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Abstract

We describe an interior point algorithm for comput-
ing the upper bound for the structured singular value
described in [1]. We demonstrate the performance of
the algorithm on a simple example.

1. Notation

R (C) stands for the set of real (complex) numbers.
Rm�n (Cm�n) stands for the set of real (complex)
m � n matrices. For M 2 Cm�m, det(M ) stands
for the determinant, �max(M ) the maximum singular
value andM� the complex conjugate of the transpose
of M . In stands for the n� n identity matrix.

2. Introduction

An important quantity in robustness analysis in the
presence of structured uncertainties is the structured
singular value (SSV) of an n� n complex matrixM ,
de�ned as

�Q(M )
�
=

8>>><
>>>:

0 if det(In +M�) 6= 0 for all � 2 Q0
B@ min

� 2 Q
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1
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Here Q is a subset ofCn�n describing the uncertainty
structure, where typically, every element � of Q is of
the form

� = diag(�r1Ik1 ; : : : ; �
r
pIkp ;

�c1Ikp+1 ; : : : ; �
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where �ri 2 R, �ci 2 C, and �C
i 2 Cci�ci .

Then the set D of matrices commuting with all el-
ements of Q has elements of the form

D = diag
�
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1 ; : : : ; D

C
p ;
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where DC
i 2 Cki�ki and dCi 2 C.

�Q(M ) is hard to compute fast and reliably; in [1],
Fan et al. describe an upper bound for �Q(M ) given
by

�Q(M )
�
= inf

P 2 P

G 2 G

p
max(0; F (M;P;G)) (1)

where

F (M;P;G) = �max (M
�PM + j(GM �M�G); P ) ;

P = fP 2 D j P = P � > 0g; and
G = fG 2 D j G� is Hermitian for all � 2 Qg:

�max(X;Y ) stands for the maximum generalized
eigenvalue of the pair X = XT , Y = Y T de�ned
as

�max(X;Y )
�
= inf f � 2 R j �Y �X > 0 g :

It can be shown that the computation of �Q(M ) is a
nondi�erentiable, quasi-convex optimization problem
[2], so methods such as Kelley's cutting-plane algo-
rithm or the ellipsoid algorithm of Shor, Nemirovksy,
and Yudin are guaranteed to minimize it. In this
paper we describe an interior point method for com-
puting �Q(M ) more e�ciently and describe its per-
formance on a simple example.

3. Interior Point Algorithm

It is readily shown that (1) can be recast as an
optimization problem of the form

min �max(A(x); B(x)) (2)

where the vector x (of length N , say) contains opti-
mization variables (consisting of the independent en-
tries of P and G), and A, B are a�ne functions from
RN into the spaces of real symmetric matrices of size
n� n:

A(x)
�
= A0 +

PN

i=1 xiAi;

B(x)
�
= B0 +

PN

i=1 xiBi;
(3)
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where Ai = ATi , Bi = BT
i 2 Rn�n.

The algorithm is based on the notion of the analytic
center of an a�ne matrix inequality, sayD(x) = D0+PN

i=1 xiDi > 0. With X denoting the `feasible' set
(which we assume is bounded)

X
�
=
�
x 2 RN j D(x) > 0

	
;

the analytic center x� of the inequality D(x) > 0 is
de�ned as

x� = argmin
x2X log detD(x)�1:

The function log detD(x)�1 is �nite if and only if
x 2 X, and becomes in�nite as x approaches the
boundary of X, i.e., it is a barrier function for X.
There are many other barrier functions for X, but
this one enjoys many special properties. For more
details about this barrier function, see [3] and [4],
where Nesterov an Nemirovski give sharp bounds on
the number of computations needed to �nd x�.

Starting with any feasible x(0), and a �(0) =
�max(A(x

(0)); B(x(0))), the algorithm proceeds as fol-
lows:

�(i+1) := (1� �)�max(A(x
(i)); B(x(i))) + ��(i)

x(i+1) := analytic center of �(i+1)B(x) �A(x) > 0:

Here, � 2 (0; 1) is a parameter which is typically
small. It enables one to take x(i) as an initial guess
for the Newton-type method that �nds the analytic
center of the inequality �(i+1)B(x) � A(x) > 0. In-
deed, for � = 0, x(i) is not a valid initial guess, as
�(i+1)B(x(i))�A(x(i)) is singular.

A proof of convergence for this algorithm is given in
[5]. We have found that it performs considerably bet-
ter than other competing methods, such as ellipsoid
or cutting plane algorithms.

A number of assumptions on A;B must be made
in order to ensure convergence, such as compactness
of the `level sets' fx j �B(x) � A(x) > 0g. These
assumptions are satis�ed by optimizing P over the
set P = fP 2 P j TrP � ng instead of P in (1).

4. An example

We consider a simple example with

M =

2
664

0 1 0 0
1 0 1 0
0 0 0 1
�1 0 �1 0

3
775 ;

with Q consisting of 4 � 4 matrices of the form
diag(�r1I2; �

r
2I2), where the �

r
i 's are arbitrary real pa-

rameters. Our algorithm returns �Q(M ) = 1 to
within an absolute accuracy of 0:001, with the cor-
responding optimal matrices

Popt =

2
664

2:2527 0 0 0
0 1:2403 0 0
0 0 0:5070 0
0 0 0 0

3
775 ;

Gopt = j

2
664

0 �0:50620 0
0:5062 0 0 0

0 0 0 �1:7465
0 0 1:7465 0

3
775 :

Note that the optimal matrix Popt is not positive def-
inite.

5. Conclusion

In this paper, we have presented an interior point
algorithm to reliably compute the upper bound
�Q(M ) described in [1]. Similar algorithms can be
applied to many other important problems in control
(see for example [6, 7]).
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