Dynamic Network Energy Management via Proximal Message Passing

Stephen Boyd, Matt Kraning, Eric Chu

 $CIS\ AdCom,\ 11/14/2012$

Smart grid

- embed intelligence in energy systems to
 - ▶ do more with less
 - ▶ reduce CO2 emissions
 - ▶ handle uncertainties in generation (wind, solar, ...)
 - exploit new demand response capabilities
 - ▶ handle shift towards EVs
 - extend life of current infrastructure
- ▶ cf. current system
 - load is what it is; generation scheduled to match it
 - systems built with large margins for max load

Smart grid critical technologies: The big picture

- physical layer
 - photovoltaics, switches, storage, fuel cells, . . .
- infrastructure/plumbing
 - smart enabled stuff, communication protocols, security, . . .
- algorithms (our focus)
 - real-time decision making
- economics layer
 - markets, investment, regulation, ...

Coordinating devices on the smart grid

- setting: a network of smart devices, that can adjust/change/defer their power consumption/generation
- ▶ goal: coordinate device behavior (generation/consumption) over time

- ▶ method: use (mathematical) optimization to coordinate devices
- ▶ algorithm: use message passing to solve optimization problem

Device coordination via optimization

- devices exchange energy at nodes, in multiple time periods
 - generators
 - loads (fixed, deferrable, curtailable)
 - energy storage systems
 - transmission lines
- each device has dynamic constraints, cost function over time
- to coordinate devices, minimize total cost subject to power balance at each node, in each time period
- solving this optimization problem gives
 - (optimal) device power schedules
 - locational marginal prices at each node in each time period

Example

- ▶ simple network with 4 devices, 1 power exchange node
- power scheduled over 96 time periods (24 hrs, 15 min intervals)

- generator (cost of generation, max power, ramp rate limits)
- battery (max charge/discharge rates, capacity)
- fixed load
- deferrable load (max power, total work over given time interval)

Optimal power and price profile

How to solve the dynamic energy management problem

centralized

- gather all devices' costs and constraints
- solve on one machine

decentralized

- each device has its own solver
- devices exchange messages with neighbors
- coordinate local behavior to obtain global solution

Message passing algorithm

- repeat until convergence:
 - each device optimizes its cost function subject to its constraints, taking into account node prices
 - at each node, devices exchange proposed energy profiles, update node price

- device power profiles and node prices are messages passed between adjacent devices and nodes
- devices don't need to know about other devices (except through their effect on common nodes)
- (when done right) algorithm converges to an optimal solution

Larger example

- network with 8000 devices exchanging power at 3000 nodes (mixture of generators, batteries, smart loads, transmission lines, ...)
- coordinate devices over 96 time periods
- $ightharpoonup \sim 1$ million variables in optimization problem

Solve time scaling

- serial multi-threaded implementation on 32-core machine with 64 independent threads
- ▶ best fit exponent is 0.996
- fully decentralized computation would result in sub second solve time for any size network

Handling uncertainty via receding horizon control

- ▶ in every time period
 - each device forecasts future costs/constraints over some horizon
 - devices coordinate (optimize) using forecasts to obtain consumption/generation plan
 - devices execute first period consumption/generation in plan

- reacts to changes in constraint/objective forecasts
- same method used in chemical process control, supply chain optimization, . . .

Summary and vision

- we've developed a completely decentralized method for optimal power exchange/consumption/generation on a smart grid
- decentralized computation allows for sub second solve times independent of network size
- when combined with receding horizon control, can be used for real-time network operation
- we envision a plug-and-play system that is robust, self-healing (internet of power)