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Abstract

We present a unified duality view of several recently emerged spectral methods for nonlinear
dimensionality reduction, including Isomap, locally linear embedding, Laplacian eigenmaps,
and maximum variance unfolding. We discuss the duality theory for the maximum variance
unfolding problem, and show that other methods are directly related to either its primal
formulation or its dual formulation, or can be interpreted from the optimality conditions.
This duality framework reveals close connections between these seemingly quite different
algorithms. In particular, it resolves the myth about these methods in using either the top
eigenvectors of a dense matrix, or the bottom eigenvectors of a sparse matrix — these two
eigenspaces are exactly aligned at primal-dual optimality.



1 Introduction

In many areas of information processing, such as machine learning and data mining, one
is often confronted with the problem of dimensionality reduction, i.e., how to extract low
dimensional structure from high dimensional data. In a concise mathematical framework, we
are given a set of high dimensional data 1, ...,z, in R? (the inputs), and need to compute
their “faithful” representations yi,...,y, in R" (the outputs), with 7 much smaller than d.
Here “faithful” roughly means that nearby inputs are mapped to nearby outputs, while
faraway inputs are mapped to faraway outputs (Saul et al., 2005). It is usually assumed
that the inputs were sampled from a low dimensional manifold embedded in R%. An ideal
algorithm should be able to estimate the manifold’s intrinsic dimension r, as well as to
compute the low dimensional representations.

If the sampled data are mainly confined to a linear subspace, then this problem can be
well handled by classical techniques such as principle component analysis (PCA) (Jolliffe,
1986) and metric multidimensional scaling (MDS) (Cox & Cox, 1994). Both of them are
spectral methods, i.e., methods based on eigenvalue decomposition of either the covariance
matrix (for PCA) or the Gram matrix (for MDS) of the input data. For data sampled from
general nonlinear manifolds, however, these linear methods do not give satisfactory answers.

Recently, several new spectral methods have been devised to address nonlinear dimension-
ality reduction: Isomap (Tenenbaum et al., 2000), locally linear embedding (LLE) (Roweis &
Saul, 2000), Laplacian eigenmaps (Belkin & Niyogi, 2003), Hessian LLE (Donoho & Grimes,
2003), maximum variance unfolding (MVU) (Weinberger & Saul, 2004; Sun et al., 2005),
local tangent space alignment (Zhang & Zha, 2004), and geodesic nullspace analysis (Brand,
2004). Excellent overviews of these methods can be found in Saul et al. (2005) and Burges
(2005).

As summarized in Saul et al. (2005), although these new methods share a similar compu-
tational structure, they are based on rather different geometric intuitions and intermediate
computations. For example, Isomap tries to preserve the global pairwise distances of the
input data as measured along the low dimensional manifold (geodesic distances); LLE and
Laplacian eigenmaps try to preserve certain local geometric relationships of the data; MVU,
on the other hand, preserves local distances but maximize a global objective — the total
variance. Computationally, Isomap and MVU construct a dense matrix and use its top
eigenvectors (eigenvectors associated with the largest eigenvalues) in producing the low di-
mensional representations, while LLE, Laplacian eigenmaps, and Hessian LLE construct a
sparse matrix and use its bottom eigenvectors (eigenvectors associated with the smallest
eigenvalues). In addition, methods using dense matrices (Gram matrix) can often detect the
intrinsic dimension by a tellable gap between a few top eigenvalues and rest of the spectra,
but methods using sparse matrices (e.g., Laplacian) do not yield such an estimate since their
bottom eigenvalues are usually closely located. In the latter case, an additional step of es-
timating the intrinsic dimensionality is needed beforehand; see, e.g., Costa and Hero (2004)
and references therein.

Each of these spectral methods for dimensionality reduction has its own advantages and
disadvantages (Saul et al., 2005), and each can be favorable for different classes of data sets.



Nevertheless, these seemingly very different methods are capable of producing quite similar
results, at least for some pedagogical examples. In an effort of trying to better understand
the connections between these methods, Ham et al. (2004) gave a kernel view of these
algorithms, interpreting each of them as an instance of kernel PCA (Schélkopf et al., 1998)
on specially constructed kernel matrices.

Our main contribution in this paper is to provide a unified duality view of different spec-
tral methods for nonlinear dimensionality reduction. After a brief review of PCA and MDS
in §2, we discuss in §3 the duality theory for the MVU problem (Sun et al., 2005), deriving
two equivalent forms of its dual problem and discussing the implications of the optimality
conditions. Next we explain how Isomap, LLE and Laplacian eigenmaps fit in the duality
framework in §4, §5 and §6, respectively. We follow Saul et al. (2005) for basic descriptions
of these algorithms. We show that Isomap is directly related to constructing an approximate
optimal solution for the primal MVU problem, Laplacian eigenmaps simply use feasible so-
lutions for the dual MVU problem, and the motivation behind LLE can find interpretation
from the primal-dual optimality conditions for the MVU problem. We conclude the paper
in §7 with further remarks.

2 PCA and MDS

In this section we briefly review PCA and MDS, as they are building blocks of other spectral
methods. We emphasize their geometric intuitions that will be reminiscent in other methods.
For convenience, we assume the inputs are centered at the origin, i.e., >, z; = 0.

PCA projects the inputs z; onto a r-dimensional subspace that minimizes the approx-
imation error. In other words, we need to find a projection matrix P of rank r» < d that
solves the least-square problem

minimize Y ., [lz; — P (1)

The optimal projection matrix can be factorized as P = UUT where U € R**" has orthonor-
mal columns. The r-dimensional representations are given as

yi:UT.fEi, z:l,,n (2)

It is straightforward to show that the problem (1) is equivalent to

maximize Z?:l ||yz||2 = % Z” |yi - yj||2

3
SUbjeCt to UTU = [, yl = UTxl. ( )

where I denotes the identity matrix. Thus PCA computes the low dimensional projections
that have maximum variance, or equivalently, maximum total pairwise distances.

The solution to PCA is obtained from the eigenvalue decomposition of the covariance
matrix C' =Y " x;27. Suppose C = Z?:l Auul ) where \; is the i-th largest eigenvalue of
C and wu; is the associated unit eigenvector. Then the optimal low dimensional representations
can be computed using the equation (2) with U = [ug, ..., u,].
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MDS computes the low dimensional representations that most faithfully preserve the
inner products between the high dimensional data points. That is, it finds y,...,y, € R"
to solve the problem

minimize Z”(xZT:UJ —yly;)? =G - K|F

where G and K are the Gram matrices of the inputs and outputs, with G;; = x]z; and

Ki; = yl'y;, respectively; and || - || denotes the matrix Frobenius norm. Thus, MDS tries
to best approximate the Gram matrix. In fact MDS is often motivated by preserving the
pairwise distances. Let D;; = ||z; — z;||* and D be the matrix of squared pairwise Euclidean

distances. It can be shown that
G=—3{—-i11")D (1 - 1117) (4)

where 1 denotes the vector of all ones.

The solution to MDS is obtained from the eigenvalue decomposition of the Gram matrix
G. Suppose G = >/, )\kvkvg, where \j is the k-the largest eigenvalue of G' and vy, is the
corresponding unit eigenvector. The outputs of MDS are given by

Y = [\/Yl(vl)i ﬁ(vr)i]T, i=1,....n (5)

Though based on somewhat different geometric intuitions, MDS and PCA produce the
same outputs. Note that we can write C = X X7 and G = XTX with X = [z, ... ], and
the equivalence of their outputs can be easily established using the singular value decom-
position of X. In both cases, a large gap between the r-th and the (r + 1)-th eigenvalues
indicates that the inputs can be well approximated by outputs in a subspace of dimension 7.

3 Maximum variance unfolding

MVU is also known as semidefinite embedding (SDE) as it was first proposed in Weinberger
and Saul (2004). This algorithm attempts to “unfold” the manifold by pulling the data
points apart as far as possible, while faithfully preserving the local distances and angles
between nearby input data.

The first step of the algorithm is to construct a undirected graph by connecting each
input z; with its k-nearest neighbors, where k is a small integer. Call this graph G = (V, £),
with node set V = {1,...,n} representing the set of inputs, and {4, j} € & if x; is connected
to x;. We assume the graph is connected.

MVU attempts to find low dimensional representations y1,...,y, € R" that have the
maximum possible total variance, while preserving the local distances over each edge of the
graph. This can be formulated as the quadratic programming problem

maximize ), y:||* = % Z” ly: — yj||2
subject to >, y; =0 (6)

lyi — y;l|* = Dy, {i,j}€E.
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Here the optimization variables are the y;’s, and the problem data are the D;;’s and &.
(Recall that D;; = ||x; — 2;||* are computed from the input data.) The constraint >, y; =0
eliminates the translational degree of freedom. It is obvious that the objective of maximizing
the total variance has root in PCA, cf. the formulation (3). It is also closely related MDS
since it can also be interpreted as maximizing the total pairwise distances.

The quadratic program (6) is not convex, but it can be reformulated as one, in particular,
a semidefinite program (SDP) (Vandenberghe & Boyd, 1996). Let K denote the Gram matrix
of the outputs, with components K;; = yy;. Then SDP formulation is

maximize Tr K
subject to K =K' =0, 17"K1=0 (7)
Kii + ij - 2K,Lj - Dij; {Z,j} G 5

where K > 0 means that the matrix K is positive semidefinite (i.e., has only nonnegative
eigenvalues).

The reformulation into SDP not only allows global and efficient solution of the MVU prob-
lem, but also gives the extra capability of estimating the intrinsic dimension. By solving the
SDP (7), we obtain an optimal Gram matrix K* without specifying the output dimension 7.
Then we can apply MDS on K* to estimate r from the number of significant eigenvalues,
and construct the low dimensional representations y; from the associated eigenvectors as
done in (5). Note that in the quadratic program (6), we have to first choose the output
dimension r before solving it, not to mention the hardness to find the global optimum.

3.1 The dual MVU problem

Examining the dual of an optimization problem often gives further insight of the problem
and offers theoretical and computational advantages (Boyd & Vandenberghe, 2004). The
MVU problem is no exception.

We call the problem (7) the primal MVU problem. In forming the Lagrangian, we
associate the dual variable Z = Z7 > 0 with the constraint X = K7 > 0, the dual variable
v € R with the constraint 17 K1 = 0, and the dual variables W;; with the constraints
K+ K;; —2K;; = D;j for {i,j} € £. For convenience, we write the last set of equality
constraints as

Tr KEY = Dy, {i,j} €&
where the n x n matrix E{} has only four nonzero elements: E47} = E]{J” b=, Ei{;’j =

EJ{Z” } = 1. We consider the dual variables Wi; as elements of a n x n matrix W with



Wi; =0if {i,j} ¢ £ Thus we have the Lagrangian

LK, Z,u,W)=Tr K + Tr KZ —v1TK1
— > Wy(TrKE™ —Dy)

{i,j}e€
—Tr K (I +7Z - y11T—Z%EW1>
{i,j}€€
+ > DyWi.
{i,j}€€
The dual function is obtained as
g(Z,v,W) = sup L(K,Z,v,W)
K=KT
> DyWy if I+Z-v117=) Wy, Bt =0
= lidte€ {i,jye€

+00 otherwise.
Eliminating Z from the equality, the feasibility condition in the above equation becomes
T .
I —v11" — L =<0, L:Z{i,j}GSVVijE{ J}

Note that L is a weighted Laplacian of the graph G. The above linear matrix inequality is
equivalent to
v>1/n, Ano1(L) >1

where \,_; denotes the second smallest eigenvalue of a symmetric matrix. Here A, (L) =0
with associated eigenvector 1. Thus the dual MV U problem is
minimize Z{i,j}es DWW,
subject to A,_1(L) >1 (8)
L= Z{z‘,j}e& Wi B3,
This is a convex optimization problem because the function \,_;(L) is concave under the
implicit constraint A\,(L) = 0 (Sun et al., 2005). Note that the dual variable v does not
appear in the problem.
Since both the objective ) D;;W;; and the constraint function A,_;(L) in problem (8)

are positive homogeneous in W, we can just as well maximize \,_;(L) subject to a constraint
on »_ D;;W;;. This leads to an alternative formulation of the dual MVU problem

maximize \,_1(L)
subject to Z{m}eg D;jW;; =c (9)
L= 4 jee Wy BN
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where the constant ¢ > 0 can be chosen arbitrarily. This again is a convex optimization
problem (e.g., can be formulated as as SDP). The two formulations of the dual MVU problem
are equivalent in the following sense: If W* is an optimal solution to problem (8) and let ¢*
denotes its optimal value, then (¢/c*)WW™* is an optimal solution to problem (9) with optimal
value A¥ | = ¢/c*. A similar relationship holds backward.

The formulation (9) is closely related to the absolute algebraic connectivity problem
(Fiedler, 1989), in which ¢ = |£| and the weights W;; are constrained to be nonnegative.
The same formulation and its duality with MVU were studied by Sun et al. (2005) in the
context of finding the fastest mixing continuous-time Markov chain on a graph.

3.2 Duality and optimality conditions

The following duality results hold for the primal MVU problem (7) and the dual MVU
problem (8).

e Weak duality. For any primal feasible K and any dual feasible W, we have

(Note that W;; = 0if {i,j} ¢ £.) Thus, any dual feasible W gives an upper bound
on the optimal value of the primal MVU problem. This can be seen by checking the
duality gap:

> DijWij — Tr K
=, DyWy — Tr LK + Tr LK — Tr K
=2 (Dz‘j — (Kii + Kj; — QKZ»]-))WU
+Tr(L - K — (1/n)17K1
:Tr<L— (I—(l/n)llT)>K20. (10)

The last inequality holds because A,_i(L) > 1 implies that L — (I —(1/n)117) is
positive semidefinite, and the trace of the product of two positive semidefinite matrices
is nonnegative. If this gap is zero, then K is optimal for the primal, and W is optimal
for the dual. In other words, zero gap is sufficient for optimality.

e Strong duality. There exist a primal-dual feasible pair (K*, W*) with zero duality gap,
ie.,
Tr K* = Zw D ;W
This means that optimal values of the primal and dual problems are the same. Strong

duality follows from Slater’s condition for constraint qualification (Boyd & Vanden-
berghe, 2004).

A pair (K*,WW*) is primal-dual optimal if and only if they satisfy the following Karush-
Kuhn-Tucker (KKT) optimality conditions:



e primal feasibility

K*= KT =0, 1"TK*1=0

e dual feasibility
LY =Y nee WHEW X (L) > 1

e complementary slackness
L*K* = K~ (11)

This is the result of enforcing equality in (10).

Note that we always have A, 1(L*) = 1. Thus the complementary slackness condi-
tion (11) means that the range of K* lies in the eigenspace (e.s.) of L* associated with A, _;.
Since K* is a dense Gram matrix while L* is a sparse weighted Laplacian, equation (11)
means precisely

top e.s. of dense K™ C bottom e.s. of sparse L* (12)

Here “bottom e.s.” means the eigenspace associated with \,,_;. (We discard the eigenvector
1 of L* associated with the smallest eigenvalue A,, = 0.) Another direct consequence of (11)
is

r < Rank K* < multiplicity of A\,,_1 (L") (13)

where r is the dimension of the low dimensional representations obtained by performing
MDS on K*. We have r < Rank K™ if there is a significant gap in the nonzero eigenvalues
of K*.

With the inequality (13), Sun et al. (2005) showed that the maximum-variance embed-
dings of a path must be one-dimensional, and for a ring it must be two-dimensional. It can
also be show that the maximum-variance embedding of a tree can always be two-dimensional.
Goring et al. (2005) studied similar graph embedding problems using duality theory for the
absolute algebraic connectivity problem (9).

In the rest of the paper, we will show how various spectral methods for nonlinear dimen-
sionality reduction are connected by the MVU duality theory.

4 Isomap

[somap computes low dimensional representations of the high dimensional data that best pre-
serve pairwise distances as measured along the submanifold from which they were sampled.
It can be understood as a variant of MDS in which we use estimates of pairwise geodesic
distances on the submanifold, instead of the standard Euclidean distances.

The algorithm has three steps. First it constructs the k-nearest neighbor graph, and
assigns each edge a length that equals the Euclidean distance between the two nodes con-
nected. The second step is to compute the pairwise distance A;;, for all pairs of nodes i



and j, as the length of the shortest paths connecting them on the graph (e.g., using Djik-
stra’s algorithm). In the third step, it uses the pairwise distances A;; as inputs to MDS as
described in §2. More specifically, it computes a matrix G using (4) with D substituted by
A, estimates the dimension r by the number of significant eigenvalues of G, and constructs
the low-dimensional representations using (5). Note that in this case G may not be positive
semidefinite.

4.1 Connection to MVU

Isomap can be interpreted as directly constructing an approximate solution for the primal
MVU problem. We argue as follows. Consider the Riemannian structure on a manifold
induced from the standard Euclidean metric on R?. The Euclidean distance between any
two points on the manifold is always smaller than their geodesic distance. Thus the total
pairwise Euclidean distances of the data points is upper bounded by their total pairwise
geodesic distances. In addition, we see in (6) that maximizing the variance is equivalent
to maximizing the total pairwise Euclidean distances. So in this sense, [somap attempts to
maximize the variance by directly using the geodesic distances.

This interpretation becomes accurate in the limit, with increasing sampling density (n —
00), if the submanifold is isometric to a convex subset of the Euclidean space. In particular,
this condition guarantees the asymptotic convergence of the Isomap algorithm (Bernstein
et al., 2000; Donoho & Grimes, 2002). In this case, the pairwise geodesic distances become
feasible to the MVU problem, and the solution to MVU approaches its upper bound obtained
by Isomap. Thus MVU converges to the same limit as Isomap.

If the above condition is not satisfied, then Isomap and MVU could behave quite differ-
ently (Weinberger & Saul, 2004). More general conditions for the asymptotic convergence
of MVU is still an open question.

5 Locally linear embedding

LLE computes low dimensional representations of the high dimensional data that most faith-
fully preserve the local linear structure. The algorithm and Laplacian eigenmaps (see next
section) differ from Isomap and MVU in that they use the bottom eigenvectors of a sparse
matrix, as opposed to the top eigenvectors of a dense Gram matrix.

LLE has three steps. First, as other methods, it construct a k-nearest neighbor graph.
However, this is a directed graph whose edges indicate nearest neighbor relations, which may
or may not be symmetric. In this case, the set of edges £ consists of ordered pairs (i, j)
meaning that j is a neighbor of i. We let N; = {j|(i,7) € £} to denote the set of neighbors
of i. In the second step, LLE assigns a weight W;; to each edge (i,j) € &€ by solving the
least-squares problem

2

minimize Y .,

r; — Z]EM Wijxj

subject to i\ Wiy =1, i=1,....n.

(14)
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(A regularization term may be added to the objective to obtain unique solution.) In the
third step, LLE computes y € R" by solving another least-square problem

9
Yi = 2jen: Wisyj
subject to >,y =0, (1/n)> iyl =1

It turns out that the solution to (15) can be obtained by computing the bottom r +
1 eigenvectors of the matrix (I — W)T(I — W). Let these normalized eigenvectors be
Uny Un_1,- -+, Un_r, associated with the bottom eigenvalues 0 = A\, < A\, < -+ < Ay
We discard v, = (1/4/n)1 associated with A, = 0, and use the next r eigenvectors to form
the outputs

minimize >,

(15)

Yi = [(Un—1)i .. (vn_r)i]T, 1=1,...,n. (16)

5.1 Connection to MVU

The key idea behind LLE is that every point on the submanifold can be approximately
reconstructed by a linear combination of its neighbors, i.e.,

xi%ZjGN—i Wm’&?j, 1= 1,...,7’L. (17)

(Locally the manifold can be well approximated by its tangent space.) The sparse matrix W
obtained by (14) encodes such local geometric properties of the inputs. We shall show that
such local linear properties are hidden in the optimality conditions of the MVU problem, in
particular, the complementarity condition (11).

Let Y = [f1 ... §jn] be the outputs of MVU. Then we can write K* = Y7Y. Now (11)

implies L*Y? = Y7 which in turn can be written as

where W7 are the optimal solutions to the dual MVU problem (8). This equation describes
a local linear relationship of the data. In fact it can be converted to

(L3 = D)gi = 2 jen Wit i=1,...,n (18)

where Lj; = 3, Wi;. We see that the equations (17) and (18) describe very similar linear
relationships, except for a scaling factor and the fact that W* in (18) is symmetric while W
in (17) is nonsymmetric.

Equation (18) suggests a new variant of LLE by using symmetric weight matrices W.
Having not done empirical comparisons of its performance with the original LLE, we sim-
ply comment on their computational efforts in solving problem (14). With nonsymmetric
weights, both the objective and constraints in (14) are decoupled, thus it reduces to n small
symmetric, dense linear systems of size k x k (Saul & Roweis, 2003). Using symmetric
weights, however, leads to additive coupling constraints, and we need to solve a nonsymmet-
ric, sparse linear system of size |E| x |&].



6 Laplacian eigenmaps

Laplacian eigenmaps compute low dimensional representations of the high dimensional data
that most faithfully preserve proximity relations, mapping nearby inputs into nearby outputs.
First, the algorithm construct a undirected, k-nearest neighbor graph as in MVU and
Isomap. Then it assigns positive weights W;; to every edge of the graph; for example, let
Wi; = 1forall {i,j} € &, or let W;; = exp (—||z; — 2;]|* /o) where 2 is a scalar parameter.
In the last step, for a given dimension r, it finds outputs y; € R" by solving the problem

minimize 374 e Wisllyi —y511° (19)
subject to Y, Lyyyl =1
where L; = > y W;; are the diagonal elements of the weighted Laplacian L. The cost function
encourages nearby inputs to be mapped into nearby outputs.
The solution to (19) is obtained by computing the bottom r + 1 unit eigenvectors of the
generalized eigenvalue problem

Lvi=MADpvj, j=n,n—1,....,n—r

where Dy, denotes the diagonal matrix formed by taking the diagonals of L. This is equivalent
to compute the bottom eigenvectors of the normalized Laplacian Dzl/ QLDZI/ ? and then

scale them by the diagonal matrix DZI/ ®. The outputs y; are given by (15) as in LLE. We
can also use a variation of Laplacian eigenmaps where the constraint in (19) is changed to
> vyl = I. In this case, we simply use the bottom eigenvectors of L.

6.1 Connection to MVU

There is a great deal of freedom in choosing the edge weights W;; (these are symmetric). We
relate Laplacian eigenmaps to MVU by considering these weights as feasible solutions to the
dual MVU problem (8). Note that the constraint A,,_;(L) > 1 in (8) can always be satisfied
by scaling up the weights, which does not change the eigenvectors. With this in mind, we
can interpret the dual MVU problem as a particular way to choose the weights, with the
objective

minimize Y oo Wijlla — ;2. (20)

(Note D;; = ||z; — 2;]|*.) This objective has the similar form as (19), with outputs y;
substituted by inputs x;.

Thus we can solve the dual MVU problem (8) first, finding the weights W* that minimize
the objective (20) subject to A,—1(L) > 1, then use W* in (19) to compute the outputs. This
two-step procedure is precisely like the one use in LLE, cf. (14) and (15). Moreover, with such
a pre-optimization of the weights, Laplacian eigenmaps compute the bottom eigenvectors of
L*, solution to the dual MVU problem. By the MVU duality theory, in particular (12), we
know that they coincide with the top eigenvectors of the primal solution K*, given that they
use the same dimension 7.
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Solving the dual MVU problem (8) to obtain W* for Laplacian eigenmaps can be very
costly, if we convert this problem into an SDP and solve it by interior-point methods (Boyd
& Vandenberghe, 2004). Solving SDPs is limited to problem size up to n a 2000. However,
the alternative formulation (9) can be solved by subgradient-type algorithms, for problems
with n up to 100, 000; see a similar problem in Boyd et al. (2004).

Unlike Isomap and MVU, the bottom eigenvalues of L in Laplacian eigenmaps do not
have a tellable gap that allow us to estimate the dimensionality of the underlying manifold
(LLE is similar). This can also be understood from the MVU duality theory — the bottom
eigenvectors correspond to closely located eigenvalues, actually the same eigenvalue A\,
when using L*. The next smaller eigenvalue may be very close to A,,_1, but its associated
eigenvector(s) could have little contribution in building a faithful representation. In practice,
we cannot expect to tell multiplicities of eigenvalues from numerical results, thus it is difficult
to estimate the intrinsic dimension of the underlying manifold.

6.2 Extensions

Although producing roughly the same eigenspace for embedding, methods based on sparse
matrices lose the scaling factors given by eigenvalues as done in methods based on dense
matrices; cf. (16) and (5). Such scaling factors can be essential in obtaining isometric
embeddings. An improvement in this direction can be achieved by adding a post-processing
step using MVU.

Let V be a n x r matrix whose columns are the r» bottom eigenvectors obtained from
Laplacian eigenmaps or LLE (after discarding the constant vector associated with zero eigen-
value). We can approximate the Gram matirx in MVU by K = VQV?T, where Q is 7 x r
and positive semidefinite. Then we form the SDP

maximize TrVQV7T
subject to Q =QT >0, K=VQVT (21)

Comparing with (7), here the constraint 17 K1 = 0 is automatically satisfied, but we have
to relax the pairwise distance constraints to inequalities to preserve feasibility. Solving the
SDP (21) costs much less computationally than solving (7) because the variable @) has size
r X r instead of n x n. In addition, we can recover the scaling factors using the eigenvalues
of Q). In general, we can use more than r bottom eigenvectors from Laplacian eigenmaps to
form V. This gives us the additional capability of estimating r from the gap in the eigenvalue
spectra of Q).

A very similar approach has been explored by Weinberger et al. (2005). They choose
a set of landmarks z;,...,2, € R? (m < n) of the inputs and find a matrix V € R™™
that best approximates all the inputs as x; ~ Zj Vijzj. The matrix V is constructed from
LLE. Then an SDP similar to (21) is solved to get the optimal landmark kernel Q. From @
they find low dimensional representations for the m landmarks z; € R" and generate outputs
Y= i Vi;Zj. We note that the number of landmarks m, though much smaller than n, could
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still be much larger than . Sha and Saul (2005) studied other extensions, e.g., conformal

eigenmaps, that use SDP to post-process eigenvectors obtained from Laplacian eigenmaps
or LLE.

7 Conclusions

We have shown that MVU duality theory reveals close connections between several spectral
methods for nonlinear dimensionality reduction. In particular, Isomap can be considered as
directly constructing an approximate optimal solution for the primal MVU problem. With
increasing sampling density, these two methods converge to the same solution in the limit if
the underlying submanifold is isometric to a convex subset of Euclidean space. The locally
linear structure embraced by LLE can be interpreted from the optimality conditions of MV U.
Laplacian eigenmaps use edge weights that are feasible to the dual MVU problem. Using the
optimal weights for the dual MVU problem corresponds to a two-step procedure similar as
in LLE. This duality framework also explains why using top eigenvectors of dense Gram-like
matrices and using bottom eigenvectors of sparse Laplacian-like matrices can produce similar
results — these two eigenspaces coincide at primal-dual optimality.

By capturing the simple yet key feature of maximizing variance, exactly or approxi-
mately, MVU duality theory offers a unified view of several spectral methods for nonlinear
dimensionality reduction. Nevertheless, MVU is certainly not the best universal solution,
and different methods may perform well on different class of problems. Currently we are
experimenting with new variants and extensions suggested by the duality framework, and
working on empirical results to illustrate the theoretical connections developed in this paper.
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