in-
corporate them as features in the regression. Therefore, standard
linear regression will have large errors in price prediction, since it
forces the entire dataset to agree on a single global model. What we
actually want is to cluster the houses into “neighborhoods” which
share a common regression model. First, we build a network where
neighboring houses (nodes) are connected by edges. Then, each
house solves for its own regression model (based on its own fea-
tures and price). We use the network lasso penalty to encourage
nearby houses to share the same regression parameters, in essence
helping each house determine which neighborhood it is part of, and
learning relevant information from this group of neighbors to im-
prove its own prediction. The size and shape of these neighbor-
hoods, though, are difficult to know beforehand and often depend
on a variety of factors, including the amount of available data. The
network lasso solution empirically determines the neighborhoods,
so that each house can share a common model with houses in its
cluster, without having to agree with the potentially misleading in-
formation from other locations.

Summary of Contributions. The main contributions of this paper
are as follows:

• We formally define the network lasso, a specific type of op-
timization problem on networks.
• We develop a fast, scalable, and distributed solver for any

problem of this form. This algorithm is also capable of choos-
ing the right regularization parameter λ.
• We show that many common and useful problems can be for-

mulated as an instance of the network lasso.

Related Work. The network lasso can be thought of as a spe-
cial case of certain methods (Bayesian inference, general convex
optimization) and a generalization of others (fused lasso [23], total
variation [24, 26]). It occupies a unique point on the trade-off curve
between generality and scalability that, to the best of our knowl-
edge, has not yet been formally analyzed. Our approach provides
a unified view of a diverse class of optimization problems, but is
still capable of solving large-scale examples. For example, con-
vex clustering [7, 14, 22], an alternative to the K-means algorithm,
is a well-studied instance of the network lasso. However, convex
clustering requires fi to be the square loss from some observation
ai, and often assumes a fully connected graph since there is no
prior information about which nodes may be clustered together. In
contrast, generalizing to any shape of network with any convex ob-
jectives (including allowing constraints) allows our approach to be
applied to new topics, such as control systems and event detection.
Furthermore, we elect to focus on the `2-norm because of its intu-
itive network-based rationale in that it leads to node stratification.

The network lasso is also related to probabilistic graphical mod-
els (PGMs). Problem (2) is a type of Bayesian inference where we
learn a set of models or dependencies based on latent clustering.
The network lasso penalty, a form of regularization, allows for one
type of “relationship” between nodes, a weighted prior belief that
the connected variables should be equal. The clustering that our
model accomplishes is similar to a latent variable mixture model
[20], where cluster membership is indicated by some latent vari-
able. With this, certain network lasso problems can be rewritten
as a maximum likelihood estimation problem where a conditional
distribution is learned for each cluster. However, many examples
are difficult to encode and scale in this way. Additionally, there
has been much research on optimal decomposition and splitting
methods for these types of problems [8, 19]. Hinge-loss Markov
random fields, which are PGMs defined over continuous variables
for MAP inference, use a similar ADMM-based approach to ours
[1], though the hinge-loss potentials they support do not include the
norm-based lasso that we utilize to induce the clustering. However,
unlike many of these other frameworks [1, 16, 29], which often use
a probabilistic approach, we formulate it as a single, very large,
convex optimization problem that we solve by splitting it across
a graph. This focus on the specific topic of simultaneous cluster-
ing and optimization enables us to provide a clean formalism and
scalable approach, with guaranteed convergence, for solving a wide
class of problems, all using the exact same algorithm.

2. CONVEX PROBLEM DEFINITION
We now look more closely at the network lasso problem,

minimize
∑
i∈V

fi(xi) + λ
∑

(j,k)∈E
wjk‖xj − xk‖2.

This problem is convex in the variable x = (x1, . . . , xm) ∈ Rmp,
and we let x? denote an optimal solution.

Local Variables. It is worth noting that there can be local private
optimization variables at each node that are not part of the lasso
penalty. More formally, the network lasso problem can be defined



as

minimize
∑
i∈V

f̃i(xi, εi) + λ
∑

(j,k)∈E
wjk‖xj − xk‖2, (3)

where εi are potential dummy variables at node i (the size can vary
at each node). However, using partial minimization, if we let

fi(xi) = min
εi

f̃i(xi, εi),

we get the original problem, defined in (2). For simplicity, we
therefore use problem (2) throughout the paper, with the implicit
understanding that there may be private variables at each node.

Regularization Path. Although the regularization parameter λ in
problem (2) can be incorporated into the wij’s by scaling the edge
weights, it is best viewed separately as a single parameter which
is tuned to yield different global results. λ defines a trade-off for
the nodes between minimizing its own objective and agreeing with
its neighbors. At λ = 0, x?i , the solution at node i, is simply a
minimizer of fi. This can be computed locally at each node, since
when λ = 0 the edges of the network have no effect. At the other
extreme, as λ→∞, problem (2) turns into

minimize
∑
i∈V

fi(x̃), (4)

since a common x̃must be the solution at every node. This is solved
by xcons ∈ Rp. We refer to (4) as the consensus problem and
to xcons as the consensus solution. If a solution to (4) exists, it
can be shown that there is a finite λcritical such that for any λ ≥
λcritical, the consensus solution holds. That is, beyond this λcritical,
increasing λ has no effect on the solution. For λ’s in between λ = 0
and λcritical, the family of solutions is known as the regularization
path, though it is sometimes referred to as the clusterpath [14].

Network Lasso and Clustering. The `2-norm penalty over the
edge difference, ‖xj − xk‖2, defines the network lasso. It incen-
tivizes the differences between connected nodes to be exactly zero,
rather than just close to zero, yet it does not penalize large outliers
(in this case, node values being very different) too severely. An
edge difference of zero means that xj = xk. When many edges
are in consensus like this, we have grouped the nodes into sets with
equal values of xi. Each set of nodes, or cluster, has a common so-
lution for the variable xi. The outliers then refer to edges between
nodes in different clusters. Cluster size tends to get larger as λ in-
creases, until at λcritical the consensus solution can be thought of as
a single cluster for the entire network. Even though increasing λ is
most often agglomerative, cluster fission may occur, meaning two
nodes in the same cluster may break apart at a higher λ. Therefore,
the clustering pattern is not strictly hierarchical [22].

Inference on New Nodes. After we have solved for x?, we can
interpolate the solution to estimate the value of xj on a new node
j, for example during cross-validation on a test set. Given j, all
we need is its location within the network; that is, the neighbors
of j and the edge weights. With this information, we treat j like
a dummy node, with fj(xj) = 0. We solve for xj just like in
problem (2) except without the objective function fj , so the opti-
mization problem becomes

minimize
∑

k∈N(j)

wjk‖xj − x?k‖2, (5)

where N(j) is the set of neighbors of node j. This estimate of xj
can be thought of as a weighted median of j’s neighbors’ solutions.
This is called the Weber problem, and it involves finding the point
which minimizes the weighted sum of distances to a set of other
points [2]. It has no analytical solution when j has more than two

neighbors, but it can be readily computed even for large problems.
For example, when one of the dimensions is much larger than the
other (number of neighbors vs. size of each xk), the problem can
be solved in linear time with respect to the larger dimension [4].

3. PROPOSED SOLUTION
On smaller graphs, the network lasso problem can be solved us-

ing standard interior point methods. This paper focuses on large
problems, where solving everything at once is infeasible. This is
especially true when we solve for a span of λ’s across the entire
regularization path, since we will need to solve a separate problem
for each λ. A distributed solution is necessary so that computa-
tional and storage limits do not constrain the scope of potential
applications. We propose an easy-to-implement algorithm based
on the Alternating Direction Method of Multipliers (ADMM) [3,
21], a well-established method for distributed convex optimization.
With ADMM, each individual component solves its own private
objective function, passes this solution to its neighbors, and repeats
the process until the entire network converges. There is no need for
global coordination except for iteration synchronization.

3.1 ADMM
To solve via ADMM, we introduce a copy of xi, called zij , at

each edge ij. Note that the same edge also has a zji, a copy of xj .
We rewrite problem (2) as an equivalent problem,

minimize
∑
i∈V

fi(xi) + λ
∑

(j,k)∈E
wjk‖zjk − zkj‖2

subject to xi = zij , i = 1, . . . ,m, j ∈ N(i).

We then derive its augmented Lagrangian [13], which gives us

Lρ(x, z, u) =
∑
i∈V

fi(xi) +
∑

(j,k)∈E

(
λwjk‖zjk − zkj‖2−

(ρ/2)
(
‖ujk‖22 + ‖ukj‖22

)
+

(ρ/2)
(
‖xj − zjk + ujk‖22 + ‖xk − zkj + ukj‖22

))
,

where u is the scaled dual variable and ρ > 0 is the penalty pa-
rameter [3, §3.1.1]. ADMM consists of the following steps, with k
denoting the iteration number:

xk+1 = argmin
x

Lρ(x, z
k, uk)

zk+1 = argmin
z

Lρ(x
k+1, z, uk)

uk+1 = uk + (xk+1 − zk+1).

Let us examine each of these steps in more detail.

x-Update. In the x-update we minimize a separable sum of func-
tions, one per node, so it can be calculated independently at each
node and solved in parallel. At node i, this is

xk+1
i = argmin

xi

fi(xi) + ∑
j∈N(i)

(ρ/2)‖xi − zkij + ukij‖22

 .

z-Update. The z-update is separable across the edges. Note that
for edge ij, we need to jointly update zij and zji. This becomes

zk+1
ij , zk+1

ji =argmin
zij ,zji

(
λwij‖zij − zji‖2+

(ρ/2)
(
‖xk+1

i − zij + ukij‖22 + ‖xk+1
j − zji + ukji‖22

))
.



This problem has a closed-form analytical solution, which we de-
rive in Appendix A. It is

z?ij = θ(xi + uij) + (1− θ)(xj + uji)

z?ji = (1− θ)(xi + uij) + θ(xj + uji),

where

θ = max

(
1− λwij

ρ‖xi + uij − (xj + uji)‖2
, 0.5

)
. (6)

u-Update. The u-update is also edge-separable. For each variable,
this looks like

uk+1
ij = ukij + (xk+1

i − zk+1
ij ).

Global Convergence. Because the problem is convex, ADMM is
guaranteed to converge to a global optimum. The stopping criterion
can be based on the primal and dual residuals, commonly defined
as r and s, being below given threshold values; see [3]. This allows
us to stop when xk and zk are close, and when xk (or zk) does not
change much in one iteration. As is typical for ADMM, the algo-
rithm tends to attain modest accuracy relatively quickly, and high
accuracy (which in many applications is not needed) only slowly.

Algorithm 1 ADMM Steps

repeat

xk+1
i = argmin

xi

(
fi(xi) +

∑
j∈N(i)

(ρ/2)‖xi − zkij + ukij‖22

)
zk+1
ij = θ(xi + uij) + (1− θ)(xj + uji)

zk+1
ji = (1− θ)(xi + uij) + θ(xj + uji)

uk+1
ij = ukij + (xk+1

i − zk+1
ij )

until ‖rk‖2 ≤ εpri; ‖sk‖2 ≤ εdual.

3.2 Regularization Path
It is often useful to compute the regularization path as a function

of λ to gain insight into the network structure. For specific appli-
cations, this may also help decide the correct value of λ to use, for
example by choosing λ to minimize the cross-validation error.

We begin the regularization path at λ = 0 and solve for an in-
creasing sequence of λ’s (λ := αλ, α > 1). We know when
we have reached λcritical because a single xcons will be the opti-
mal solution at every node, and increasing λ no longer affects the
solution. This may lead to a stopping point slightly above the ac-
tual λcritical, which we denote as λ̃critical. There is no harm if
λ̃critical > λcritical, since they will both yield the same result, the
consensus solution. To account for the case where no consensus so-
lution exists, we can also stop when the new solution has changed
by less than some ε, since even without consensus, the problem
converges to some solution.

A big advantage of the regularization path, as opposed to com-
puting each value of x?(λ) in parallel, is that we begin with a warm
start towards the new solution at each step. For each λ, the un-
known variables are already close to the new x?, u?, and z? by
virtue of starting at the solution for the last λ. In fact, when fi is
strictly convex, the solution x? is continuous in λ. Without any
prior knowledge, for example initializing everything to 0 for each
λ, we start far from the actual solution, so it will often (although
not always) take longer to converge via ADMM. The only other re-
quired variable is λinitial, the initial non-zero value of λ, which de-
pends on the variable scaling. The hope is that x? does not change

Figure 1: Comparison of Group Lasso, `0, and Non-Convex φ.

too much between λ = 0 and this initial value, and a rough estimate
of λinitial can be found using the following heuristic:

1. Pick edge ij at random and find x?i , x?j at λ = 0.
2. Evaluate the gradients of fi(x) and fj(x) at x = (x?i +
x?j )/2.

3. Set λinitial := 0.01
(
‖∇fi(x)‖2+‖∇fj(x)‖2

2wij

)
.

To get a more robust estimate, repeat the above steps picking differ-
ent edges each time, and choose the smallest solution for λinitial.
Given these variables, we are now able to solve for the entire regu-
larization path. Our method is outlined in Algorithm 2.

Algorithm 2 Regularization Path

initialize Solve for x?, u?, z? at λ = 0.
set λ := λinitial; α > 1; u := u?; z := z?.
repeat

Use ADMM to solve for x?(λ) (see Algorithm 1)
Stopping Criterion. quit if x?(λ) = x?(λprevious)
Set λ := αλ.

return x?(λ) for λ from 0 to λ̃critical.

4. NON-CONVEX EXTENSION
In many applications, we are using the group lasso as an approx-

imation of the `0-norm [6]. That is, we are looking for a sparse
solution where relatively few edge differences are non-zero. How-
ever, once ‖xi − xj‖2 becomes non-zero, we do not care about its
magnitude, since we already know that i and j are in different clus-
ters. The lasso has a proportional penalty, which is the closest that
a convex function can come to approximating the `0-norm. Once
we have found the true clusters, though, this will “pull” the differ-
ent clusters towards each other through their mutual edges. If we
replace the group lasso penalty with a monotonically nondecreas-
ing concave function φ(u), where φ(0) = 0 and whose domain
is u ≥ 0, we come even closer to the `0, as shown in Figure 1.
However, this new optimization problem,

minimize
∑
i∈V

fi(xi) + λ
∑

(j,k)∈E
wjkφ (‖xj − xk‖2) , (7)

is not convex. ADMM is not guaranteed to converge, and even if
it does, it need not be to a global optimum. It is in some sense a
“riskier” approach. In fact, different initial conditions on x, u, z,
and ρ can yield quite different solutions. However, as a heuristic,
a slight modification to ADMM empirically performs very well.
Since the algorithm might not converge, it is necessary to keep track
of the iteration which yields the minimum objective, and to return



that as the solution instead of the most recent step. The primal and
dual residuals are not guaranteed to go to 0, so we instead run our
algorithm for a set number of iterations for each λ.

Non-Convex z-Update. Compared to the convex case, the only
difference in the ADMM solution is the z-update, which is now

minimize λwijφ (‖zij − zji‖2) + (ρ/2)
(
‖xk+1

i − zij + ukij‖22+
‖xk+1

j − zji + ukji‖22
)
.

(8)
For simplicity, we define

a = xk+1
i + ukij , b = xk+1

j + ukji,

c = λwij , d = ‖a− b‖2,

so problem (8) turns into

minimize cφ (‖zij − zji‖2) + (ρ/2)
(
‖a− zij‖22 + ‖b− zji‖22

)
.

There are two possible cases for the solution to problem (8):
z?ij = z?ji or z?ij 6= z?ji. When the two solutions are identical,
then φ (‖zij − zji‖2) = φ(0) = 0, so the only terms remaining
are

(ρ/2)
(
‖a− zij‖22 + ‖b− zji‖22

)
.

Minimizing over the constraint that zij = zji yields z?ij = z?ji =

(1/2)(a+ b) and an objective of (ρ/4)‖a− b‖22.
When the two solutions are not equal, z?ij and z?ji must lie on

the line segment between a and b. If z?ij and/or z?ji are not on the
line segment, projecting them onto this segment is nonincreasing in
φ (‖zij − zji‖2) and decreasing in (ρ/2)

(
‖a− zij‖22 + ‖b− zji‖22

)
,

so the total objective function is guaranteed to decrease. Therefore,
we know that

z?ij = θ1a+ (1− θ1)b, θ1 ∈ [0, 1]

z?ji = θ2a+ (1− θ2)b, θ2 ∈ [0, 1]

and that

‖z?ij − z?ji‖2 = ‖a− b‖2 (|θ1 − θ2|) = d|θ1 − θ2|.

Note that the solution for z?ij = z?ji is just θ1 = θ2 = 1
2

. We
also know that θ1 ≥ θ2. If θ1 < θ2, we could swap θ1 and θ2
and φ (‖zij − zji‖2) would remain constant, but the rest of the ob-
jective, (ρ/2)

(
‖a− zij‖22 + ‖b− zji‖22

)
, would decrease. There-

fore, we can rewrite the norm of the difference as

‖z?ij − z?ji‖2 = d(θ1 − θ2),

and the objective becomes

cφ (d(θ1 − θ2)) + (ρd2/2)
(
(1− θ1)2 + θ22

)
.

When z?ij 6= z?ji, we know that θ1 > θ2, and thus d(θ1 − θ2) > 0.
When φ is differentiable at d(θ1 − θ2), we set the gradient to zero:

∂

∂θ1
= cdφ′(d(θ1 − θ2))− ρd2(1− θ1) = 0

∂

∂θ2
= −cdφ′(d(θ1 − θ2)) + ρd2θ2 = 0.

We see that

ρd2(1− θ1) = cdφ′(d(θ1 − θ2)) = ρd2θ2,

or

θ2 = 1− θ1.

This puts the entire optimization problem in terms of one variable,
θ = θ2. Since θ1 + θ2 = 1 and θ1 ≥ θ2, we know that θ ≤ 1

2
, so

the final problem becomes

minimize cφ (d(1− 2θ)) + ρd2θ2

subject to 0 ≤ θ ≤ 1
2
.

(9)

It is of course necessary to find all solutions to this problem, since
there may be several or none, and to compare the resulting objective
to (ρ/4)‖a− b‖22, when z?ij = z?ji. Of these solutions, pick the z’s
which minimize the overall objective function.

Log Function. We will now look at the specific case where φ(u) =
log(1 + u

ε
), where ε is a constant scaling factor. The objective

function in problem (9) turns into

minimize c log(1 + d(1−2θ)
ε

) + ρd2θ2.

Setting the derivative equal to zero, we get

− 2cd

d− 2dθ + ε
+ 2ρd2θ = 0.

We simplify to

2ρd2θ2 − ρd(d+ ε)θ + c = 0

and see that this is a simple quadratic equation in θ, solved by

θ =
ρ(d+ ε)±

√
ρ2(d+ ε)2 − 8ρc

4ρd
.

The z-update then involves comparing the resulting objectives with
(ρ/4)‖a− b‖22 (the value when z?ij = z?ji) and then choosing the θ
which yields the best of the three objectives to obtain z?ij , z

?
ji. If the

quadratic term has no real roots, which happens more frequently as
λ increases, we set θ = 1

2
, meaning the edge is in consensus. It

is worth reiterating that this method is not guaranteed to reach the
global optimum. Instead, it is an easy-to-implement algorithm that
parallels ADMM from the convex case.

5. EXPERIMENTS
We now apply our approach on three examples to illustrate the

diverse set of problems that fall under the network lasso framework,
and to provide a simple and unified view of these seemingly differ-
ent applications. First, we look at a synthetic example in which
we gather statistical power from the network to improve classi-
fication accuracy. Next, we see how our approach can apply to
a geographic network, allowing us to gain insights on residential
neighborhoods by predicting housing prices. Finally, we look at a
time series dataset for the purpose of detecting outliers, or anoma-
lous events, in the temporal data. To run these experiments, we
built a module combining Snap.py [17] and CVXPY [10]. The net-
work is stored as a Snap.py structure, and the x-updates of ADMM
are run in parallel using CVXPY. Even though this algorithm is
capable of being distributed across many machines, we instead dis-
tribute it across multiple cores of a single machine for our proto-
type. Our network-based convex optimization solver is available
at http://snap.stanford.edu/snapvx, and the code for
this paper can be found on the SnapVX website.

5.1 Network-Enhanced Classification
We first analyze a synthetic network in which each node has a

support vector machine (SVM) classifier [9], but does not have
enough training data to accurately estimate it. The clustering of
the nodes in the network occurs because some of the nodes have
common underlying SVMs. The hope is that nodes can, in essence,
“borrow” training examples from their relevant neighbors to im-
prove their own results. Of course, neighbors with different un-
derlying models will provide misleading information to each other.



These are the edges whose lasso penalties should be non-zero, yield-
ing different solutions at the two connected nodes.

Dataset. We randomly generate a dataset containing 1000 nodes,
each with its own classifier, a support vector machine in R50. Given
an input w ∈ R50, each node tries to predict y ∈ {−1, 1}, where

y = sgn(aTi w + ai,0 + v),

and v ∼ N (0, 1), the noise, is independent for each data point.
An SVM involves solving a convex optimization problem from a
set of training examples to obtain xi =

[
aTi ai,0

]T ∈ R51. This
defines a separating hyperplane to determine how to classify new
inputs. There is no way to counter the noise v, but an accurate xi
can help us predict y from w reasonably accurately. Each node
determines its own optimal classifier from a training set consisting
of 25 (w, y)-pairs per node, which are used to solve for x. All
elements in w, a, and v are drawn independently from a normal
distribution, with the y values dependent on the other variables.

Network. The 1000 nodes are split into 20 equally-sized groups.
Each group has a common underlying classifier,

[
aT a0

]T , while
different groups have independent a’s. If i and j are in the same
group, they have an edge with probability 0.5, and if they are in
different groups, there is an edge with probability 0.01. Overall,
this leads to a total of 17079 edges, with 28.12% of the edges con-
necting nodes in different underlying groups. Even though this is
a synthetic example, there are a large number of misleading edges,
and each node has only 25 examples to train an SVM in R50, so
solving this problem is far from an easy task.

Optimization Parameter and Objective Function. At node i, the
optimization parameter xi =

[
xTi,a xi,0

]T
=
[
aTi ai,0

]T de-
fines our estimate for the separating hyperplane for the SVM [12].
The node then solves its own optimization problem, using its 25
training examples. At each node, fi is defined as

minimize 1
2
‖xi,a‖22 +

25∑
i=1

c‖εi‖1

subject to y(i)(xTi,aw
(i) + xi,0) ≥ 1− εi, i = 1, . . . , 25.

The εi’s are (local) slack variables. They allow points to be mis-
classified in the training set of a soft margin SVM [9]. We set c,
the threshold parameter, to a constant which was empirically found
to perform well on a common model. We solve for 51 + 25 = 76
variables at each node, so the total problem has 76,000 unknowns.

Results. To evaluate performance, we find prediction accuracy on a
separate test set of 10,000 examples (10 per node). In Figure 2, we
plot percentage of correct predictions vs. λ, where λ is displayed in
log-scale, over the regularization path. Note that the two extremes
of the path represent important baselines.

At λ = 0, each node only uses its own training examples, ignor-
ing all the information provided by its neighbors. This is just a local
SVM, with only 25 training examples to estimate a 51-dimensional
vector. This leads to a prediction accuracy of 65.9% on the test
set. When λ ≥ λcritical, the problem finds a common x, which is
equivalent to solving a global SVM over the entire network. This
assumes the entire graph is coupled together and does not allow for
any edges to break. This common hyperplane at every node yields
an accuracy of 57.1%, which is barely an improvement over ran-
dom guessing. In contrast, both the convex and non-convex cases
perform much better for λ’s in the middle. From Figure 2, we see
a distinct shape in the regularization paths. As λ increases, the ac-
curacy steadily improves, until a peak near λ = 1. Intuitively, this
represents the point where the algorithm has approximately split the

10-3 10-2 10-1 100 101

λ

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

P
re

d
ic

ti
o
n
 A

cc
u
ra

cy

(a) Convex

10-3 10-2 10-1 100 101

λ

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

P
re

d
ic

ti
o
n
 A

cc
u
ra

cy

(b) Non-Convex

Figure 2: SVM regularization path.

Method Maximum Prediction Accuracy
Local SVM (λ = 0) 65.90%
Global SVM (λ ≥ λcritical) 57.10%
Convex Network Lasso 86.68%
Non-Convex Network Lasso 87.94%

Table 1: SVM test set prediction accuracy.

nodes into their correct clusters, each with its own classifier. As λ
continues to increase, there is a rapid drop off in performance, due
to the different clusters “pulling” each other together. The maxi-
mum prediction accuracies on the test sets are 86.68% (convex) and
87.94% (non-convex). These prediction results are summarized in
Table 1.

Timing Results. We compare our network lasso algorithm to a
standard centralized method on a single 40-core CPU where the
entire problem fits into memory. For the centralized case, we used
the same solver (CVXPY) as in the x-updates for ADMM. While
wrapped in a Python layer, CVXPY’s underlying solver uses ECOS
[11], an open-source software package specifically designed for
high performance numerical optimization, so the Python overhead
is negligible when it comes to the cost of scaling to large prob-
lems. We show the results on the synthetic SVM example to scale
the problem size over several orders of magnitude. We solve the
problem at 12 geometrically spaced values of λ to span the entire
regularization path. We use n

20
underlying SVM clusters, where n

is the number of nodes. The entire regularization path is one large
problem (consisting of 12 smaller ones), and we measure its total
runtime. Note that each node in this case is solving its own SVM,
with additional coupling constraints due to the network lasso on the
edges. We vary the total number of nodes, and the results are shown
in Figure 3. We see that, in this example, the centralized method
scales on the order of problem size cubed, whereas ADMM takes
closer to linear time, until other concerns such as memory limita-
tions begin to factor in. By the time there are 20,000 unknowns,
ADMM is already 100 times faster, and this discrepancy in conver-
gence time only grows as the problem gets larger.

To further test our algorithm, we also solve a larger yet simpler
problem. We build a random 3-regular graph (every node has a de-
gree of 3) with 2000 nodes. The objective function at each node
is fi(xi) = ‖xi − ai‖22, where ai is a random vector in Rq . We
can modify the value of q to vary the total number of unknowns.
We pick a single (constant) λ in the middle of the regularization
path and see how long it takes to solve the problem using ADMM.
The results are shown in Table 2. We can compute a solution for 1
million unknowns in seconds, and for 100 million in under 15 min-
utes. It is worth reiterating that at each step, at each node, we use
CVXPY rather than a more specialized solver for the x-update sub-
problem. This allows the same solver to work on any convex node
objective, rather than being constrained to specific classes of func-



103 104 105 106

Number of Unknowns

101

102

103

104

105

106

T
im

e
 (

S
e

co
n

d
s)

 f
o

r 
E

n
ti

re
 R

e
g

u
la

ri
za

ti
o

n
 P

a
th

Convergence Time vs. Problem Size

Centralized
ADMM

Figure 3: Convergence comparison between centralized and
ADMM methods for SVM problem.

Number of Unknowns ADMM Solution Time (seconds)
100,000 12.20
1 million 18.16
10 million 128.98
100 million 822.62

Table 2: Convergence time for large-scale 3-regular graph
solved at a single (constant) value of λ.

tions, and yet it is still able to scale to tens of millions of unknown
variables.

5.2 Spatial Clustering with Regressors
In this example, as described in the introduction, we attempt to

estimate the price of homes based on latitude/longitude data and a
set of features. Home prices often cluster together along neighbor-
hood lines. In this case, the clustering occurs when nearby houses
have similar pricing models, while edges that have non-zero edge
differences will be between those in different neighborhoods. As
houses are grouped together, each cluster builds its own local linear
regression model to predict prices in its region. Then, when there
is a new house, we can infer its regression model from the local
neighborhood to estimate the sales price.

Dataset. We look at a list of real estate transactions over a one-
week period in May 2008 in the Greater Sacramento area1. This
dataset contains information on 985 sales, including latitude, lon-
gitude, number of bedrooms, number of bathrooms, square feet,
and sales price. However, as often happens with real data, we are
missing some of the values. 17% of the home sales are missing at
least one of the features; i.e., some of the bedroom/bathroom/size
data is not provided. The price and all attributes are standardized
to zero mean and unit variance, so any missing features are ignored
by setting the value to zero, the average. To verify our results, we
use a random subset of 200 houses as our test set.

Network. We build the graph by using the latitude/longitude coor-
dinates of each house. After removing the test set, we connect every
remaining house to the five nearest homes with an edge weight in-
versely proportional to the distance between the houses. If house j
is in the set of nearest neighbors of i, there is an undirected edge
regardless of whether or not house i is one of j’s nearest neigh-
bors. The resulting graph leaves 785 nodes, 2447 edges, and has a
diameter of 61.
1Data available at http://support.spatialkey.com/
spatialkey-sample-csv-data/.

10-2 10-1 100 101 102 103 104

λ

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
S
E

(a) Convex

10-2 10-1 100 101 102 103 104

λ

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
S
E

(b) Non-Convex

Figure 4: Regularization path for housing data.

Method Mean Squared Error (MSE)
Geographic (λ = 0) 0.6013
Regularized Linear Regression (λ ≥ λcritical) 0.8611
Naive Prediction (Global Mean) 1.0245
Convex Network Lasso 0.4630
Non-Convex Network Lasso 0.4539

Table 3: MSE for housing price predictions on test set.

Optimization Parameter and Objective Function. At each node,
we solve for

xi =
[
ai bi ci di

]T
,

which gives us the weights of the regressors. The price estimate is
given by

pricei = ai · Bedrooms + bi · Bathrooms + ci · SQFT + di,

where the constant offset di is the “baseline”. To prevent overfit-
ting, we regularize the ai, bi, and ci terms, everything besides the
offset. The objective function at each node then becomes

fi = ‖pricei − pricei‖22 + µ ‖x̃i‖22

where x̃i =
[
ai bi ci

]T , pricei is the actual sales price, and µ
is a constant regularization parameter.

To predict the prices on the test set, we connect each new house
to the 5 nearest homes, weighted by inverse distance, just like be-
fore. We then infer the value of xj at node j by solving problem
(5), and we use this value to estimate the sales price.

Results. We plot the mean squared error (MSE) vs. λ in Figure 4
for both the convex and non-convex formulations of the problem.
Once again, the two extremes of the regularization path are relevant
baselines.

At λ = 0, the regularization term in fi(xi) insures that the only
non-zero element of xi is di. This ignores the regressors and is a
prediction based solely on spatial data. Our estimate for each new
house is simply the weighted median price of the 5 nearest homes,
which leads to an MSE of 0.6013 on the test set. For large λ’s, we
are fitting a common model for all the houses. This is just regu-
larized linear regression on the entire dataset and is the canonical
method of estimating housing prices from a series of features. Note
that this approach completely ignores the geographic network. As
expected, it performs rather poorly, with an MSE of 0.8611. Since
the prices are standardized with unit variance, a naive guess (with
no information about the house) would just be the global average of
the training set, which has an MSE of 1.0245. The convex and non-
convex methods are both maximized around λ = 5, with minimum
MSE’s of 0.4630 and 0.4539, respectively.

We can visualize the clustering pattern by overlaying the net-
work on a map of Sacramento. We plot each sale with a marker,
colored according to its corresponding xi (so houses with similar
colors have similar models, and those with the same color are in
consensus). With this, we see how the clustering pattern emerges.



(a) λ = 0.1 (b) λ = 1000

(c) λ = 10

Figure 5: Regularization path clustering pattern.

In Figure 5, we look at this plot for three values of λ. In 5(a), λ
is too small, so the neighborhoods have not yet formed. On the
other hand, in 5(b), λ is too large. The clustering is clear, but it
performs poorly because it forces together neighborhoods which
are very different. Figure 5(c) is a viable choice of λ, leading to
low MSE while showing a clear partitioning of the network into
neighborhoods of different sizes.

Aside from outperforming the baselines, this method is also well-
suited to detect and handle anomalies. As shown in the plots, out-
liers are often treated as single-element clusters, for example the
yellow house on the right side of 5(c). These houses are ones which
do not fit in with their local model (for a variety of possible rea-
sons), but using the network lasso, neither they nor their neighbors
are adversely affected too significantly by each other. Of course, as
λ approaches λcritical, these clusters are forced together into con-
sensus. However, near the optimal λ, we accurately classify these
anomalies, isolate them from the rest of the graph, and build sepa-
rate and relatively accurate models for both subsets.

5.3 Event Detection in Time Series Data
Lastly, we aim to predict the existence of certain “events” in a

building, those which were officially listed by the building coordi-
nator. We are given the entry and exit data from the building over
a 15 week interval. For these events, we expect to see an anoma-
lous increase in traffic. Note that this is just a partial ground truth,

only containing events officially reported by the coordinator, and
many unreported events likely occurred during this interval. There-
fore, “false positives” are not necessarily incorrect, so the absolute
results (how accurately we predict the events) are not a perfect in-
dicator of performance. However, this provides a good benchmark,
especially when compared to a common baseline.

Dataset. The data comes from the main door of the Calit2 building
at UC Irvine. This count data, the number of entries and exits, is
reported once every 30 minutes over the course of 15 weeks from
July to November 2005, for a total of 5,040 readings2. Additionally,
we use a list of the 30 official events which occurred inside the
building during that interval.

Network. We build a linear network where node i, covering the
ith interval in the time series, has only two edges. These connect
it to nodes i − 1 and i + 1. The first and last nodes only have one
edge, leaving 5,040 nodes and 5,039 edges. There are more com-
plicated ways to model the coupling of time series data, but we opt
for simplicity since our goal is to show one approach, rather than
necessarily the optimal method, of solving this class of problems.

Optimization Parameter and Objective Function. Traffic is pe-
riodic on a weekly basis. That is, a relatively similar number of
people enter and exit the building on, for example, Mondays from
1:00 - 1:30PM. We do not care for instance that there is more traffic
at 1:00 PM than at 1:00 AM. This is not an indicator that an event
occurred at 1PM. Instead, we care about the number of people rel-
ative to the periodic signal. We let

xi =

[
ini − in(i mod 336)

outi − out(i mod 336)

]
,

where in(i mod 336) and out(i mod 336) are the median value of
entrances/exits for the given time and day of the week (7 · 24 · 2 =
336) over the 15 week interval. We use the median because the
mean can be skewed by the increases due to actual events.

The objective function is defined as

fi = ‖xi − xi‖22 + µ‖xi‖2.

The variable that we optimize over, xi, is an attempt to match the
non-periodic signal at that time. The regularization term on xi is
a lasso penalty, so only a select few of the x’s will be non-zero.
These non-zero values refer to the times of the anomalous events
that we are trying to predict. It is worth noting that for any finite
network lasso parameter λ, there exists a µ large enough so that
every xi is guaranteed to be [0, 0]T .

An event often manifests itself as a sustained period of increased
activity. Therefore, we declare an event on the interval [t, t+ k] if

xi,in + xi,out > 0 i ∈ [t, t+ k].

We vary µ to change the number of events predicted. For small µ,
the slightest noise can be interpreted as an event. Large µ’s lead
to fewer predictions, until eventually every x(t) is forced to 0, as
mentioned before. The parameter λ determines the average event
length, as it encourages prolonged increases in activity and discour-
ages single outliers from being picked up. However, in this exam-
ple, the model is relatively robust to changes in λ (up to a certain
point), so we keep it constant as we vary µ, as a slight modification
of the regularization path from previous experiments.

Baseline. This type of problem is often modeled as a Poisson pro-
cess, so we use that as our baseline method [15]. We consider each
2Data from https://archive.ics.uci.edu/ml/
datasets/CalIt2+Building+People+Counts [18].



Number of Correct Events Detected Predicted Events
Convex Non-Convex Poisson

30 146 201 264
29 125 135 214
28 116 121 201
27 101 116 188
26 97 114 131
24 76 78 100
18 56 64 62

Table 4: Number of required predictions to detect events.

time and day of the week as having an independent Poisson rate λ
(which is unrelated to the regularization parameter with the same
name in the network lasso). We set λ, the “expected” number of
count data, to the maximum likelihood estimate of a Poisson pro-
cess, the mean of the 15 values. λin and λout are calculated inde-
pendently. We define an event from [t, t+ k] if

P (N(i), λ(i)) =

(
e−λinλ

Nin(i)
in

Nin(i)!

)(
e−λoutλ

Nout(i)
out

Nout(i)!

)
< ε i ∈ [t, t+ k].

This says that the given number of entries and exits at time i occurs
with probability less than ε. Since only large totals should trigger
a predicted event (rather than abnormally low entry/exit numbers),
one final requirement is that either Nin > λin or Nout > λout for
every t in the interval. Varying the threshold ε, similar to µ for our
approach, changes the number of predicted events.

Results. For both our model and the baseline, we compute the
number of correct events vs. number of predicted events. We de-
fine a correct prediction as one in which the prediction and the true
event overlap. The accuracy of all three approaches at several key
points is summarized in Table 4. As shown, both the convex and
non-convex methods outperform the Poisson baseline (though the
convex approach does noticeably better than the non-convex). The
Poisson is able to catch the “low-hanging fruit”, the easy-to-detect
events, with relatively good accuracy. The discrepancy arises in the
less obvious ones. Again, this is just a partial ground truth and it is
likely that there are many more than 30 events, but the poor perfor-
mance of the Poisson method — it takes 264 predictions to find all
30 events — suggests that it may be an imperfect method of event
detection. Note that more complicated models, specifically tuned
for outlier detection, may beat these results. For example when an
event occurs, we expect to see a large spike in inbound traffic at the
beginning of the event, and a similar outbound one at the end. Our
approach could easily be modified in future work to account for ad-
ditional information such as this. However, as a simple model and
a proof of concept, these results are very encouraging.

6. CONCLUSION AND FUTURE WORK
In this paper, we have shown that within one single framework, it

is possible to better understand and improve on many common ma-
chine learning and network analysis problems. The network lasso
is a useful way of representing convex optimization problems, and
the magnitude of the improvements in the experiments show that
this approach is worth exploring further, as there are many poten-
tial ideas to build on. The non-convex method gave comparable
performance to the convex approach, and we leave for future work
the analysis of different non-convex functions φ(u). It is also pos-
sible to look at the sensitivity of these results to the structure of the
network. For example, we could attempt to iteratively reweigh the
edge weights to attain some desired outcome. Within the ADMM
algorithm, there are many ways to improve speed, performance,

and robustness. This includes finding closed-form solutions for
common objective functions fi(xi), automatically determining the
optimal ADMM parameter ρ, and even allowing edge objective
functions fe(xi, xj) beyond just the weighted network lasso. As
this topic develops further, there is an opportunity for easy-to-use
software packages which allow programmers to solve these types
of large-scale optimization problems in a distributed setting without
having to specify the implementation details, which would greatly
improve the practical benefit of this work.

Acknowledgments
The authors would like to thank Trevor Hastie for his advice on the
network lasso, Stephen Bach and Christopher Ré for their help with
graphical models, and Rok Sosič for his assistance during the large-
scale implementation. This research has been supported in part
by the Sequoia Capital Stanford Graduate Fellowship, NSF IIS-
1016909, CNS-1010921, IIS-1149837, IIS-1159679, ARO MURI,
DARPA XDATA, SMISC, SIMPLEX, Stanford Data Science Ini-
tiative, Boeing, Facebook, Volkswagen, and Yahoo.

7. REFERENCES
[1] S. H. Bach, B. Huang, B. London, and L. Getoor. Hinge-loss

Markov random fields: Convex inference for structured
prediction. In UAI, 2013.

[2] P. Bose, A. Maheshwari, and P. Morin. Fast approximations
for sums of distances, clustering and the Fermat–Weber
problem. Computational Geometry, 24(3):135–146, 2003.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3:1–122, 2011.

[4] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[5] E. Candès, J. Romberg, and T. Tao. Robust uncertainty
principles: Exact signal reconstruction from highly
incomplete frequency information. Information Theory,
IEEE Transactions on, 52(2):489–509, 2006.

[6] E. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by
reweighted `1 minimization. Journal of Fourier analysis and
applications, 14:877–905, 2008.

[7] E. Chi and K. Lange. Splitting methods for convex
clustering. JCGS, 2013.

[8] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle.
Layering as optimization decomposition: A mathematical
theory of network architectures. Proceedings of the IEEE,
95(1):255–312, 2007.

[9] C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, 20:273–297, 1995.

[10] S. Diamond, E. Chu, and S. Boyd. CVXPY.
http://cvxpy.org/, 2014.

[11] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver
for embedded systems. In ECC, 2013.

[12] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire
regularization path for the support vector machine. Journal
of Machine Learning Research, 5:1391–1415, 2004.

[13] M. R. Hestenes. Multiplier and gradient methods. Journal of
Optimization Theory and Applications, 4:302–320, 1969.

[14] T. Hocking, A. Joulin, F. Bach, and J. Vert. Clusterpath: an
algorithm for clustering using convex fusion penalties. In
ICML, 2011.

[15] A. Ihler, J. Hutchins, and P. Smyth. Adaptive event detection
with time-varying Poisson processes. In KDD, 2006.



[16] S. Kok, P. Singla, M. Richardson, P. Domingos, M. Sumner,
H. Poon, and D. Lowd. The Alchemy system for statistical
relational AI. University of Washington, Seattle, 2005.

[17] J. Leskovec and R. Sosič. Snap.py: SNAP for Python.
http://snap.stanford.edu, 2014.

[18] M. Lichman. UCI machine learning repository, 2013.
[19] M. Meila and M. I. Jordan. Learning with mixtures of trees.

Journal of Machine Learning Research, 1:1–48, 2001.
[20] B. Muthen. Latent variable mixture modeling. New

developments and techniques in structural equation
modeling, pages 1–33, 2001.

[21] N. Parikh and S. Boyd. Proximal algorithms. Foundations
and Trends in Optimization, 1:123–231, 2014.

[22] K. Pelckmans, J. De Brabanter, J. Suykens, and B. De Moor.
Convex clustering shrinkage. In PASCAL Workshop on
Statistics and Optimization of Clustering, 2005.

[23] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight.
Sparsity and smoothness via the fused lasso. Journal of the
Royal Statistical Society, 67(1):91–108, 2005.

[24] B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang. An
ADMM algorithm for a class of total variation regularized
estimation problems. IFAC Symp. Syst. Ident, 2012.

[25] K. Q. Weinberger, F. Sha, Q. Zhu, and L. K. Saul. Graph
Laplacian regularization for large-scale semidefinite
programming. In NIPS, 2006.

[26] S. Yang, J. Wang, W. Fan, X. Zhang, P. Wonka, and J. Ye. An
efficient ADMM algorithm for multidimensional anisotropic
total variation regularization problems. In KDD, 2013.

[27] C. Yanover, T. Meltzer, and Y. Weiss. Linear programming
relaxations and belief propagation–an empirical study.
Journal of Machine Learning Research, 7:1887–1907, 2006.

[28] M. Yuan and Y. Lin. Model selection and estimation in
regression with grouped variables. Journal of the Royal
Statistical Society: Series B, 68:49–67, 2006.

[29] C. Zhang, C. Ré, A. A. Sadeghian, Z. Shan, J. Shin, F. Wang,
and S. Wu. Feature engineering for knowledge base
construction. arXiv preprint arXiv:1407.6439, 2014.

APPENDIX
A. ANALYTICAL SOLUTION TO Z-UPDATE

We will show that the solution to

minimize λwij‖zij − zji‖2 + (ρ/2)
(
‖xk+1

i − zij + ukij‖22+
‖xk+1

j − zji + ukji‖22
)
,

with variables zij and zji, is

z?ij = θ(xi + uij) + (1− θ)(xj + uji)

z?ji = (1− θ)(xi + uij) + θ(xj + uji),

where θ is defined in equation (6).
We first note that the objective is strictly convex, so the solution

is unique. As in §4, we let

a = xk+1
i + ukij , b = xk+1

j + ukji, c = λwij ,

so the original problem turns into

minimize c‖zij − zji‖2 + (ρ/2)
(
‖a− zij‖22 + ‖b− zji‖22

)
.

There are two possible cases for the optimal values z?ij and z?ji.

Case 1: z?ij = z?ji. If the two variables are equal, then ‖zij −
zji‖2 = 0, so the only terms remaining are

(ρ/2)
(
‖a− zij‖22 + ‖b− zji‖22

)
.

Minimizing over the constraint that zij = zji yields z?ij = z?ji =

(1/2)(a+ b), with objective value ρ/4‖a− b‖22.

Case 2: z?ij 6= z?ji. When the two variables are not equal, the
objective is differentiable. In this case, the necessary and sufficient
condition for optimality is∇f = 0, or

∇
(
c‖zij − zji‖2 + (ρ/2)‖a− zij‖22 + (ρ/2)‖b− zji‖22

)
= 0.

The gradient can be written as

c

[ zij−zji
‖zij−zji‖2

− zij−zji
‖zij−zji‖2

]
+

[−ρ(a− zij)
−ρ(b− zji)

]
=

[
0

0

]
,

so the two equations that must be satisfied are

c
zij − zji
‖zij − zji‖2

−ρ(a−zij) = 0, −c zij − zji
‖zij − zji‖2

−ρ(b−zji) = 0.

Letting µ = ‖zij − zji‖2, we get

c(zij − zji) = µρ(a− zij), −c(zij − zji) = µρ(b− zji).

Adding the two equations gives

zij + zji = a+ b,

and subtracting them leads to

zij − zji =
µρ(a− b)
2c+ µρ

.

Treating µ as a constant, this yields a system of linear equations for
zij and zji, which we solve to obtain

zij = θa+ (1− θ)b, zji = (1− θ)a+ θb,

where

θ =
1

2
+

µρ

4c+ 2µρ
.

We know that µ = ‖zij − zji‖2, so we plug in for zij and zji,

µ = ‖zij − zji‖2 =

∥∥∥∥µρ(a− b)2c+ µρ

∥∥∥∥
2

=
µρ

2c+ µρ
‖a− b‖2,

which reduces to

1 =
ρ

2c+ µρ
‖a− b‖2.

From this, we can solve for µ,

µ = ‖a− b‖2 −
2c

ρ
.

We plug in µ to solve for θ, which yields

θ =
1

2
+

(
‖a− b‖2 − 2c

ρ

)
ρ

4c+ 2ρ
(
‖a− b‖2 − 2c

ρ

) =
1

2
+
ρ‖a− b‖2 − 2c

2ρ‖a− b‖2
.

This is then reduced to

θ = 1− c

ρ‖a− b‖2
.

However, this only holds if zij 6= zji. When this condition is not
satisfied, we know the solution is case 1, which is equivalent to θ =
1
2

. When it is satisfied, we need to compare the resulting objective
with ρ/4‖a−b‖22, the value from case 1. Routine calculations show
that this holds when θ > 1

2
. Therefore, combining these equations

and plugging in for a, b, and c, we arrive at our solution,

θ = max

(
1− λwij

ρ‖xi + uij − (xj + uji)‖2
, 0.5

)
.


