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Smart grid

I embed intelligence in energy systems to
I do more with less
I reduce CO2 emissions
I handle uncertainties in generation (wind, solar, . . . )
I exploit new demand response capabilities
I handle shift towards EVs
I extend life of current infrastructure
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Smart grid

I embed intelligence in energy systems to
I do more with less
I reduce CO2 emissions
I handle uncertainties in generation (wind, solar, . . . )
I exploit new demand response capabilities
I handle shift towards EVs
I extend life of current infrastructure

I cf. current system
I load is what it is; generation scheduled to match it
I systems built with large margins for max load
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Smart grid critical technologies: The big picture

I physical layer
I photovoltaics, switches, storage, fuel cells, . . .

I infrastructure/plumbing
I smart enabled stuff, communication protocols, security, . . .

I algorithms (our focus)
I real-time decision making

I economics layer
I markets, investment, regulation, . . .
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Coordinating devices on the smart grid

I setting: a network of smart devices, that can adjust/change/defer their

power consumption/generation

I goal: coordinate device behavior (generation/consumption) over time

Introduction 5



Coordinating devices on the smart grid

I setting: a network of smart devices, that can adjust/change/defer their

power consumption/generation

I goal: coordinate device behavior (generation/consumption) over time

I method: use optimization to coordinate devices

I algorithm: use proximal message passing to solve optimization problem
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Device coordination via optimization

I devices exchange energy at nodes, in multiple time periods
I generators
I loads (fixed, deferrable, curtailable)
I energy storage systems
I transmission lines

I each device has dynamic constraints, cost function over time

I to coordinate devices, minimize total cost subject to power balance at

each node, in each time period

I solving this optimization problem gives
I (optimal) device power schedules
I locational marginal prices at each node in each time period
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This talk: Proximal message passing algorithm

I decentralized method to solve dynamic energy management problem

I each device schedules its own consumption/generation profile

I devices coordinate via simple message exchanges with neighbors

I can be viewed as sophisticated (location, time varying) price discovery

mechanism

I can handle enormous problems
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Formal network model

I a network consists of
I a set of terminals T
I a set of devices D
I a set of nets N

I

D and N are partitions of T , i.e., each terminal is in exactly one device

and one net

I can represent network as bipartite graph with
I

D and N the two vertex classes
I

T as the edges connecting them
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Example

I (left) 3 buses, 2 generators, 1 battery, 2 loads, 3 transmission lines

I (middle, right) network model: 11 terminals, 3 nets, 8 devices
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Terminals

I power flows into or out of terminals on each device

(negative power corresponds to power generation)

I each terminal t 2 T has a power schedule

pt = (pt (1); : : : ; pt (T )) 2 RT

giving power flow over time periods � = 1; : : : ;T

I set of all terminal power schedules denoted by p 2 RjT j�T
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Devices

I devices model general power system elements
I generators
I loads (deferrable, curtailable, fixed)
I transmission lines
I energy storage systems
I other energy sinks, sources, and converters

I pd 2 Rjdj�T is the set of jd j power schedules for terminals in device d

I device objective function fd(pd ) : Rjdj�T
! R [ f+1g

I

+1 used to encode device constraints
I can also have private variables e.g., state of charge for a battery
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Nets

I nets are ideal (lossless, uncapacitated) energy exchange points

I pn 2 Rjnj�T is the set of jn j power schedules for terminals in net n

I semantics of nets: power balance holds at all times

X

t2n

pt (� ) = 0; � = 1; : : : ;T ; n 2 N
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Average net power imbalance

I for terminal t corresponding to net n , we define

�pt =
1

jn j

X

t 02n

pt 0

i.e., �pt averages terminal power profiles over its net
I

�pd = f�pt j t 2 dg

I net power balance can be written as �p = 0
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Dynamic optimal power flow problem

dynamic optimal power flow problem (D-OPF):

minimize f (p) =
P

d2D
fd(pd )

subject to �p = 0

I variables are terminal power schedules p 2 RjT j�T

I net power balance equality constraints are linear

I other constraints, objective terms contained in device objectives

I optimal dual variables give (scaled) locational marginal prices (LMP),

which are time-varying

I when all device objective functions are convex, D-OPF can be solved

globally and effeciently (in principle)
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Generator

I single terminal device with power schedule pgen

I cost function
PT

�=1
�gen(�pgen(� ))

I min/max power constraints: Pmin
� �pgen � Pmax

I ramp-rate constraints:

R
min

� � (pgen(� + 1)� pgen(� )) � R
max

I can include other costs and constraints, e.g.,
I turning on and off
I power change costs
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Transmission line

I two terminal device with power schedules p1 and p2

I zero cost function

I capacity constraint: jp1 � p2j � Cmax

I line loss constraint: p1 + p2 = `(p1; p2)

I

`(p1; p2) � 0 is loss function (`(0; 0) = 0, typically convex)
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Energy storage system

I single terminal device with power schedule pess

I zero cost function

I charging/discharging rate limits �Dmax
� pess � Cmax

I local storage state variables

q(� ) = q
init

+

�

X

t=1

pess(t); � = 1; : : : ;T

I capacity limits 0 � q(� ) � Qmax, � = 1; : : : ;T

I more sophisticated models can include storage cycling penalty,

state-dependent charging and discharging rate limits, efficiencies
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Loads

I single terminal device with power schedule pload

I fixed (non-smart) load: pload = l , l 2 RT is given load profile

I deferrable load: total energy consumption E in the time interval [A;D ℄:

D
X

�=A

pload(� ) = E ; 0 � pload � L
max

I curtailable load: pay penalty for failing to meet load profile l :

�

T
X

�=1

(l(� )� pload(� ))+
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Electric vehicle charging

I single terminal device with power schedule pev

I desired minimum state of charge profile qdes
2 RT

I can only be charged in time interval [A;D ℄

I charging constraints 0 � pev � Cmax

I charge level given by

q(� ) = q
init

+

�

X

�

0

=A

pev(�
0

);

I shortfall cost function

�

D
X

�=A

(q
des

(� )� q(� ))
+

;

I can add terminal constraint, q(D) = Qcap
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Proximal message passing algorithm

repeat until convergence:

1. Proximal power schedule update.

p
k+1
d := argmin

pd

�

fd(pd ) + �=2




pd � (p
k
d � �p

k
d � u

k
d )







2

2

�

in parallel, for each device

(� > 0; RHS is proximal operator of fd at pk
d � �pk

d � uk
d )

2. Scaled price update.

u
k+1
n := u

k
n + �p

k+1
n

in parallel, for each net
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Devices compute new tentative power profiles
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Devices send tentative power profiles to neighboring nets
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Nets compute power imbalance; update prices
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Nets send updated prices, power imbalance to neighboring devices
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Proximal message passing algorithm

I each device only has knowledge of its own objective function

I for each device class, need to implement prox operator

I all message passing is local, between devices and adjacent nets

I no global coordination other than iteration synchronization
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Convergence

if device objectives are closed convex proper and D-OPF has solution

I residual convergence: �pk
! 0 (power balance achieved)

I objective convergence:
P

d2D
fd(p

k
d )! f ? (operation is optimal)

I dual variable convergence: �uk
! y? (optimal prices found)
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Numerical examples

I 140 examples: 20 each of 7 different sizes

I

jN j ranges from 100 to 100000

I

jDj ranges from 200 to 200000

I

jT j ranges from 300 to 300000

I T = 96 (24 hour period, 15-minute intervals)

I number of variables in D-OPF ranges from 30k to 30M

I network topology (transmission line connections) chosen as random

geometric graph, plus some long lines
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Example network with jN j = 100 (30k variables)
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Devices

I to each net, we attach a randomly chosen single terminal device
I generator
I battery
I fixed load
I deferrable load
I curtailable load

I device parameters chosen so that problem is feasible but challenging
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Prox functions

I prox functions are easy to implement when fd is separable in time
I fixed load
I curtailable load
I transmission line

(prox evaluation times measured in ns)

I for others, use CVXGEN to generate custom C code to solve QPs
I generator
I battery
I deferrable load

(prox evaluation times measured in �s)
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Serial multithreaded implementation

I examples run on 32-core 2:2Ghz Xeon with 64 (hyper)threads

I each prox function assigned to one of 64 threads using OpenMP

I maximum time for prox function evaluation in each iteration is � 1 ms,

so we can estimate fully decentralized run time
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Convergence for jN j = 3000 (1M variables)
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Solve time scaling (serial)
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I serial multi-threaded implementation on 32-core machine with 64

independent threads

I fit exponent is 0:996

I with fully decentralized computation, sub second solve time for any size

network
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Handling uncertainty via receding horizon control

I in every time period
I each device forecasts its own future costs/constraints over some horizon
I devices coordinate (optimize) using forecasts to obtain

consumption/generation plan
I devices execute first period consumption/generation in plan
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Handling uncertainty via receding horizon control

I in every time period
I each device forecasts its own future costs/constraints over some horizon
I devices coordinate (optimize) using forecasts to obtain

consumption/generation plan
I devices execute first period consumption/generation in plan

I reacts to changes in constraint/objective forecasts

I same method used in chemical process control, supply chain

optimization, . . .

I forecasts do not need to be accurate
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Handling AC power flow

I assume voltage magnitudes are fixed

I introduce voltage phase angle profile �t for each terminal

I add phase angle consistency constraint for each net n = ft1; : : : ; t
jnjg:

�t1 = �t2 = � � � = �t
jnj

I local device objectives include phase angle constraints

I proximal message passing readily extended to include phase angles
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Handling non-convexities

I with non-convex device objectives, D-OPF is (nominally) hard

I one approach: form convex relaxation of D-OPF (RD-OPF)

minimize f env
(p) =

P

d2D
f env
d (pd )

subject to �p = 0;

where f env
d is convex envelope of fd

I RD-OPF is convex optimization problem
I readily solved
I gives lower bound on D-OPF optimal value
I provides good starting point for local optimization
I in some cases, relaxation is tight
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Relaxed generator

I left: (nonconvex) generator with power range, option to turn off

I right: its relaxation
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Relaxed transmission line

p1
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p2

black: lossless, capacitated line; gray: AC power loss
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Summary and vision

I we’ve developed a completely decentralized method for optimal power

exchange/consumption/generation on a smart grid

I decentralized computation allows for sub second solve times

independent of network size
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Summary and vision

I we’ve developed a completely decentralized method for optimal power

exchange/consumption/generation on a smart grid

I decentralized computation allows for sub second solve times

independent of network size

I when combined with receding horizon control, can be used for real-time

network operation

I we envision a plug-and-play system that is robust, self-healing

(internet of power)

Extensions and conclusion 44
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