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Abstract—This paper considers multidimensional infinite-im-
pulse response (IIR) filters that are iteratively implemented.
The focus is on zero-phase filters with symmetric polynomials
in the numerator and denominator of the multivariable transfer
function. A rigorous optimization-based design of the filter is
considered. Transfer function magnitude specifications, conver-
gence speed requirements for the iterative implementation, and
spatial decay of the filter impulse response (which defines the
boundary condition influence in the spatial domain of the filtered
signal) are all formulated as optimization constraints. When the
denominator of the zero-phase IIR filter is strictly positive, these
frequency domain specifications can be cast as a linear program
and then efficiently solved. The method is illustrated with two
two-dimensional IIR filter design examples.

Index Terms—Design automation, digital filters, infinite-impulse
response (IIR) filters, iterative methods, multidimensional systems,
optimization.

I. INTRODUCTION

F ILTERING of multidimensional signals is required in
many diverse areas. Signal processing applications in-

clude image processing, video signal filtering, computational
tomography, and more. Multidimensional filter mathematics
can be also used in grid methods for solving partial differential
equations, distributed control, and iterative learning control.
Usual (time-domain, one-dimensional) filtering is causal; there
is a preferred direction in the one dimension. For most multidi-
mensional signals, however, there is no preferred direction for
the coordinates, which often represent spatial coordinates, and
not time. Thus, noncausal filters are often employed in multidi-
mensional signal processing. Multidimensional finite-impulse
response (FIR) filters are well understood, since FIR filtering,
causal or noncausal, is simply a convolution of the signal with
the FIR kernel. Infinite-impulse response (IIR) filtering for
causal (time-domain) signals is a staple of signal processing.
For one-dimensional (1-D) signals, the theory of noncausal IIR
filter design and implementation is less basic than the theory
of FIR filter design, but still well understood; see, e.g., [20].
Multidimensional noncausal IIR filters, the subject of this
paper, are less well understood.

The contribution of this paper is to present a consistent engi-
neering approach to implementation and formal specification-
driven optimal design of multidimensional noncausal IIR filters.
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The implementation is based on iterative (as compared to recur-
sive) computations. We focus on zero-phase filters, which are
the most commonly used noncausal filters. In our proposed filter
design approach, the design problem is formulated as a linear
program (LP), which incorporates both the implementation re-
quirements and the filter design specifications. This problem can
be efficiently solved; see, e.g., [2].

A. Multidimensional Filter Implementation

We first give some background and context on the various
known approaches to implementation of multidimensional fil-
ters [8], [11], [14]. Reviewing these approaches will also help
to recap some of the main technical ideas utilized in this work.
The two longest used and most common approaches to multi-
dimensional filtering are Fourier transform (frequency domain)
implementation and FIR filters.

Fourier transform methods can be applied to multidimen-
sional filtering in a rectangular noncausal coordinate domain.
The filter implementation involves transforming the signal into
the frequency domain, using a fast Fourier transform (FFT), ap-
plying the filter as a frequency-wise multiplication, and com-
puting an inverse Fourier transform to obtain the filtered signal.
One advantage of these methods is that essentially any transfer
function can be implemented. The main drawback with Fourier
transform methods is that they require centralized processing of
the entire multidimensional signal data array at once.

Another widely used approach in multidimensional filtering
relies on FIR filters, i.e., convolution with a kernel that has finite
support. Multidimensional FIR filters have several advantages.
They are simple, and involve only localized computations, and
so are amenable to a parallel computing implementation. They
are always stable, and there is no conceptual difference between
causal and noncausal FIR filters. The main drawback is that a
large FIR filter order is often required to satisfy performance
requirements.

It is well known in 1-D signal processing that IIR filters can
have dramatically lower order than FIR filters with similar per-
formance. This holds as well for multidimensional filters. The
most often used multidimensional IIR filters are causal first quad
filters. A two-dimensional (2-D) causal quad filter has the form

(1)

where is a 2-D input signal, is an
output signal, and and are unit shift (delay) operators
in the two coordinates. The variables and can be also inter-
preted as complex indeterminants in the discrete Laplace trans-
form (z-transform). The convolution kernels and can
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be interpreted as the IIR filter numerator and denominator coef-
ficients, respectively. We usually assume that , so with
initial conditions properly defined, the recursive update (1) can
propagate in the two positive coordinate directions starting from
the corner of the rectangular domain with the two smallest co-
ordinates. Causal recursive systems of the form (1) have a well
developed theory. The main drawback is that causal first quad
IIR filters (1) have suboptimal performance for noncausal 2-D
signals, which limits their utility.

We consider now various approaches to noncausal IIR filter
implementation. In the simplest 1-D case, an IIR filter with an
input and the output can be presented in the
form

(2)

where is the unit shift (delay) operator. The formal transfer
functions in (2) can be introduced as

(3)

In the general case, there is no simple recursive update for
computing from in accordance with (2). A stable bounded
input bounded output (BIBO) map can be computed
from (2) provided that the denominator polynomial has
no zeros on the unit circle, i.e., . This is a suf-
ficient condition for BIBO stability and necessary condition for
asymptotic stability. In that case, can be factorized as

(4)

where the polynomial includes the zeros of inside
the unit circle with the removed coordinate origin, the factor

has the zeros of outside the unit circle, and is
an appropriate integer. Now, the output can be represented in
an easily computable form as a cascade of three operators

(5)

The first operator performs a noncausal FIR fil-
tering (convolution). The second operator is a causal stable IIR
filter with transfer function . The third operator is an
anti-causal anti-stable IIR filter that can be applied
by running a recursive update in the negative direction starting
from the final condition. Since none of the poles (zeros of the
denominator ) is on the unit circle , both IIR up-
dates have asymptotically converging impulse responses.

Let be such that all the zeros of are inside
the circle and all the zeros of are such that

(outside of the circle ). Then, an impulse
response of the filter (2) asymptotically decays at least as fast
as , where is the distance from the center. Suppose that the
filtering is performed on a large but finite interval. The influence
of the boundary conditions (initial condition and final condition)

inside the interval decays as , where is the distance from
the left or right boundary respectively. In other words, outside
of the boundary layer with the characteristic width ,
the result of the filtering on a finite interval does not depend
on the boundary conditions. Consider now a noncausal 2-D IIR
filter

(6)

(7)

(8)

Unfortunately, the above described approach of factorizing a
univariate filter denominator polynomial cannot be generalized
to 2-D noncausal filters, much less to higher-dimensional filters.
There are fundamental reasons why a general bivariate polyno-
mial cannot be decomposed into a “causal” stable and
anti-causal anti-stable polynomial factors [1]. A common ap-
proach is to limit consideration to separable 2-D filters, where
the denominator can be factorized as

(9)

Each of the two univariate denominator “polynomials”
and can be factorized similar to (4). This yields the filter
implementation as a sequence of a 2-D FIR numerator filter, two
causal filters for each of the two coordinates, and two anti-causal
filters. Filters of the form (9) are well understood but represent
a limited subset of all 2-D IIR filters.

Only two approaches to realizing general noncausal 2-D fil-
ters are known to the authors. The approach of [3] is to repre-
sent (6)–(8) as a sparse system of linear equations and solve it
inside a bounded domain of the signals for given boundary con-
ditions. The solution involves manipulating matrices of a large
size (a multiple of the number of points in the domain) and in-
volves matrix transformations to reformulate the problem as a
sequence of solvable sparse matrix arithmetic subproblems.

Another approach to implementing general noncausal 2-D fil-
ters, the one which this paper follows, is based on iterative com-
putation of the filtered signal in (6)–(8). This approach appears
to be first suggested in [6], [7]. Equations (6)–(8) are iteratively
solved by computing an update

(10)

where is the iteration number. The steady state solution of
the update (10) obviously satisfies (6). In (6), the numerator

and denominator can be scaled by the same
factor without changing the filter transfer function. Provided
that (a BIBO stability condition),
this scaling factor can always be chosen such that the update
(10) converges. Each step of the update involves two 2-D FIR
filtering operations with the kernels and .
These use localized information and can be implemented using
parallel processing. The update (10) can be stopped when the
solution change brought by the iteration becomes sufficiently
small.
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In addition to already cited work [6], [7], the iterative update
filters (though not known under such name) are used in the pro-
cessing of static images, where performance requirements are
relaxed but conceptual clarity is important. Examples of linear
or nonlinear filtering operations achieved through iterative
update include such deblurring methods as Landweber Method
(based on gradient descent), Van Cittered update (least mean
square update), and the nonlinear Lucy-Richardson update.
These methods are well described in the textbooks [11], [14].

The iterative implementation (10) of 2-D IIR filters has been
known for two decades. Despite its conceptual simplicity, it
is not broadly used. One possible reason is that 2-D FIR fil-
ters are simpler to understand and implement than 2-D IIR fil-
ters. A rigorous justification of the advantages of 2-D IIR filters
seems to be unavailable. This paper attempts to rectify that. An-
other reason is that until recently iterative implementation of
2-D IIR filters was feasible only for off-line signal processing,
where computational performance is not that critical, but con-
ceptual complexity might be. The recently evolved ability to
build systolic array processors implementing the filtering iter-
ations makes on-line 2-D IIR filtering feasible. The third reason
might be the absence of filter design methods comprehensively
addressing all the important engineering issues. Such design ap-
proaches are proposed in this paper.

B. Multidimensional IIR Filter Design

The main engineering issues with design of iteratively imple-
mented 2-D IIR filters are as follows.

1) The convergence of the update is not completely clear.
The update (10) can be proved to converge to a steady state
[6], [7]. However, its engineering use would require ac-
curate estimates of the convergence rate. To be practical,
an iterative IIR filter should require fewer computations,
counting all iterations to achieve an acceptable error, com-
pared to an FIR filter achieving the same objective.

2) There is a need for quantifying impact of the boundary
conditions. In the course of the iterations (10), the
boundary condition influence might theoretically propa-
gate into the filtering domain and critically influence the
solution.

3) The design methods for noncausal multidimensional
IIR filters are not well developed. There are no estab-
lished methods for designing such filters against formal
specification requirements including the above mentioned
convergence and boundary conditions requirements along
with filter performance. There could also be a need to
accommodate additional requirements such as robustness
to round-off error in digital implementation.

This paper addresses the three above listed issues in a con-
structive way. The first two issues (iteration convergence and
boundary conditions) have not been integrated into a filter de-
sign procedure before. Doing so is one of the contributions of
this paper. Let us discuss the third issue, filter design method, in
more detail.

In the usual time-domain (1-D) digital filtering, the most basic
and common approach is to use fixed form IIR filters such as
Butterworth, Chebyshev, or elliptic. Given a pass or stopband

these filters have a small number (one to four) of parameters,
such as filter order, that can be chosen as a part of the de-
sign. The main advantage is the ease of use. A greater flexi-
bility in accommodating custom specifications is offered by op-
timization-based design approaches, such as McClellan-Parks
FIR filter design (remez, see [23]) and Yule–Walker IIR filter
design (yulewalk; see [10]) functions in the Matlab Signal
Processing Toolbox. These approaches find an optimal (in some
sense) filter satisfying flexible design specifications. A key to
practical usefulness of these methods is that they provide a so-
lution quickly, enabling interactive design iterations for accom-
modating engineering trade-offs.

In 2-D filtering (image processing) there is a greater variety
of specifications than in 1-D. The most common approaches use
FIR filters; 2-D IIR filter technology is not yet considered ma-
ture. The standard 2-D FIR filter design methods implemented
in the Matlab Imaging Toolbox include:

• applying a 2-D window to a 2-D inverse Fourier transform
of the desired frequency response;

• designing a separable 2-D filter as a direct product of 1-D
FIR filters in each coordinate;

• using the McClellan transform to design approximately
circularly symmetric 2-D filter, based on a 1-D design
template.

There is also work on developing more general transforms for
designing 2-D filters based on 1-D prototypes [21]. The ap-
proach can be also extended toward design of 2-D IIR filters,
e.g., see [24] and the references therein.

A greater flexibility in accommodating custom specifications,
filter structures, and better performance for a lower filter order
can be achieved using optimization-based design of 2-D filters.
This is the approach we describe. For a selected filter struc-
ture, optimization-based approaches find filter weights that sat-
isfy formal engineering specifications (design constraints) and
optimize one of the filter characteristics. Once again, a key to
practical usefulness of these methods is fast solution and filter
structure flexibility.

There is substantial research literature on optimization-based
design of filters in general and 2-D filters in particular, even if
the applications seem to lag behind. We will briefly survey only
the most relevant work. The optimization-based design involves
frequency gridding and for 2-D filters leads to large scale prob-
lems. Reliable and fast solution is possible if a convex problem
is posed [2]. Very efficient convex optimization methods, such
as interior-point methods, have been developed in the last
decade. These methods are scalable to large problems and
can be efficiently used for filter design. In particular, modern
solvers and fast hardware enables solution of very large linear
programming (LP) problems. Some LP-based filter design
methods were first proposed more than two decades ago, but
did not find very broad use earlier apparently because of the
long computational times. At present time, LP solvers provide
fast solution (or a certificate proving there is no solution, if
the problem is infeasible). This paper formulates an LP-based
multidimensional IIR filter design.

Some of the early work on using LP for design of linear-
phase 1-D FIR filters can be found in [22]. Related FIR filters
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design approaches, leading to LP and other convex optimization
problems were studied in [27]. Optimization-based design of
2-D FIR filters has been studied in many papers. One of the ideas
carried through from 1-D case is that for linear-phase FIR filters
frequency response is real and linear in the design parameters,
i.e., the filter weights. For example, equiripple filter design leads
to an LP problem; see, e.g., [15].

A range of convex optimization formulations for 2-D filter
design focused on FIR filters and IIR filters with separable de-
nominator has been proposed and explored in [18], [17]. These
require custom convex solvers, unlike an off-the-shelf LP solver
used in this work. Requiring that denominator is separable limits
design degrees of freedom. At the same time, a vast majority
of noncausal 2-D IIR filter applications require zero-phase or
linear phase filters. This includes all the design examples in
[17], [18]. A very important observation is that for a symmetric
zero-phase or linear-phase 2-D IIR filter, the denominator has
a real positive frequency response. We will see that because of
this, the filter design can be formulated as an LP problem.

It appears that an LP formulation of 2-D IIR filter design
problem was first proposed almost 30 years ago in [5] (also see
[8]), where an LP problem was solved at each step of the itera-
tive design process. There was relatively little work in this area
since then, despite the tremendous advancements in computa-
tional performance and LP algorithms. This paper extends the
LP-based design of 2-D IIR filters from optimization of basic
filter performance (ripple) to a complete engineering approach
that yields practically acceptable optimized designs and is easy
to use. We incorporate the filter transfer function magnitude re-
quirements as design constraints along with the update conver-
gence speed and boundary effect requirements. We also show
how the robustness, e.g., to finite wordlength implementation,
can be easily incorporated into our formulation. For two real-
istic 2-D IIR examples in this paper the solutions are computed
in a few seconds using an off-the-shelf LP solver. The approach
of this paper is closely related to distributed array control de-
sign methods in [12], [25], where similar LP problems are for-
mulated for design of multidimensional IIR filters in a control
feedback loop.

The paper outline is as follows. To establish the technical
background needed for understanding of the proposed approach,
Section II considers issues 2 and 3: boundary effects and formal
design methods for zero-phase IIR filters. These are discussed
for a better understood case of 1-D noncausal IIR filtering. In
Section III, the proposed methods are extended to design of
an iteratively implemented 2-D zero-phase IIR filter including
issue 1, update convergence. In Section IV, we discuss prac-
tical applicability and extensions of the presented approaches
and specifications. The developed design methods are demon-
strated in two design examples detailed in Section V.

II. ONE-DIMENSIONAL NONCAUSAL IIR FILTERS

This section considers the problem of designing a 1-D non-
causal IIR filter. The problem is used to introduce design and
analysis approach ideas. Multidimensional IIR filter design is
discussed in the next section.

Consider a 1-D noncausal zero phase IIR filter. Both numer-
ator and denominator of the filter are symmetric with respect to
the zero tap delay and have the form

(11)

(12)

(13)

In the design, the numerator order and denominator order
are assumed to be fixed. The weights and are the design
parameters that are chosen to achieve filter performance, spec-
ified as

(14)

where , and are given frequency weighting
functions and is a given frequency domain. Specification re-
quirements of the form (14) are common for many types of fil-
ters including band-pass (low-pass, high-pass, and notch filters)
and deconvolution filters (deblurring in 2-D filters).

The gain of a band-pass filter is required to be close to unity
in a passband and small, close to zero, in a stopband. For an
equiripple design, and

(15)

(16)

where is the frequency domain in (14), is
the passband domain, is the passband ripple bound, is the
stopband domain, and is the stopband ripple bound. A pos-
sible additional specification is that the filter frequency response
magnitude is bounded on transition frequencies outside of the
pass and stopband.

Specifications of the form (14)–(16) can be used to describe
the four common filter design problems (all frequencies are in
the range).

Low-pass filter:
.

High-pass filter:
.

Bandpass filter:
.

Notch filter:
.

In a deconvolution/deblurring problem, the filter should invert
the blur operator in the passband and the filter gain
should be bounded in the stopband (where ) to
limit the noise amplification. The specifications (14) take the
form

(17)

(18)
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Note that for a zero-phase filter (11)–(13) the frequency re-
sponses and are real. In accordance with (12),
(13), these frequency responses can be expanded as

(19)

(20)

(21)

(22)

where and are the design parameter vectors. The differ-
ence between the vectors and is in their size, i.e.,
the number of terms in the expansion.

We assume that and are mutually prime, i.e., do
not share any roots. The frequency response of the zero-phase
filter is real and i.e., cannot change sign (cross zero)
without the filter transfer function being unbounded (design
constraint violation). As discussed above, and are
defined up to a scaling factor, which can be always chosen
such that for . The design constraints
(15), (16), can be multiplied through by real positive .
By substituting (19), this yields constraints linear in the design
parameter vectors and at each frequency. These convex
constraints can be handled in a computationally efficient way.

Consider now an additional design requirement related to the
two-sided decay of the filter impulse response and boundary
condition influence. The requirement is that the impulse re-
sponse decays at least as fast as , where is the distance
from the impulse and is a design parameter, . The
response decay ensures that boundary condition influence is
limited to a boundary layer with a characteristic width

(23)

The decay of impulse response requires that the transfer func-
tion is analytical in the annulus

(24)

Technical background on the two-sided -transform leading
to (24) can be bound in [20]. The transfer function analyticity
means that should not have zeros in the annulus (24).
Unfortunately this is a nonconvex constraint and it cannot be
handled in a computationally efficient way. Instead, consider a
convex constraint that conveniently enforces the spatial conver-
gence and will be further shown to be a relaxation of not
having zeros in the annulus (24). This constraint has the form

(25)

Recall that is positive and can be scaled along with
. Choosing the scaling such that in (25) is minimized

yields

(26)

As discussed in [20], is a necessary condition
for filter BIBO stability. Thus, and (25) always holds for
some . If , then and we got an FIR
filter with the transfer function . The impulse response of

the FIR filter is identically zero outside of the FIR filter support.
Consider a general case of . One can show that smaller

in (25) guarantees faster two-sided decay of the filter impulse
response. The following proposition holds.

Proposition 1: Consider an IIR filter (11),
where a -tap delay symmetric denominator (13) sat-
isfies (25). Then the impulse response of the IIR filter de-
cays as

(27)

where is a constant; is the same as in (24); and
the boundary layer width estimate (23) is .

Proof: It is sufficient to prove (27) for the filter ,
since a cascade FIR filter would not change the response
decay rate. We will prove the following inequality equivalent to
(27):

for (28)

Denote . For any

(29)

The first terms in the square brackets in the r.h.s. (29) de-
scribe an FIR filter with delay taps. The impulse
response of this FIR filter is zero for . Using
inverse Fourier transform to evaluate the impulse response
for yields

(30)

Recall that in accordance with (25), . Hence
and (28) follows

immediately. .
The linear design constraints (19)–22 and (25) can be used

for posing the filter design problem as an LP problem. In the LP
problem, the linear constraints are complemented by a linear
performance index. By adding to the design variables we op-
timize , which can be considered a requirement of
the fastest possible decay of the filter impulse response. The
scaling degree of freedom for and has been already
mentioned. This scaling will come out automatically from min-
imizing in (25).

The design constraints (19)–(22), (25) are frequency depen-
dent and require frequency gridding to be included in the LP
problem formulation. The formulation of the LP problem on the
frequency grid can be summarized as follows:

for

(31)

for (32)

for (33)

(34)

(35)
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This LP problem should be solved for the design parameter
vector

(36)

The designed filter (11)–(13) can be implemented in the factor-
ized form (5) as a sequence of a noncausal FIR, causal IIR, and
anti-causal IIR filters.

The described approach appears to be new and is useful for
designing 1-D noncausal IIR filters. However, the main meaning
of this section was to prepare a background for multidimen-
sional filter design in the next section.

III. DESIGN OF ITERATIVELY IMPLEMENTED

MULTI-DIMENSIONAL IIR FILTERS

This section presents the main contribution of this paper in
design of iteratively implemented multidimensional IIR filters.
For notation simplicity, 2-D filters are considered throughout
the rest of this paper. A majority of the existing applications
of multidimensional filtering are in 2-D image and video pro-
cessing problems (e.g., see [16]). Some three-dimensional (3-D)
and four-dimensional (4-D) applications exist, such as com-
putational tomography or time-space filtering. The design and
implementation approaches presented herein are directly appli-
cable to higher-dimensional IIR filters. The only difference in
the formulation is in the number of the independent coordinate
arguments. The only difference in the computational design and
implementation methods is in the potentially larger number of
the points in a multidimensional frequency grid.

The multidimensional IIR filter design approach in this
section is an extension of the LP optimization-based design in
Section II. The design is performed in the frequency domain.
After frequency gridding, the design requirements are formu-
lated as convex (linear) constraints and a linear optimization
criterion. One additional concern for iteratively implemented
IIR filters is the iteration convergence.

Consider a 2-D IIR filter (6)–(8). In a zero-phase filter, the
numerator and denominator should have symmetry properties.
To avoid excessively complex notation, let us discuss the de-
nominator symmetry; the numerator follows the same pattern.
The types of symmetry usually considered for 2-D filters in-
clude (see [14]) the following.

• 2-fold symmetry: .
• 4-fold symmetry: .
• 8-fold symmetry:

.
In all of the above symmetry cases the IIR filter denominator

can be expanded similar to (13)

(37)

where are the elementary polynomials defining the
symmetry. The expansion (37) explicitly shows inde-
pendent filter design parameters for the assumed symmetry
type.

For 2-fold symmetry, the symmetric expansion polynomials
can be expressed in the form

(38)

(39)

(40)

where in (40) . The expansion size is
.

For 4-fold symmetry

(41)

(42)

(43)

where, in (43) . The expansion size is
.

For 8-fold symmetry

(44)

(45)

(46)

(47)

where in (47) . The expansion size is
.

Choosing a higher type of symmetry reduces the number of
filter design parameters and is desirable where the symmetry
of the requirements exists. To obtain frequency responses in
(37)–(47), substitute and . Because of
the symmetry, the imaginary parts cancel and the real expansion
functions are combinations of the frequency
cosines. In all of the considered symmetry cases, the frequency
responses for the numerator and denominator in (37) can be ex-
pressed in the same general form

(48)

(49)

(50)

(51)

(52)

(53)

Several typical filter design specifications can be expressed as
linear frequency dependent inequalities in the design parameter
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vectors and . 2-D specifications similar to (14) take the
form

(54)

Equiripple magnitude specifications for bandpass filters can be
expressed similar to (15), (16)

for (55)

for (56)

where is the passband domain, is the passband ripple
bound, is the stopband domain, and is the stopband ripple
bound. In 1-D case, the stopband and the passband are combina-
tions of frequency intervals. In 2-D filters, and are two-di-
mensional (2-D) domains that can be defined in many different
ways (e.g., band, rectangular, circle, annulus, diamond, combi-
nations of these, etc). Some specific examples are presented in
the next section.

Another type of common 2-D filter design problem is a mul-
tidimensional deconvolution problem (image deblurring). Since
the filter is zero-phase, it is assumed that the frequency response

of the blur operator is a real function. The deblur-
ring problem can be encoded by setting ,
and in (54) similar to (17), (18)

for (57)

for (58)

Since is real positive, the rational inequality
(54) can be multiplied through by to yield fre-
quency dependent inequalities that are linear in and . For
an iteratively implemented 2-D IIR filter, a key design require-
ment is convergence of the update (10). By computing a 2-D
discrete Fourier transform of (10), the iterative implementation
update can be presented in the form

(59)

where and are the 2-D
Fourier transforms of the filter input and the iterated estimate of
the output respectively, is the iteration number.

Since and in (59) are real, each
frequency harmonic follows a first-order recursive
difference equation. A necessary and sufficient condition for
asymptotic convergence of the update for all frequencies
has the form

(60)

where is the exponential convergence factor.

Assuming that and summing up the differ-
ence (59) yields after steps

(61)

(62)

(63)

Given (60), the output estimate (61) converges to the filter
output as . The multiplicative residual
error at step can be evaluated as

(64)

This error should be included in the transfer function ripple
specifications. Since iterative implementation convergence re-
quires , in accordance with (62) and (64) the stopband
ripple of the transfer function (56) only improves because of
the finite iteration number.

Let be an allotment (in decibels) of the passband ripple
error budget for the finite number of the update iterations. The
number of the iterations required to achieve that error can be
estimated as

(65)

Finally, consider the requirement of the spatial decay for the
impulse response of the designed IIR filter. The spatial decay
limits the influence of the boundary condition. The 2-D filter
analysis of the spatial decay is very similar to the 1-D anal-
ysis of Section II (Proposition 1). It turns out that the itera-
tion convergence condition (60) has a dual role. Reducing im-
proves the spatial decay of the impulse response and reduces
the boundary layer simultaneously with speeding up the itera-
tion convergence.

The following extension of Proposition 1 holds for a 2-D
system.

Proposition 2: Consider a 2-D filter
(6)–(8), where a -tap delay symmetric denominator

(37) satisfies (60). Then, the filter impulse response
decays as

(66)

where is a constant. The boundary layer width in each coor-
dinate direction can be estimated as .

Proof: The proof follows from the Proposition 1 proof al-
most exactly and is based on the fact that

(67)

where . The -term sum in the square
brackets in the r.h.s. (67) describes an FIR filter with
delay taps along each coordinate. The impulse response of this
FIR filter is zero if or . For

, the impulse response
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can be evaluated through a 2-D inverse Fourier transform of the
frequency response corresponding to the last term in the r.h.s.
(67). Using the inequality yields

for (68)

where is a constant. This immediately leads to (66).
The multidimensional IIR filter can be designed by solving

an LP problem. Gridding the frequencies and makes the
design requirements (54), (60) into a seres of linear constraints
on the filter design parameters and in (48)–(53). The LP
filter design can be formulated by complementing these con-
straints with the optimization criterion

(69)

and additional constraints . The LP problem should
be solved for the design parameter vector . The
design yields a zero-phase IIR filter with fastest possible conver-
gence of the iterative implementation and optimized bounds on
boundary effects satisfying the transfer function specifications
(54).

IV. DISCUSSION

Practical suitability of the iteratively implemented multidi-
mensional IIR filters should be compared against more estab-
lished multidimensional FIR filters. Typically, an IIR filter re-
quires much smaller number of the delay taps to achieve the
same performance specifications as a matching FIR filter. For
a 2-D filter, the number of floating point operations is propor-
tional to the squared number of the delays. For a 3-D filter, the
number of operations increases cubically. This makes multidi-
mensional IIR filters potentially attractive.

This advantage is enhanced for a systolic array implementa-
tion of the filter with a separate simple processor performing
computations for each pixel, e.g., see [26]. Each processing
block in a systolic array would be connected to immediate
neighbors and computations using data from the remote neigh-
bors would require several data exchange cycles. For a 2-D
array, on the order of data transfers are needed to broadcast
each pixel to th remote neighbor through nearest neighbor
communication. For a 3-D IIR filter, the number of data trans-
fers increases as and savings due to smaller filter size are
even more substantial.

A downside of an iteratively implemented IIR filter is that
multiple iterations are required to obtain the filter output, as
compared to one-shot FIR convolution computations. The
number of iterations is a multiplier for the above discussed IIR
filter computation count. Note that the number of iterations
does not have to be very large. It can be estimated from (65). In
Example 1 of Section IV, the convergence exponent
and the iteration-related ripple budget of the filter is
dB requiring iterations. At the same time, an IIR filter is
often smaller than a comparable FIR filter by a factor of three or
more, yielding an order of magnitude improvement in compu-
tational requirements. Thus, iteratively implemented IIR filters
can still be attractive even with several iterations required. A
systolic array implementation would have an additional utility
gain.

One more note on the utility of the IIR design is that a spe-
cial case of in (59) yields an FIR filter and the iter-
ative update is reduced to a single step. Considering IIR filter
designs with provides additional degrees of freedom in
the design space. Improvements of a baseline FIR design can be
achieved through these degrees of freedom.

Let us now discuss the LP-based filter design approach
considered in the previous section. The formulated basic filter
design problem can be extended to accommodate additional
design requirements. One important extension is designing a
filter for finite-word implementation. It is well known that even
a small implementation error might result in a significant filter
performance deterioration. The finite-word roundoff error can
be handled as uncertainty. Consider a robust design of the filter
explicitly taking this uncertainty into account and guarding
against the possible undesirable effects of the roundoff error.
Assume that the filter numerator and denominator opera-
tors respectively have the form and

, where the uncertainty operators
and are zero phase because the round off implementation
errors preserve the symmetry. These operators are bounded as

(70)

where and , assuming -bit
precision of implementation. With the uncertainty, the design
specifications (54) take the form

(71)

Given (70), the design specifications (71) can be formulated
as two linear inequalities

(72)

(73)

Gridding the frequencies and in (72), (73), (60), and in-
cluding (69) yields an LP problem for the filter design parame-
ters and in (48)–(53).

In the proposed design approach, the ripple bound
in (54) or (72), (73), must be given in advance. If the filter
order and bound are both very small, the LP
problem can become infeasible. The infeasibility is reported by
the standard LP solvers. Depending on the hierarchy of the de-
sign priorities, the constraints on ripple bounds and the pre-
scribed filter order can be manipulated to yield an acceptable
engineering trade-off (if one exists). This can be done in loga-
rithmic time through simple dichotomy iterations or could be a
part of interactive parameter manipulation by a filter designer.

Though the proposed approach is fundamentally focused on
zero-phase IIR filters, some extensions to more general filter
types are possible. For instance, a linear phase IIR filter can be
designed by maintaining a zero-phase denominator (with posi-
tive real frequency response) and a linear-phase numerator. Of
course, in that case the expression inside the absolute value in
(54) has to be pre-multiplied by the conjugate phase to make
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it real. In a similar way, the design could be extended toward
zero-phase denominator filters that should match an arbitrary
transfer function . In that case a modification of (54)
with ripple conditions written separately for the real and imagi-
nary parts of the transfer function leads to an LP problem. This
is related to the approach of [4].

V. DESIGN EXAMPLES

In this section, the IIR filter design approach of Section III is
applied to two examples of 2-D IIR low-pass filter design. The
examples are borrowed from [17].

1) Example 1: Circularly-Symmetric Low-Pass Filter: The
first example is designing a zero-phase 2-D IIR filter with circu-
larly symmetric low-pass magnitude response. The design spec-
ifications are of the form (55)–(56) with the low-frequency pass-
band and high-frequency stopband defined as

(74)

(75)

As a baseline, we consider a 2-D FIR filter designed in [17]
for the specifications (74)–(75). In the notation of this paper, the
filter from [17] has two-sided tap delays in the numerator
and tap delays in the denominator. The 2-D FIR convo-
lution window is of the size .
With such 2-D FIR filter, the passband ripple of
and the stopband ripple are achieved in [17].

We designed a comparable 2-D IIR filter for iterative imple-
mentation by solving an LP problem as described in Section III.
The filter of the form (6)–(8) had two-sided tap
delays in the numerator and denominator. Since the specifica-
tions (74)–(75) are circularly symmetric, an 8-fold symmetry
was assumed in the filter design. In accordance with (43), this
leaves weights
for each of the two FIR filters and to be chosen as the re-
sult of the design. The problem statement included the iteration
convergence/spatial decay condition (60) and the optimality cri-
terion (69).

In the design, a 32 32 grid was used for the frequency-de-
pendent functions. The grid includes 145 passband points and
763 stopband points. This is much more than 50 passband points
and 279 stopband points reported in [17, Table I]. The ripple
constraints in (55)–(56) were chosen as (passband
ripple of 0.5 dB), and (stopband ripple of dB).
This provides ripple performance superior to [17] (
and ) as long as the iterative implementation error
(63) is within the allotted budget

dB (76)

The filter operators and obtained by
solving the LP design problem are illustrated in Fig. 1. The
amplitude response of the designed filter is shown in Fig. 2.
The CPU time for the solution using a current Wintel PC is
about 2.7 s when using the medium-scale LINPROG solver in
the Matlab Optimization Toolbox. In [17], the solution time for
the 19 19 FIR filter with comparable performance is given

Fig. 1. Numerator A and denominator B operators for the designed circular
low-pass IIR filter.

Fig. 2. Amplitude response in decibels for the designed circular low-pass IIR
filter.

as 20 s. Based on the paper submission date, at least 2.5 years
older and hence probably 3-4 times slower computer should
be assumed in [17]. Note that the LP solver used in this work
was the Matlab medium-size problem solver; for an optimized
sparse solver written in “C,” a 1–2 orders of magnitude compu-
tation time improvement can be expected or, alternatively, a 1–2
orders of magnitude larger problem can be solved. The main
result of our implementation is that a simple Matlab code with
standard solver was demonstrated to be sufficient for achieving
good results.

The optimal solution yields the convergence rate in (60) as
. With the ripple budget (76) for the finite iteration

error, the necessary number of iterations in (10) can be estimated
as .

Consider now the spatial decay of the impulse response for
the designed filter. The decay rate bound (66) tells that a charac-
teristic width of response decay is no more than
nine steps. An actual impulse response decay is shown in Fig. 3.
This impulse response was computed through inverse 2-D FFT
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Fig. 3. Impulse response for the designed circular low-pass IIR filter.

of the frequency response for
the designed filter. The displayed response provides a practical
idea about the boundary layer effects one can expect by applying
the designed 2-D IIR filter in a finite domain. The response de-
cays off in about four steps away from the center. This is some-
what faster than the obtained bound on the asymptotic decay.

An accurate numerical estimate of whether the spatial decay
specs are satisfied for given can be done by 2-D frequency
gridding and checking , for each and

. More detail and theory can be found in
[13]. The condition the estimate (66) was only given to justify
why minimizing in (60) increases the decay rate of the im-
pulse response. The actual width of the impulse response can
be evaluated by computing this response explicitly. This can be
quickly done as a part of the frequency-domain design by com-
puting the impulse response as an inverse Fourier transform of
the filter frequency response, such as in Fig. 3.

The designed circular 2-D filter was compared against a
2-D FIR filter designed using McClellan transformation. The
prototype 1-D filter was designed as minimum-ripple 19-tap
zero-phase FIR using remez function in the Matlab Signal
Processing Toolbox and had ripple of 0.0273 in both passband
and stopband. The 19 19 2-D FIR filter was designed from
this prototype by using McClellan transformation (function
ftrans2 in the Matlab Image Processing Toolbox). This
design yields the passband ripple and the stop-
band ripple . The stopband ripple performance is
inferior to optimization-based design in [17] ( and

) and to our design.
Example 2: Diamond-Shaped Low-Pass Filter: The second

example is designing a zero-phase 2-D IIR filter with a dia-
mond-shaped low-passband. The design specifications have the
form (55)–(56) with the passband and stopband defined
as

(77)

(78)

As a baseline, we again consider a 2-D FIR filter designed in
[17] for the specifications (77)–(78). The filter in [17, Table II] is

Fig. 4. Numerator A and denominator B operators for the designed
diamond-shaped low-pass IIR filter.

a FIR convolution window of the size 19 19. When presented
in the form (6)–(8) this corresponds to two-sided tap
delays in the numerator and tap delays in the denomi-
nator. This filter in [17] achieved the ripple in the
passband and in the stopband.

We designed a comparable 2-D IIR filter as described in
Section III. The IIR had two-sided tap delays in
both numerator and denominator. The specifications (74)–(75)
have 8-fold symmetry and the same 8-fold symmetry was
assumed in the filter design. The design parameters included

filter weights , 10 filter weights
, and the iteration convergence/spatial decay parameter in

(60), (69).
The design used a 16 16 frequency grid, which included 85

passband points and 143 stopband points. This compares with
50 passband points and 121 stopband points reported in [17,
Table II]. The ripple constraints in (55)–(56) were chosen as

(passband ripple of 0.25 dB), and
(stopband ripple of dB). This is comparable to the baseline
FIR design from [17]. The remaining budget of the iterative im-
plementation error (63) was

dB (79)

The designed 2-D zero-phase IIR filter operators and
are illustrated in Fig. 4. The amplitude response of the designed
filter is shown in Fig. 5. The CPU time for the design problem
solution using a state of the art Wintel PC is 0.7 s with LIN-
PROG solver from Matlab Optimization Toolbox. In [17], the
solution time of 7.13 s is quoted for design of a 19 19 FIR
filter with comparable performance for a computer which was
likely 3–4 times slower.

The optimal solution yields the convergence rate in (60) as
. To satisfy the ripple error budget (79),

iterations are required.
The impulse response for the designed filter is shown in

Fig. 6. This impulse response was computed through inverse
2-D FFT of the 2-D IIR filter frequency response. The response
decays off in about four steps away from the center. The
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Fig. 5. Amplitude response in decibels for the designed diamond-shaped
low-pass IIR filter.

Fig. 6. Impulse response for the designed diamond-shaped low-pass IIR filter.

decay rate estimate (66) gives a larger characteristic length of
response decay of about steps, but then the
asymptotic decay rate in Fig. 6 appears to be slower than the
initial decay in the middle of the response.

VI. CONCLUSION

We have proposed a new approach to noncausal multidimen-
sional IIR filters. The approach combines optimization-based
design with iterative implementation of the filters. It is an
efficient alternative to existing designs of zero-phase multidi-
mensional IIR filters. The optimization-based design formally
includes various filter transfer function magnitude specifi-
cations as optimization constraints in LP problem. We have
demonstrated fast filter design using off-the-shelf LP solver.
Iteratively implemented multidimensional IIR filters do not
need to be causal (first quad) or have a separable denominator
as in other related work. We have also considered and explicitly
included into the design requirements the impulse response
decay that characterizes the width of the boundary effect layer

in the filtered signal domain. We have demonstrated two design
examples for low-pass 2-D filters with design specifications
borrowed from earlier work. Even taking into account the com-
putational expense of the iterations, the designed filters perform
better or the same as the filters based on existing approaches.
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