# Dynamic Network Energy Management via Proximal Message Passing

Matt Kraning, Eric Chu, Javad Lavaei, and Stephen Boyd

Google, 2/20/2013

# Outline

# Introduction

Model

**Device** examples

Algorithm

Numerical results

Extensions and conclusion

#### Introduction

# Smart grid

embed intelligence in energy systems to

- do more with less
- reduce CO2 emissions
- handle uncertainties in generation (wind, solar, ...)
- exploit new demand response capabilities
- handle shift towards EVs
- extend life of current infrastructure

# Smart grid

embed intelligence in energy systems to

- do more with less
- reduce CO2 emissions
- handle uncertainties in generation (wind, solar, ...)
- exploit new demand response capabilities
- handle shift towards EVs
- extend life of current infrastructure

cf. current system

- load is what it is; generation scheduled to match it
- systems built with large margins for max load

# Smart grid critical technologies: The big picture

- physical layer
  - photovoltaics, switches, storage, fuel cells, ...
- infrastructure/plumbing
  - smart enabled stuff, communication protocols, security, ...
- algorithms (our focus)
  - real-time decision making
- economics layer
  - markets, investment, regulation, ...

# Coordinating devices on the smart grid

- setting: a network of smart devices, that can adjust/change/defer their power consumption/generation
- **goal**: coordinate device behavior (generation/consumption) over time

# Coordinating devices on the smart grid

- setting: a network of smart devices, that can adjust/change/defer their power consumption/generation
- **goal**: coordinate device behavior (generation/consumption) over time

- method: use optimization to coordinate devices
- > algorithm: use proximal message passing to solve optimization problem

# Device coordination via optimization

devices exchange energy at nodes, in multiple time periods

- generators
- loads (fixed, deferrable, curtailable)
- energy storage systems
- transmission lines
- each device has dynamic constraints, cost function over time
- to coordinate devices, minimize total cost subject to power balance at each node, in each time period
- solving this optimization problem gives
  - (optimal) device power schedules
  - Iocational marginal prices at each node in each time period

# This talk: Proximal message passing algorithm

- decentralized method to solve dynamic energy management problem
- each device schedules its own consumption/generation profile
- devices coordinate via simple message exchanges with neighbors
- can be viewed as sophisticated (location, time varying) price discovery mechanism
- can handle enormous problems

# Outline

Introduction

# Model

Device examples

Algorithm

Numerical results

Extensions and conclusion

#### Model

### Formal network model

a network consists of

- ▶ a set of terminals T
- $\blacktriangleright$  a set of devices  ${\cal D}$
- $\blacktriangleright$  a set of nets  ${\cal N}$
- ▶ D and N are partitions of T, *i.e.*, each terminal is in exactly one device and one net
- can represent network as bipartite graph with
  - $\blacktriangleright \ \mathcal{D}$  and  $\mathcal{N}$  the two vertex classes
  - $\blacktriangleright \ {\cal T}$  as the edges connecting them

#### Model

# Example

- ▶ (left) 3 buses, 2 generators, 1 battery, 2 loads, 3 transmission lines
- (middle, right) network model: 11 terminals, 3 nets, 8 devices



## Terminals

- power flows into or out of terminals on each device (negative power corresponds to power generation)
- $\blacktriangleright$  each terminal  $t \in \mathcal{T}$  has a *power schedule*

$$p_t = (p_t(1), \dots, p_t(T)) \in \mathsf{R}^T$$

giving power flow over time periods  $au=1,\ldots,\,T$ 

 $\blacktriangleright$  set of all terminal power schedules denoted by  $p \in \mathsf{R}^{|\mathcal{T}| imes T}$ 

## **Devices**

devices model general power system elements

- generators
- loads (deferrable, curtailable, fixed)
- transmission lines
- energy storage systems
- other energy sinks, sources, and converters
- ▶  $p_d \in \mathsf{R}^{|d| imes T}$  is the set of |d| power schedules for terminals in device d
- ▶ device objective function  $f_d(p_d) : \mathbf{R}^{|d| \times T} \to \mathbf{R} \cup \{+\infty\}$ 
  - $\blacktriangleright +\infty$  used to encode device constraints
  - > can also have private variables e.g., state of charge for a battery

- nets are ideal (lossless, uncapacitated) energy exchange points
- ▶  $p_n \in \mathsf{R}^{|n| imes T}$  is the set of |n| power schedules for terminals in net n
- semantics of nets: power balance holds at all times

$$\sum_{t\in n} p_t( au) = 0, \quad au = 1, \dots, \, T, \quad n \in \mathcal{N}$$

# Average net power imbalance

• for terminal t corresponding to net n, we define

$$ar{p}_t = rac{1}{|n|} \sum_{t' \in n} p_{t'}$$

i.e.,  $\bar{p}_t$  averages terminal power profiles over its net

$$\blacktriangleright \ \bar{p}_d = \{\bar{p}_t \mid t \in d\}$$

• net power balance can be written as  $ar{p}=0$ 

# Dynamic optimal power flow problem

dynamic optimal power flow problem (D-OPF):

$$egin{array}{lll} {
m minimize} & f(p) = \sum_{d \in \mathcal{D}} f_d(p_d) \ {
m subject to} & ar{p} = 0 \end{array}$$

- $\blacktriangleright$  variables are terminal power schedules  $p \in \mathsf{R}^{|\mathcal{T}| imes T}$
- net power balance equality constraints are linear
- other constraints, objective terms contained in device objectives
- optimal dual variables give (scaled) locational marginal prices (LMP), which are time-varying
- when all device objective functions are convex, D-OPF can be solved globally and effeciently (in principle)

# Outline

Introduction

Model

Device examples

Algorithm

Numerical results

Extensions and conclusion

Device examples

### Generator

- single terminal device with power schedule  $p_{gen}$
- cost function  $\sum_{\tau=1}^{T} \phi_{\text{gen}}(-p_{\text{gen}}(\tau))$
- min/max power constraints:  $P^{\min} \leq -p_{gen} \leq P^{\max}$
- ramp-rate constraints:

$$R^{\min} \leq -\left(p_{ ext{gen}}( au+1) - p_{ ext{gen}}( au)
ight) \leq R^{\max}$$

- can include other costs and constraints, e.g.,
  - turning on and off
  - power change costs

# **Transmission line**

- two terminal device with power schedules  $p_1$  and  $p_2$
- zero cost function
- capacity constraint:  $|p_1 p_2| \leq C^{\max}$
- line loss constraint:  $p_1 + p_2 = \ell(p_1, p_2)$
- $\ell(p_1, p_2) \ge 0$  is loss function ( $\ell(0, 0) = 0$ , typically convex)

#### Energy storage system

- $\blacktriangleright$  single terminal device with power schedule  $p_{\rm ess}$
- zero cost function
- charging/discharging rate limits  $-D^{\max} \leq p_{ ext{ess}} \leq C^{\max}$
- local storage state variables

$$q( au) = q^{ ext{init}} + \sum_{t=1}^{ au} p_{ ext{ess}}(t), \quad au = 1, \dots, T$$

- $\blacktriangleright$  capacity limits 0  $\leq q( au) \leq Q^{ ext{max}}$ ,  $au=1,\ldots,T$
- more sophisticated models can include storage cycling penalty, state-dependent charging and discharging rate limits, efficiencies

### Loads

- single terminal device with power schedule  $p_{\text{load}}$
- ▶ fixed (non-smart) load:  $p_{load} = l, l \in \mathbf{R}^T$  is given load profile
- ▶ deferrable load: total energy consumption E in the time interval [A, D]:

$$\sum_{ au=A}^{D} p_{ ext{load}}( au) = E, \qquad 0 \leq p_{ ext{load}} \leq L^{ ext{max}}$$

**curtailable load**: pay penalty for failing to meet load profile *l*:

$$lpha \sum_{ au=1}^T (l( au) - p_{ ext{load}}( au))_+$$

## **Electric vehicle charging**

- single terminal device with power schedule  $p_{\rm ev}$
- ullet desired minimum state of charge profile  $q^{ ext{des}} \in \mathbf{R}^T$
- can only be charged in time interval [A, D]
- $\blacktriangleright$  charging constraints  $0 \leq p_{ extsf{ev}} \leq C^{ extsf{max}}$
- charge level given by

$$q( au) = q^{ ext{init}} + \sum_{ au' = A}^{ au} p_{ ext{ev}}( au'),$$

shortfall cost function

$$lpha \sum_{ au=A}^{D} (q^{ ext{des}}( au) - q( au))_+,$$

 $\blacktriangleright$  can add terminal constraint,  $q(D)=Q^{ ext{cap}}$ 

#### Device examples

# Outline

Introduction

Model

Device examples

Algorithm

Numerical results

Extensions and conclusion

# Proximal message passing algorithm

repeat until convergence:

1. Proximal power schedule update.

$$p_d^{k+1} \coloneqq \operatorname*{argmin}_{p_d} \left( f_d(p_d) + 
ho/2 \left\| p_d - (p_d^k - ar p_d^k - u_d^k) 
ight\|_2^2 
ight)$$

in parallel, for each device

(ho > 0; RHS is proximal operator of  $f_d$  at  $p_d^k - \bar{p}_d^k - u_d^k$ )

2. Scaled price update.

$$u_n^{k+1}:=u_n^k+ar{p}_n^{k+1}$$

in parallel, for each net

# Devices compute new tentative power profiles



# Devices send tentative power profiles to neighboring nets



# Nets compute power imbalance; update prices



# Nets send updated prices, power imbalance to neighboring devices



# Proximal message passing algorithm

- each device only has knowledge of its own objective function
- for each device class, need to implement prox operator
- > all message passing is local, between devices and adjacent nets
- no global coordination other than iteration synchronization

### Convergence

if device objectives are closed convex proper and D-OPF has solution

- ▶ residual convergence:  $ar{p}^k 
  ightarrow 0$  (power balance achieved)
- $\blacktriangleright$  objective convergence:  $\sum_{d\in\mathcal{D}}f_d(p_d^k)
  ightarrow f^\star$
- dual variable convergence:  $ho u^k 
  ightarrow y^\star$

(operation is optimal) (optimal prices found)

# Outline

Introduction

Model

**Device examples** 

Algorithm

Numerical results

Extensions and conclusion

Numerical results

### Numerical examples

- 140 examples: 20 each of 7 different sizes
- $|\mathcal{N}|$  ranges from 100 to 100000
- $|\mathcal{D}|$  ranges from 200 to 200000
- $|\mathcal{T}|$  ranges from 300 to 300000
- T = 96 (24 hour period, 15-minute intervals)
- number of variables in D-OPF ranges from 30k to 30M
- network topology (transmission line connections) chosen as random geometric graph, plus some long lines

Example network with  $|\mathcal{N}| = 100$  (30k variables)



## **Devices**

▶ to each net, we attach a randomly chosen single terminal device

- generator
- battery
- fixed load
- deferrable load
- curtailable load

device parameters chosen so that problem is feasible but challenging

# **Prox functions**

• prox functions are easy to implement when  $f_d$  is separable in time

- fixed load
- curtailable load
- transmission line

(prox evaluation times measured in ns)

▶ for others, use CVXGEN to generate custom C code to solve QPs

- generator
- battery
- deferrable load

(prox evaluation times measured in  $\mu$ s)

# Serial multithreaded implementation

- examples run on 32-core 2.2Ghz Xeon with 64 (hyper)threads
- each prox function assigned to one of 64 threads using OpenMP
- $\blacktriangleright$  maximum time for prox function evaluation in each iteration is  $\approx 1$  ms, so we can estimate fully decentralized run time

Convergence for  $|\mathcal{N}| = 3000$  (1M variables)



# Solve time scaling (serial)



- serial multi-threaded implementation on 32-core machine with 64 independent threads
- fit exponent is 0.996
- with fully decentralized computation, sub second solve time for any size network

#### Numerical results

# Outline

Introduction

Model

**Device examples** 

Algorithm

Numerical results

Extensions and conclusion

Extensions and conclusion

# Handling uncertainty via receding horizon control

in every time period

- each device forecasts its own future costs/constraints over some horizon
- devices coordinate (optimize) using forecasts to obtain consumption/generation plan
- devices execute first period consumption/generation in plan

# Handling uncertainty via receding horizon control

in every time period

- each device forecasts its own future costs/constraints over some horizon
- devices coordinate (optimize) using forecasts to obtain consumption/generation plan
- devices execute first period consumption/generation in plan

- reacts to changes in constraint/objective forecasts
- same method used in chemical process control, supply chain optimization, ...
- forecasts do not need to be accurate

## Handling AC power flow

- assume voltage magnitudes are fixed
- introduce voltage phase angle profile  $\theta_t$  for each terminal
- add phase angle consistency constraint for each net  $n = \{t_1, \ldots, t_{|n|}\}$ :

$$\theta_{t_1} = \theta_{t_2} = \cdots = \theta_{t_{|n|}}$$

- Iocal device objectives include phase angle constraints
- proximal message passing readily extended to include phase angles

### Handling non-convexities

- with non-convex device objectives, D-OPF is (nominally) hard
- one approach: form convex relaxation of D-OPF (RD-OPF)

$$\begin{array}{ll} \text{minimize} & f^{\text{env}}(p) = \sum_{d \in \mathcal{D}} f^{\text{env}}_d(p_d) \\ \text{subject to} & \bar{p} = 0, \end{array}$$

where  $f_d^{env}$  is convex envelope of  $f_d$ 

- RD-OPF is convex optimization problem
  - readily solved
  - gives lower bound on D-OPF optimal value
  - provides good starting point for local optimization
  - in some cases, relaxation is tight

### **Relaxed generator**

- Ieft: (nonconvex) generator with power range, option to turn off
- right: its relaxation



# Relaxed transmission line



black: lossless, capacitated line; gray: AC power loss

Extensions and conclusion

# Summary and vision

- we've developed a completely decentralized method for optimal power exchange/consumption/generation on a smart grid
- decentralized computation allows for sub second solve times independent of network size

# Summary and vision

- we've developed a completely decentralized method for optimal power exchange/consumption/generation on a smart grid
- decentralized computation allows for sub second solve times independent of network size
- when combined with receding horizon control, can be used for real-time network operation

# Summary and vision

- we've developed a completely decentralized method for optimal power exchange/consumption/generation on a smart grid
- decentralized computation allows for sub second solve times independent of network size
- when combined with receding horizon control, can be used for real-time network operation
- we envision a plug-and-play system that is robust, self-healing (internet of power)