
Foundations and Trends R© in Optimization
Vol. 1, No. 2 (2013) 70–122
c© 2013 M. Kraning, E. Chu, J. Lavaei, and S. Boyd

DOI: xxx

Dynamic Network Energy Management via

Proximal Message Passing

Matt Kraning
Stanford University

mkraning@stanford.edu

Eric Chu
Stanford University

echu508@stanford.edu

Javad Lavaei
Columbia University

lavaei@ee.columbia.edu

Stephen Boyd
Stanford University
boyd@stanford.edu

Contents

1 Introduction 70

1.1 Overview . 70

1.2 Related work . 73

1.3 Outline . 75

2 Network Model 76

2.1 Formal definition and notation 76

2.2 Dynamic optimal power flow problem 78

2.3 Discussion . 79

2.4 Example . 81

3 Device Examples 83

3.1 Generators . 83

3.2 Transmission lines . 84

3.3 Converters and interface devices 86

3.4 Storage devices . 87

3.5 Loads . 88

4 Convexity 91

4.1 Devices . 91

4.2 Relaxations . 92

ii

iii

5 Proximal Message Passing 95

5.1 Derivation . 96

5.2 Convergence . 98

5.3 Discussion . 101

6 Numerical Examples 103

6.1 Network topology . 103

6.2 Devices . 104

6.3 Serial multithreaded implementation 107

6.4 Peer-to-peer implementation 107

6.5 Results . 108

7 Extensions 111

7.1 Closed-loop control . 111

7.2 Security constrained optimal power flow 113

7.3 Hierarchical models and virtualized devices 113

7.4 Local stopping criteria and ρ updates 115

8 Conclusion 116

Abstract

We consider a network of devices, such as generators, fixed loads, de-

ferrable loads, and storage devices, each with its own dynamic con-

straints and objective, connected by AC and DC lines. The problem is

to minimize the total network objective subject to the device and line

constraints over a time horizon. This is a large optimization problem

with variables for consumption or generation for each device, power

flow for each line, and voltage phase angles at AC buses in each period.

We develop a decentralized method for solving this problem called

proximal message passing. The method is iterative: At each step, each

device exchanges simple messages with its neighbors in the network

and then solves its own optimization problem, minimizing its own ob-

jective function, augmented by a term determined by the messages it

has received. We show that this message passing method converges to

a solution when the device objective and constraints are convex. The

method is completely decentralized, and needs no global coordination

other than synchronizing iterations; the problems to be solved by each

device can typically be solved extremely efficiently and in parallel.

The proximal message passing method is fast enough that even a se-

rial implementation can solve substantial problems in reasonable time

frames. We report results for several numerical experiments, demon-

strating the method’s speed and scaling, including the solution of a

problem instance with over 30 million variables in 5 minutes for a serial

implementation; with decentralized computing, the solve time would be

less than one second.

1

Introduction

1.1 Overview

A traditional power grid is operated by solving a number of opti-

mization problems. At the transmission level, these problems include

unit commitment, economic dispatch, optimal power flow (OPF), and

security-constrained OPF (SC-OPF). At the distribution level, these

problems include loss minimization and reactive power compensation.

With the exception of the SC-OPF, these optimization problems are

static with a modest number of variables (often less than 10000), and

are solved on time scales of 5 minutes or more. However, the operation

of next generation electric grids (i.e., smart grids) will rely critically on

solving large-scale, dynamic optimization problems involving hundreds

of thousands of devices jointly optimizing tens to hundreds of millions

of variables, on the order of seconds rather than minutes [16, 41]. More

precisely, the distribution level of a smart grid will include various types

of active dynamic devices, such as distributed generators based on solar

and wind, batteries, deferrable loads, curtailable loads, and electric ve-

hicles, whose control and scheduling amount to a very complex power

management problem [59, 9].

In this paper, we consider a general problem, which we call the

70

1.1. Overview 71

dynamic optimal power flow problem (D-OPF), in which dynamic de-

vices are connected by both AC and DC lines, and the goal is to jointly

minimize a network objective subject to local constraints on the devices

and lines. The network objective is the sum of the objective functions of

the devices. These objective functions extend over a given time horizon

and encode operating costs such as fuel consumption and constraints

such as limits on power generation or consumption. In addition, the

objective functions encode dynamic objectives and constraints such as

limits on ramp rates for generators or charging and capacity limits for

storage devices. The variables for each device consist of its consumption

or generation in each time period and can also include local variables

which represent internal states of the device over time, such as the state

of charge of a storage device.

When all device objective functions and line constraints are convex,

D-OPF is a convex optimization problem, which can in principle be

solved efficiently [7]. If not all device objective functions are convex, we

can solve a relaxed form of the D-OPF which can be used to find good,

local solutions to the D-OPF. The optimal value of the relaxed D-OPF

also gives a lower bound for the optimal value of the D-OPF which can

be used to evaluate the suboptimality of a local solution, or, when the

local solution has the same value, as a certificate of global optimality.

For any network, the corresponding D-OPF contains at least as

many variables as the number of devices and lines multiplied by the

length of the time horizon. For large networks with hundreds of thou-

sands of devices and a time horizon with tens or hundreds of time peri-

ods, the extremely large number of variables present in the correspond-

ing D-OPF makes solving it in a centralized fashion computationally

impractical, even when all device objective functions are convex.

We propose a decentralized optimization method which efficiently

solves the D-OPF by distributing computation across every device in

the network. This method, which we call proximal message passing,

is iterative: At each iteration, every device passes simple messages to

its neighbors and then solves an optimization problem that minimizes

the sum of its own objective function and a simple regularization term

that only depends on the messages it received from its neighbors in the

72 Introduction

previous iteration. As a result, the only non-local coordination needed

between devices for proximal message passing is synchronizing itera-

tions. When all device objective functions are convex, we show that

proximal message passing converges to a solution of the D-OPF.

Our algorithm can be used several ways. It can be implemented in

a traditional way on a single computer or cluster by collecting all the

device constraints and objectives. We will demonstrate this use with

an implementation that runs on a single 32-core computer with hy-

perthreading (64 independent threads). A more interesting use is in a

peer-to-peer architecture, in which each device contains its own pro-

cessor, which carries out the required local dynamic optimization and

exchanges messages with its neighbors on the network. In this setting,

the devices do not need to divulge their objectives or constraints; they

only need to support a simple protocol for interacting with their neigh-

bors. Our algorithm ensures that the network power flows and AC bus

phase angles will converge to their optimal values, even though each

device has very little information about the rest of the network, and

only exchanges limited messages with its immediate neighbors.

Due to recent advances in convex optimization [61, 46, 47], in many

cases the optimization problems that each device solves in each it-

eration of proximal message passing can be executed at millisecond

or even microsecond time-scales on inexpensive, embedded processors.

Since this execution can happen in parallel across all devices, the entire

network can execute proximal message passing at kilohertz rates. We

present a series of numerical examples to illustrate this fact by using

proximal message passing to solve instances of the D-OPF with over

30 million variables serially in 5 minutes. Using decentralized comput-

ing, the solve time would be essentially independent of the size of the

network and require just a fraction of a second.

We note that although a primary application for proximal message

passing is power management, it can easily be adapted to more general

resource allocation and graph-structured optimization problems [51, 2].

1.2. Related work 73

1.2 Related work

The use of optimization in power systems dates back to the 1920s and

has traditionally concerned the optimal dispatch problem [22], which

aims to find the lowest cost method for generating and delivering power

to consumers, subject to physical generator constraints. With the ad-

vent of computer and communication networks, many different ways

to numerically solve this problem have been proposed [62] and more

sophisticated variants of optimal dispatch have been introduced, such

as OPF, economic dispatch, and dynamic dispatch [12], which extend

optimal dispatch to include various reliability and dynamic constraints.

For reviews of optimal and economic dispatch as well as general power

systems, see [4] and the book and review papers cited above.

When modeling AC power flow, the D-OPF is a dynamic version of

the OPF [8], extending the latter to include many more types of devices

such as storage units. Recent smart grid research has focused on the

ability of storage devices to cut costs and catalyze the consumption of

variable and intermittent renewables in the future energy market [23,

44, 13, 48]. With D-OPF, these storage concerns are directly addressed

and modeled in the problem formulation with the introduction of a time

horizon and coupling constraints between variables across periods.

Distributed optimization methods are naturally applied to power

networks given the graph-structured nature of the transmission and

distribution networks. There is an extensive literature on distributed

optimization methods, dating back to the early 1960s. The prototypi-

cal example is dual decomposition [14, 17], which is based on solving

the dual problem by a gradient method. In each iteration, all devices

optimize their local (primal) variables based on current prices (dual

variables). Then the dual variables are updated to account for imbal-

ances in supply and demand, with the goal being to determine prices

for which supply equals demand.

Examples of distributed algorithms in the power systems litera-

ture include two phase procedures that resemble a single iteration of

dual decomposition. In the first phase, dynamic prices are set over a

given time horizon (usually hourly over the following 24 hours) by some

mechanism (e.g., centrally by an ISO [28, 29], or through information

74 Introduction

aggregation in a market [57]). In the second phase, these prices allow

individual devices to jointly optimize their power flows with minimal

(if any) additional coordination over the time horizon. More recently,

building on the work of [39], a distributed algorithm was proposed [38]

to solve the dual OPF using a standard dual decomposition on subsys-

tems that are maximal cliques of the power network.

Dual decomposition methods are not robust, requiring many tech-

nical conditions, such as strict convexity and finiteness of all local cost

functions, for both theoretical and practical convergence to optimality.

One way to loosen the technical conditions is to use an augmented La-

grangian [25, 49, 5], resulting in the method of multipliers. This subtle

change allows the method of multipliers to converge under mild tech-

nical conditions, even when the local (convex) cost functions are not

strictly convex or necessarily finite. However, this method has the dis-

advantage of no longer being separable across subsystems. To achieve

both separability and robustness for distributed optimization, we can

instead use the alternating direction method of multipliers (ADMM)

[21, 20, 15, 6]. ADMM is very closely related to many other algorithms,

and is identical to Douglas-Rachford operator splitting; see, e.g., the

discussion in [6, §3.5].

Augmented Lagrangian methods (including ADMM) have previ-

ously been applied to the study of power systems with static, single

period objective functions on a small number of distributed subsystems,

each representing regional power generation and consumption [35]. For

an overview of related decomposition methods applied to power flow

problems, we direct the reader to [36, 1] and the references therein.

The proximal message passing decentralized power scheduling

method is similar in spirit to flow control on a communication network,

where each source modulates its sending rate based only on information

about the number of un-acknowledged packets; if the network state re-

mains constant, the flows converge to levels that satisfy the constraints

and maximize a total utility function [33, 42]. In Internet flow control,

this is called end-point control, since flows are controlled (mostly) by

devices on the edges of the network. A decentralized proximal message

passing method is closer to local control, since decision making is based

1.3. Outline 75

only on interaction with neighbors on the network. Another difference

is that the messages our method passes between devices are virtual, and

not actual energy flows. (Once converged, of course, they can become

actual energy flows.)

1.3 Outline

The rest of this paper is organized as follows. In chapter 2 we give the

formal definition of our network model. In chapter 3 we give examples

of how to model specific devices such as generators, deferrable loads

and energy storage systems in our formal framework. In Chapter 4, we

describe the role that convexity plays in the D-OPF and introduce the

idea of convex relaxations as a tool to find solutions to the D-OPF in

the presence of non-convex device objective functions. In Chapter 5 we

derive the proximal message passing equations. In Chapter 6 we present

a series of numerical examples, and in Chapter 7 we discuss how our

framework can be extended to include use cases we do not explicitly

cover in this paper.

2

Network Model

We begin with an abstract definition of our network model and the

dynamic optimal power flow problem, and the compact notation we

use to describe it. We then give some discussion and an example to

illustrate how the model is used to describe a real power network.

2.1 Formal definition and notation

A network consists of a finite set of terminals T , a finite set of devices

D, and a finite set of nets N . The sets D and N are both partitions

of T . Thus, each device and each net has a set of terminals associated

with it, and each terminal is associated with exactly one device and

exactly one net. Equivalently, a network can be defined as a bipartite

graph with one set of vertices given by devices, the other set of vertices

given by nets, and edges given by terminals — very similar in nature

to ‘normal realizations’ [19] of graphs in coding theory.

Each terminal t ∈ T has a type, either AC or DC, corresponding to

the type of power that flows through the terminal. The set of terminals

can be partitioned by type into the sets T dc and T ac, which represent

the set of all terminals of type DC and AC, respectively. A terminal of

either type has an associated power schedule pt = (pt(1), . . . , pt(T)) ∈

76

2.1. Formal definition and notation 77

RT , where T is a given time horizon. Here, pt(τ) is the amount of power

consumed by device d in time period τ through terminal t, where t is

associated with d. When pt(τ) < 0, −pt(τ) is the energy generated

by device d through terminal t in time period τ . (For AC terminals,

pt is the real power flow; we do not consider reactive power in this

paper.) In addition to (real) power schedules, AC terminals t ∈ T ac also

have phase schedules θt = (θt(1), . . . , θt(T)) ∈ RT , which represent the

absolute voltage phase angles for terminal t over time. (DC terminals

are not associated with voltage phase angles.)

We use a simple method for indexing quantities such as power sched-

ules that are associated with each terminal and vary over time. For

devices d ∈ D, we use ‘d’ to refer to both the device itself as well as

the set of terminals associated with it, i.e., we say t ∈ d if terminal t is

associated with device d. The set of all power schedules associated with

device d is denoted by pd = {pt | t ∈ d}, which we can associate with a

|d| ×T matrix. We use the same notation for nets as we do for devices.

The set of all terminal power schedules is denoted by p = {pt | t ∈ T },

which we can associate with a |T |×T matrix. For other quantities that

are associated with each terminal (such as phase schedules), we use an

identical notation to power schedules, i.e., θd = {θt | t ∈ d} is the set of

phase schedules associate with device d (with an identical notation for

nets), and the set of all phase schedules is denoted by θ = {θt | t ∈ T }.

Each device d contains a set of |d| terminals and has an associated

objective function fd : R|d|×T ×R|dac|×T → R∪{+∞}, where dac = {t |
t ∈ d∩T ac} is the set of all AC terminals associated with device d, and

we set fd(pd, θd) = ∞ to encode constraints on the power and phase

schedules for the device. When fd(pd, θd) < ∞, we say that (pd, θd)

are a set of realizable power and phase schedules for device d, and we

interpret fd(pd, θd) as the cost (or revenue, if negative) to device d for

operating according to power schedule pd and phase schedule θd.

Similarly, each net n ∈ N contains a set of |n| terminals, all of which

are required to have the same type. (We will model AC–DC conversion

using devices.) We refer to nets containing AC terminals as AC nets

and nets containing DC terminals as DC nets. Nets are lossless energy

carriers which constrain the power schedules (and phase schedules in

78 Network Model

the case of AC nets) of their constituent terminals: we require power

balance in each time period, which is represented by the constraints
∑

t∈n

pt(τ) = 0, τ = 1, . . . , T, (2.1)

for each n ∈ N . In addition to power balance, each AC net imposes

the phase consistency constraints

θt1
(τ) = · · · = θt|n|

(τ), τ = 1, . . . , T, (2.2)

where n = {t1, . . . , t|n|}. In other words, in each time period the power

flows on each net balance, and all terminals on the same AC net have

the same phase.

We define the average net power imbalance p̄ : T → RT , as

p̄t =
1

|n|
∑

t′∈n

pt′ , (2.3)

where t ∈ n, i.e., terminal t is associated with net n. In other words,

p̄t(τ) is the average power schedule of all terminals associated with the

same net as terminal t at time τ . We overload this notation for devices

by defining p̄d = {p̄t | t ∈ d}. Using an identical notation for nets,

we can see that p̄n simply contains |n| copies of the average net power

imbalance for net n. The net power balance constraint for all terminals

can be expressed as p̄ = 0.

For AC terminals, we define the phase residual θ̃ : T ac → RT as

θ̃t = θt − 1

|n|
∑

t′∈n

θt′ = θt − θ̄t,

where t ∈ n and n is an AC net. In other words, θ̃t(τ) is the difference

between the phase angle of terminal t and the average phase angle of

all terminals attached to net n, at time τ . As with the average power

imbalance, we overload this notation for devices by defining θ̃d = {θ̃t |
t ∈ d ∩ T ac} with a similar notation for nets. The phase consistency

constraint for all AC terminals can be expressed as θ̃ = 0.

2.2 Dynamic optimal power flow problem

We say that a set of power and phase schedules p : T → RT , θ :

T ac → RT is feasible if fd(pd, θd) < ∞ for all d ∈ D (i.e., all devices’

2.3. Discussion 79

power and phase schedules are realizable), and both p̄ = 0 and θ̃ = 0

(i.e., power balance and phase consistency holds across all nets). We

define the network objective as f(p, θ) =
∑

d∈D fd(pd, θd). The dynamic

optimal power flow problem (D-OPF) is

minimize f(p, θ)

subject to p̄ = 0, θ̃ = 0,
(2.4)

with variables p : T → RT , θ : T ac → RT . We refer to p and θ as

optimal if they solve (2.4), i.e., globally minimize the objective among

all feasible p and θ. We refer to p and θ as locally optimal if they are a

locally optimal point for (2.4).

Dual variables and locational marginal prices. Suppose p0 is a set of

optimal power schedules, that also minimizes the Lagrangian

f(p, θ) +
∑

t∈T

T
∑

τ=1

(y0
p)t(τ)p̄t(τ),

subject to θ̃ = 0, where y0
p : T → RT are the dual variables associ-

ated with the power balance constraint p̄ = 0. (This is actually the

partial Lagrangian as we only dualize the power balance constraints,

but not the phase consistency constraints.) In this case we call y0
p a set

of optimal Lagrange multipliers or dual variables. When p0 is a locally

optimal point, which also locally minimizes the Lagrangian, then we

refer to y0
p as a set of locally optimal Lagrange multipliers.

The dual variables y0
p are related to the traditional concept of lo-

cational marginal prices L0 : T → RT by rescaling the dual variables

associated with each terminal according to the size of its associated

net, i.e., L0
t = |n|(y0

p)t, where t ∈ n. This rescaling is due to the fact

that locational marginal prices are the dual variables associated with

the constraints in (2.1) rather than their scaled form used in (2.4) [18].

2.3 Discussion

We now describe our model in a less formal manner. Generators, loads,

energy storage systems, and other power sources and sinks are modeled

as single terminal devices. Transmission lines (or more generally, any

80 Network Model

wire or set of wires that conveys power), AC-DC converters, and AC

phase shifters are modeled as two-terminal devices. Terminals are ports

on a device through which power flows, either into or out of the device

(or both, at different times, as happens in a storage device). The flow

for AC terminals could be, e.g., three phase, two phase, single phase,

230V, or 230kV; the flow for DC terminals could be high voltage DC,

12V DC, or a floating voltage (e.g., the output of a solar panel). We

model these real cases with a different type for each mechanism (e.g.,

two and three phase AC terminals would have distinct types and could

not be connected to the same net).

Nets are used to model ideal lossless uncapacitated connections be-

tween terminals over which power is transmitted and physical con-

straints hold (e.g., equal voltages, currents summing to zero); losses,

capacities, and more general connection constraints between a set of

terminals can be modeled with the addition of a device and individual

nets which connect each terminal to the new device. An AC net cor-

responds to a direct connection between its associated terminals (e.g.,

a bus); all the terminals’ voltage phases must be the same and their

power is conserved. A two terminal DC net is just a wired connection

of the terminals. A DC net with more than two terminals is a smart

power router, which actively chooses how to distribute the incoming

and outgoing power flows among its terminals.

The objective function of a device is used to measure the cost (which

can be negative, representing revenue) associated with a particular

mode of operation, such as a given level of consumption or genera-

tion of power. This cost can include the actual direct cost of operating

according to the given power schedules, such as a fuel cost, as well as

other costs such as CO2 generation, or costs associated with increased

maintenance and decreased system lifetime due to structural fatigue.

The objective function can also include local variables other than power

and phase schedules, such as the state of charge of a storage device.

Constraints on the power and phase schedules and internal variables

for a device are encoded by setting the objective function to +∞ for

power and phase schedules that violate the constraints. In many cases,

a device’s objective function will only take on the values 0 and +∞,

2.4. Example 81

Figure 2.1: A simple network (left); its transformation into standard form (right).

indicating no local preference among feasible power and phase sched-

ules. Many devices, especially single-terminal devices such as loads or

generators, impose no constraints on their AC terminals’ phase angles;

in other words, these terminals have ‘floating’ voltage phase angles,

which are free to take any value.

2.4 Example

We illustrate how a traditional power network can be recast into our

network model in Figure 2.1. The original power network, shown on

the left, contains 2 loads, 3 buses, 3 transmission lines, 2 generators,

and a single battery storage system. We can transform this small power

grid into our model by representing it as a network with 11 terminals,

8 devices, and 3 nets, shown on the right of figure 2.1. Terminals are

shown as small filled circles. Single terminal devices, which are used

to model loads, generators, and the battery, are shown as boxes. The

transmission lines are two terminal devices represented by solid lines.

The nets are shown as dashed rounded boxes. Terminals are associated

with the device they touch and the net in which they are contained.

The set of terminals can be partitioned by either the devices they

are associated with, or the nets in which they are contained. Figure 2.2

shows the network in Figure 2.1 as a bipartite graph, with devices on

the left and nets on the right. In this representation, terminals are

represented by the edges of the graph.

82 Network Model

T3

L2

T2

G2

B

T1

G1

L1

Figure 2.2: The network in Figure 2.1 represented as a bipartite graph. Devices
(boxes) are shown on the left with their associated terminals (dots). The terminals
are connected to their corresponding nets (solid boxes) on the right.

3

Device Examples

In this chapter we present several examples of how common devices can

be modeled in our framework. These examples are intentionally kept

simple, but could easily be extended with more refined objectives and

constraints. In these examples, it is easier to discuss operational costs

and constraints for each device separately. A device’s objective function

is equal to the device’s cost function unless any constraint is violated,

in which case we set the objective value to +∞. For all single terminal

devices, we describe their objective and constraints in the case of a DC

terminal. For AC terminal versions of one terminal devices, the cost

functions and constraints are identical to the DC case, and the device

imposes no constraints on the phase schedule.

3.1 Generators

A generator is a single-terminal device with power schedule pgen, which

generates power over a range, Pmin ≤ −pgen ≤ Pmax, and has ramp-

rate constraints

Rmin ≤ −Dpgen ≤ Rmax,

which limit the change of power levels from one period to the next.

Here, the operator D ∈ R(T −1)×T is the forward difference operator,

83

84 Device Examples

defined as

(Dx)(τ) = x(τ + 1) − x(τ), τ = 1, . . . , T − 1.

The cost function for a generator has the separable form

ψgen(pgen) =
T

∑

τ=1

φgen(−pgen(τ)),

where φ : R → R gives the cost of operating the generator at a given

power level over a single time period. This function is typically, but

not always, convex and increasing. It could be piecewise linear, or, for

example, quadratic:

φgen(x) = αx2 + βx,

where α, β > 0.

More sophisticated models of generators allow for them to be

switched on or off, with an associated cost each time they are turned on

or off. When switched on, the generator operates as described above.

When the generator is turned off, it generates no power but can still

incur costs for other activities such as idling.

3.2 Transmission lines

DC transmission line. A DC transmission line is a device with two

DC terminals with power schedules p1 and p2 that transports power

across some distance. The line has zero cost function, but the power

flows are constrained. The sum p1+p2 represents the loss in the line and

is always nonnegative. The difference p1−p2 can be interpreted as twice

the power flow from terminal one to terminal two. A DC transmission

line has a maximum flow capacity, given by

|p1 − p2|
2

≤ Cmax,

and the constraint

p1 + p2 − ℓ(p1, p2) = 0,

where ℓ(p1, p2) : RT × RT → RT
+ is a loss function.

3.2. Transmission lines 85

For a simple model of the line as a series resistance R with average

terminal voltage V , we have [4]

ℓ(p1, p2) =
R

V 2

(

p1 − p2

2

)2

.

A more sophisticated model for the capacity of a DC transmission

line includes a dynamic thermal model for the temperature of the line,

which (indirectly and dynamically) sets the maximum capacity of the

line. A simple model for the temperature at time τ , denoted ξ(τ), is

given by the first order linear dynamics

ξ(τ + 1) = αξ(τ) + (1 − α)ξamb(τ) + β(p1(τ) + p2(τ)),

for τ = 1, . . . , T − 1, where ξamb(τ) is the ambient temperature at

time τ , and α and β are model parameters that depend on the thermal

properties of the line. The capacity is then dynamically modulated by

requiring that ξ ≤ ξmax, where ξmax is the maximum safe temperature

for the line.

AC transmission line. An AC transmission line is a device with two

AC terminals, with (real) power schedules p1 and p2 and terminal volt-

age phase angles θ1 and θ2, that transmits power across some distance.

It has zero cost function, but the power flows and voltage phase angles

are constrained. Like a DC transmission line, the sum p1 + p2 repre-

sents the loss in the line, ℓ, and is always nonnegative. The difference

p1 − p2 can be interpreted as twice the power flow from terminal one

to terminal two. An AC line has a maximum flow capacity given by

|p1 − p2|
2

≤ Cmax.

(A line temperature based capacity constraint as described for a DC

transmission line can also be used for AC transmission lines)

We assume the line is characterized by its (series) admittance g+ib,

with g > 0. (We consider the series admittance model for simplicity; for

a more general Π model, similar but more complicated equations can be

derived.) Under the common assumption that the voltage magnitude

is fixed at V [4], the power and phase schedules satisfy the relations

p1 + p2 = 2gV 2(1 − cos(θ2 − θ1)),
p1 − p2

2
= bV 2 sin(θ2 − θ1),

86 Device Examples

which can be combined to give the relations

p1 + p2 =
1

4gV 2
(p1 + p2)2 +

g

4b2V 2
(p1 − p2)2,

p1 − p2

2
= bV 2 sin(θ2 − θ1).

Transmission lines are rarely operated with a phase angle difference

exceeding 15◦, and in this regime, the approximation sin(θ2 − θ1) ≈
θ2 − θ1 holds within 1%. This approximation, known as the ‘DC-OPF

approximation’ [4], is frequently used in power systems analysis and

transforms the second relation above into the relation

p1 − p2

2
= bV 2(θ2 − θ1). (3.1)

Note that the capacity limit constrains |p1 − p2|, which in turn con-

strains the phase angle difference |θ2 − θ1|; thus we can guarantee that

our small angle approximation is good by imposing a capacity con-

straint (which is possibly smaller than the true line capacity).

3.3 Converters and interface devices

Inverter. An inverter is a device with a DC terminal, dc, and an

AC terminal, ac, that transforms power from DC to AC and has no

cost function. An inverter has a maximum power output Cmax and a

conversion efficiency κ ∈ (0, 1]. It can be represented by the constraints

−pac(τ) = κpdc(τ), 0 ≤ −pac(τ) ≤ Cmax, τ = 1, . . . , T.

The voltage phase angle on the AC terminal, θac, is unconstrained.

Rectifier. A rectifier is a device with an AC terminal, ac, and a DC

terminal, dc, that transforms power from AC to DC and has no cost

function. A rectifier has a maximum power output Cmax and a conver-

sion efficiency κ ∈ (0, 1]. It can be represented by the constraints

−pdc(τ) = κpac(τ), 0 ≤ −pdc(τ) ≤ Cmax, τ = 1, . . . , T.

The voltage phase angle on the AC terminal, θac, is unconstrained.

3.4. Storage devices 87

Phase shifter. A phase shifter is a device with two AC terminals,

which is a lossless energy carrier that decouples their phase angles and

has zero cost function. A phase shifter enforces the power balance and

capacity limit constraints

p1(τ) + p2(τ) = 0, |p1(τ)| ≤ Cmax, τ = 1, . . . , T.

If the phase shifter can only support power flow in one direction, say,

from terminal 1 to terminal 2, then in addition we have the inequalities

p1(τ) ≥ 0, τ = 1, . . . , T . The voltage phase angles θ1 and θ2 are un-

constrained. (Indeed, this what a phase shifter is meant to do.) When

there is no capacity constraint, i.e., Cmax = ∞, we can think of a phase

shifter as a special type of net for AC terminals that enforces power

balance, but not voltage phase consistency. (However, we model it as

a device, not a net.)

External tie with transaction cost. An external tie is a connec-

tion to an external source of power. We represent this as a single

terminal device with power schedule pex. In this case, pex(τ)− =

max{−pex(τ), 0} is the amount of energy pulled from the source, and

pex(τ)+ = max{pex(τ), 0} is the amount of energy delivered to the

source, at time τ . We have the constraint |pex(τ)| ≤ Emax(τ), where

Emax ∈ RT is the transaction limit.

We suppose that the prices for buying and selling energy are given

by c ± γ respectively, where c(τ) is the midpoint price, and γ(τ) > 0

is the difference between the price for buying and selling (i.e., the

transaction cost). The cost function is then

−(c− γ)T (pex)+ + (c+ γ)T (pex)− = −cT pex + γT |pex|,

where |pex|, (pex)+, and (pex)− are all interpreted elementwise.

3.4 Storage devices

A battery is a single terminal energy storage device with power schedule

pbat, which can take in or deliver energy, depending on whether it is

charging or discharging. The charging and discharging rates are limited

by the constraints −Dmax ≤ pbat ≤ Cmax, where Cmax ∈ RT and

88 Device Examples

Dmax ∈ RT are the maximum charging and discharging rates. At time

τ , the charge level of the battery is given by local variables

q(τ) = qinit +
τ

∑

t=1

pbat(t), τ = 1, . . . , T,

where qinit is the initial charge. It has zero cost function and the charge

level must not exceed the battery capacity, i.e., 0 ≤ q(τ) ≤ Qmax,

τ = 1, . . . , T . It is common to constrain the terminal battery charge

q(T) to be some specified value or to match the initial charge qinit.

More sophisticated battery models include (possibly state-

dependent) charging and discharging inefficiencies as well as charge

leakage [26]. In addition, they can include costs which penalize exces-

sive charge-discharge cycling.

The same general form can be used to model other types of energy

storage systems, such as those based on super-capacitors, flywheels,

pumped hydro, or compressed air, to name just a few.

3.5 Loads

Fixed load. A fixed energy load is a single terminal device with zero

cost function which consists of a desired consumption profile, l ∈ RT .

This consumption profile must be satisfied in each period, i.e., we have

the constraint pload = l.

Thermal load. A thermal load is a single terminal device with power

schedule ptherm which consists of a heat store (room, cooled water reser-

voir, refrigerator), with temperature profile ξ ∈ RT , which must be

kept within minimum and maximum temperature limits, ξmin ∈ RT

and ξmax ∈ RT . The temperature of the heat store evolves as

ξ(τ + 1) = ξ(τ) + (µ/c)(ξamb(τ) − ξ(τ)) − (η/c)ptherm(τ),

for τ = 1, . . . , T − 1 and ξ(1) = ξinit, where 0 ≤ ptherm ≤ Hmax is the

cooling power consumption profile,Hmax ∈ RT is the maximum cooling

power, µ is the ambient conduction coefficient, η is the heating/cooling

efficiency, c is the heat capacity of the heat store, ξamb ∈ RT is the

3.5. Loads 89

ambient temperature profile, and ξinit is the initial temperature of the

heat store. A thermal load has zero cost function.

More sophisticated models [27] include temperature-dependent

cooling and heating efficiencies for heat pumps, more complex dynamics

of the system whose temperature is being controlled, and additional ad-

ditive terms in the thermal dynamics, to represent occupancy or other

heat sources.

Deferrable load. A deferrable load is a single terminal device with

zero cost function that must consume a minimum amount of power

over a given interval of time, which is characterized by the constraint
∑D

τ=A pload(τ) ≥ E, where E is the minimum total consumption for

the time interval τ = A, . . . ,D. The energy consumption in each time

period is constrained by 0 ≤ pload ≤ Lmax. In some cases, the load can

only be turned on or off in each time period, i.e., pload(τ) ∈ {0, Lmax}
for τ = A, . . . ,D.

Curtailable load. A curtailable load is a single terminal device which

does not impose hard constraints on its power requirements, but in-

stead penalizes the shortfall between a desired load profile l ∈ RT and

delivered power. In the case of a linear penalty, its cost function is

α1T (l − pload)+,

where (z)+ = max(0, z), pload ∈ RT is the amount of electricity deliv-

ered to the device, α > 0 is a penalty parameter, and 1 is the vector

with all components one. Extensions include time-varying and nonlin-

ear penalties on the energy shortfall.

Electric vehicle. An electric vehicle charging system is an example of

a device that combines aspects of a deferable load and a storage device.

We model it as a single terminal device with power schedule pev which

has a desired charging profile cdes ∈ RT and can be charged within

a time interval τ = A, . . . ,D. To avoid excessive charge cycling, we

assume that the electric vehicle battery cannot be discharged back into

the grid (in more sophisticated vehicle-to-grid models, this assumption

90 Device Examples

is relaxed), so we have the constraints 0 ≤ pev ≤ Cmax, where Cmax ∈
RT is the maximum charging rate. We assume that cdes(τ) = 0 for

τ = 1, . . . A − 1, cdes(τ) = cdes(D) for τ = D + 1, . . . , T , and that the

charge level is given by

q(τ) = qinit +
τ

∑

t=A

pev(t),

where qinit is the initial charge when it is plugged in at time τ = A.

We can model electric vehicle charging as a deferrable load, where

we require a given charge level to be achieved at some time. A more

realistic model is as a combination of a deferrable and curtailable load,

with cost function

α
D

∑

τ=A

(cdes(τ) − q(τ))+,

where α > 0 is a penalty parameter. Here cdes(τ) is the desired charge

level at time τ , and cdes(τ) − q(τ))+ is the shortfall.

4

Convexity

In this chapter we discuss the important issue of convexity, both of

devices and the resulting dynamic power flow problem.

4.1 Devices

We call a device convex if its objective function is convex. A network is

convex if all of its devices are convex. For convex networks, the D-OPF

is a convex optimization problem, which means that in principle we can

efficiently find a global solution [7]. When the network is not convex,

even finding a feasible solution for the D-OPF can become difficult,

and finding and certifying a globally optimal solution to the D-OPF

is generally intractable. However, special structure in many practical

power distribution problems can allow us to guarantee optimality.

In the examples from Chapter 3, the inverter, rectifier, phase shifter,

battery, fixed load, thermal load, curtailable load, electric vehicle, and

external tie are all convex devices using the constraints and objective

functions given. A deferrable load is convex if we drop the constraint

that it can only be turned on or off. We discuss the convexity properties

of the generator and AC and DC transmission lines next.

91

92 Convexity

4.2 Relaxations

One technique to deal with non-convex networks is to use convex re-

laxations. We use the notation genv to denote the convex envelope [52]

of the function g. There are many equivalent definitions for the con-

vex envelope, for example, genv = (g∗)∗, where g∗ denotes the convex

conjugate of the function g. We can equivalently define genv to be the

largest convex lower bound of g. If g is a convex, closed, proper (CCP)

function, then g = genv.

The relaxed dynamic optimal power flow problem (RD-OPF) is

minimize f env(p, θ)

subject to p̄ = 0, θ̃ = 0,
(4.1)

with variables p : T → RT , θ : T ac → RT . This is a convex opti-

mization problem, whose optimal value can in principle be computed

efficiently, and whose optimal objective value is a lower bound for the

optimal objective value of the D-OPF. In some cases, we can guarantee

a priori that a solution to the RD-OPF will also be a solution to the

D-OPF [56, 55] based on a property of the network objective such as

monotonicity or unimodularity. Even when the relaxed solution does

not satisfy all of the constraints in the unrelaxed problem, it can be

used as a starting point to help construct good, local solutions to the

unrelaxed problem. The suboptimality of these local solutions can then

be bounded by the gap between their network objective and the lower

bound provided by the solution to the RD-OPF. If this gap is small for

a given local solution, we can guarantee that it is nearly optimal.

Generator. When a generator is modeled as in Chapter 3 and is al-

ways powered on, it is a convex device. However, when given the ability

to be powered on and off, the generator is no longer convex. In this

case, we can relax the generator objective function so that its cost for

power production in each time period, given in Figure 4.1, is a convex

function. This allows the generator to produce power in the interval

[0, Pmin].

4.2. Relaxations 93

0 1 2 3 4

0.4

0.6

0.8

1.0

1.2

1.4

1.6

−pgen

φ
g
en

(p
g
en

)

0 1 2 3 4

0.4

0.6

0.8

1.0

1.2

1.4

1.6

−pgen

φ
en

v
g
en

(p
g
en

)

Figure 4.1: Left: Cost function for a generator that can be turned off. Right: Its
convex relaxation.

p1

p2

p1

p2

Figure 4.2: Left: Feasible sets of a transmission lines with no loss (black) and AC
loss (grey). Right: Their convex relaxations.

94 Convexity

AC and DC transmission lines. In a lossless transmission line (AC or

DC), we have ℓ(p1, p2) = 0, and thus the set of feasible power schedules

is the line segment

L = {(p1, p2) | p1 = −p2, p2 ∈ [−Cmax/2, Cmax/2]},

as shown in Figure 4.2 in black. When the transmission line has losses,

in most cases the loss function ℓ is a convex function of the input and

output powers, which leads to a feasible power region like the grey arc

in the left part of Figure 4.2.

The feasible set of a relaxed transmission line is given by the convex

hull of the original transmission line’s constraints. The right side of

figure 4.2 shows examples of this for both lossless and lossy transmission

lines. Physically, this relaxation gives lossy transmission lines the ability

to discard some additional power beyond what is simply lost to heat.

Since electricity is generally a valuable commodity in power networks,

the transmission lines will generally not throw away any additional

power in the optimal solution to the RD-OPF, leading to the power

line constraints in the RD-OPF being tight and thus also satisfying

the unrelaxed power line constraints in the original D-OPF. As was

shown in [40], when the network is a tree, this relaxation is always

tight. In addition, when all locational marginal prices are positive and

no other non-convexities exist in the network, the tightness of the line

constraints in the RD-OPF can be guaranteed in the case of networks

that have separate phase shifters on each loop in the networks whose

shift parameter can be freely chosen [54].

5

Proximal Message Passing

In this chapter we describe our method for solving D-OPF. We begin by

deriving the proximal message passing algorithms assuming that all the

device objective functions are convex closed proper (CCP) functions.

We then compare the computational and communication requirements

of proximal message passing with a centralized solver for the D-OPF.

The additional requirements that the functions are closed and proper

are technical conditions that are in practice satisfied by any convex

function used to model devices. We note that we do not require either

finiteness or strict convexity of any device objective function, and that

all results apply to networks with arbitrary topologies.

Notation

Whenever we have a set of variables that maps terminals to time peri-

ods, x : T → RT (which we can also associate with a |T | × T matrix),

we will use the same index, over-line, and tilde notation for the variables

x as we do for power schedules p and phase schedules θ. For example,

xt ∈ RT consists of the time period vector of values of x associated

with terminal t, x̄t = (1/|n|) ∑

t′∈n xt′ , where t ∈ n, and x̃t = xt − x̄t,

with similar notation for indexing x by devices and nets.

95

96 Proximal Message Passing

5.1 Derivation

We derive the proximal message passing equations by reformulating the

D-OPF using the alternating direction method of multipliers (ADMM)

and then simplifying the resulting equations. We refer the reader to [6]

for a thorough overview of ADMM.

We first rewrite the D-OPF as

minimize
∑

d∈D fd(pd, θd) +
∑

n∈N (gn(zn) + hn(ξn))

subject to p = z, θ = ξ
(5.1)

with variables p, z : T → RT , and θ, ξ : T ac → RT , where gn(zn) is the

indicator function on the set {zn | z̄n = 0} and hn(ξn) is the indicator

function on the set {ξn | ξ̃n = 0}. We use the notation from [6] and,

ignoring a constant, form the augmented Lagrangian

Lρ(p, θ, z, ξ, u, v) =
∑

d∈D

fd(pd, θd) +
∑

n∈N

(gn(zn) + hn(ξn))

+ (ρ/2)
(

‖p− z + u‖2
2 + ‖θ − ξ + v‖2

2

)

, (5.2)

with the scaled dual variables u = yp/ρ : T → RT and v = yθ/ρ :

T ac → RT , which we associate with |T | × T and |T ac| × T matrices,

respectively, where yp : T → RT are the dual variables associated with

the power balance constraints and yθ : T ac → RT are the dual variables

associated with the phase consistency constraints. Because devices and

nets are each partitions of the terminals, the last two terms of (5.2)

can be split across either devices or nets, i.e.,

‖p− z + u‖2
2 =

∑

d∈D

‖pd − zd + ud‖2
2 =

∑

n∈N

‖pn − zn + un‖2
2,

‖θ − ξ + v‖2
2 =

∑

d∈D

‖θd − ξd + vd‖2
2 =

∑

n∈N

‖θn − ξn + vn‖2
2.

The resulting ADMM algorithm is then given by the iterations

(pk+1
d , θk+1

d) := argmin
pd,θd

(

fd(pd, θd) + (ρ/2)(‖pd − zk
d + uk

d‖2
2

+‖θd − ξk
d + vk

d‖2
2)

)

, d ∈ D,

5.1. Derivation 97

zk+1
n := argmin

zn

(

gn(zn) + (ρ/2)‖zn − uk
n − pk+1

n ‖2
2

)

, n ∈ N ,

ξk+1
n := argmin

ξn

(

hn(ξn) + (ρ/2)‖ξn − vk
n − θk+1

n ‖2
2

)

, n ∈ N ,

uk+1
n := uk

n + (pk+1
n − zk+1

n), n ∈ N ,

vk+1
n := vk

n + (θk+1
n − ξk+1

n), n ∈ N ,

where the first step is carried out in parallel by all devices, and then

the second and third and then fourth and fifth steps are carried out in

parallel by all nets.

Since gn(zn) and hn(ξn) are simply indicator functions for each

net n, the second and third steps of the algorithm can be computed

analytically and are given by

zk+1
n := uk

n + pk+1
n − ūk

n − p̄k+1
n ,

ξk+1
n := v̄k

n + θ̄k+1
n ,

respectively. From the second expression, it is clear that ξk
n is simply

|n| copies of the same vector for all k.

Substituting these expressions into the u and v updates, the algo-

rithm can be simplified further to yield proximal message passing:

1. Prox schedule updates.

(pk+1
d , θk+1

d) := proxfd,ρ(pk
d − p̄k

d − uk
d, θ̄

k
d + v̄k−1

d − vk
d), d ∈ D.

2. Scaled price updates.

uk+1
n := uk

n + p̄k+1
n , n ∈ N ,

vk+1
n := ṽk

n + θ̃k+1
n , n ∈ N ,

where the prox function for a function g is given by

proxg,ρ(x) = argmin
y

(

g(y) + (ρ/2)‖x− y‖2
2

)

, (5.3)

and is guaranteed to exist when g is CCP [52]. If in addition v̄0 = 0

(note that any optimal dual variables v⋆ must also satisfy v̄⋆ = 0), then

the v update simplifies to vk+1
n := vk

n + θ̃k+1
n and the second argument

of the prox function in the first step simplifies to θ̄k
d − vk

d .

98 Proximal Message Passing

The origin of the name ‘proximal message passing’ should now be

clear. In each iteration, every device computes the prox function of its

objective function, with an argument that depends on messages passed

to it through its terminals by its neighboring nets in the previous it-

eration (p̄k
d, θ̃k

d , uk
d, and vk

d). Then, every device passes to its terminals

the newly computed power and phase schedules, pk+1
d and θk+1

d , which

are then passed to the terminals’ associated nets. Every net computes

the prox function of the power balance and phase consistency indicator

functions (which corresponds to projecting the power and phase sched-

ules back to feasibility), computes the new average power imbalance,

p̄k+1
n and phase residual, θ̃k+1

n , updates its dual variables, uk+1
n and

vk+1
n , and broadcasts these values to its associated terminals’ devices.

Since p̄k
n is simply |n| copies of the same vector for all k, all terminals

connected to the same net must have the same value for their dual vari-

ables associated with power balance throughout the algorithm, i.e., for

all values of k, uk
t = uk

t′ whenever t, t′ ∈ n for any n ∈ N .

As an example, consider the network represented by figures 2.1 and

2.2. The proximal message passing algorithm performs the power and

phase schedule updates on the devices (the boxes on the left in Fig-

ure 2.2). The devices share the respective power and phase profiles via

the terminals, and the nets (the solid boxes on the right) compute the

scaled price updates. For any network, the proximal message passing

algorithm can be thought of as alternating between devices (on the

left) and nets (on the right).

5.2 Convergence

Theory. We now comment on the convergence of proximal message

passing. Since proximal message passing is a version of ADMM, all

convergence results that hold for ADMM also hold for proximal message

passing. In particular, when all devices have CCP objective functions

and a feasible solution to the D-OPF exists, the following hold:

1. Power balance and phase consistency are achieved: p̄k → 0 and

θ̃k → 0 as k → ∞.

2. Operation is optimal:
∑

d∈D fd(pk
d, θ

k
d) → f⋆ as k → ∞.

5.2. Convergence 99

3. Optimal prices are found: ρuk = yk
p → y⋆

p and ρvk = yk
θ → y⋆

θ as

k → ∞.

Here f⋆ is the optimal value for the D-OPF, and y⋆
p and y⋆

θ are optimal

dual variables for the power schedule and phase consistency constraints,

respectively. The proof of these results (in the more general setting)

can be found in [6]. As a result of the third condition, the optimal

locational marginal prices L⋆ can be found for each net n ∈ N by

setting L⋆
n = |n|(y⋆

p)n.

Stopping criterion. Following [6], we can define primal and dual resid-

uals, which for proximal message passing simplify to

rk = (p̄k, θ̃k) sk = ρ((pk − p̄k) − (pk−1 − p̄k−1), θ̄k − θ̄k−1).

We give a simple interpretation of each residual. The primal residual is

simply the net power imbalance and phase inconsistency across all nets

in the network, which is the original measure of primal feasibility in the

D-OPF. The dual residual is equal to the difference between the current

and previous iterations of both the difference between power schedules

and their average net power as well as the average phase angle on each

net. The locational marginal price at each net is determined by the

deviation of all associated terminals’ power schedule from the average

power on that net. As the change in these deviations approaches zero,

the corresponding locational marginal prices converge to their optimal

values, and all phase angles are consistent across all AC nets.

We can define a simple criterion for terminating proximal message

passing when

‖rk‖2 ≤ ǫpri, ‖sk‖2 ≤ ǫdual,

where ǫpri and ǫdual are, respectively, primal and dual tolerances. We

can normalize both of these quantities to network size by the relation

ǫpri = ǫdual = ǫabs
√

|T |T ,

for some absolute tolerance ǫabs > 0.

100 Proximal Message Passing

Choosing a value of ρ. Numerous examples show that the value of

ρ can have a strong effect on the rate of convergence of ADMM and

proximal message passing. Many good methods for picking ρ in both

offline and online fashions are discussed in [6]. We note that unlike

other versions of ADMM, the scaling parameter ρ enters very simply

into the proximal equations and can thus be modified online without

incurring any additional computational penalties, such as having to re-

factorize a matrix. For devices whose objectives just encode constraints

(i.e., only take on the values 0 and +∞), the prox function reduces to

projection, and is independent of ρ.

We can modify the proximal message passing algorithm with the

addition of a third step

3. Parameter update and price rescaling.

ρk+1 := h(ρk, rk, sk),

uk+1 :=
ρk

ρk+1
uk+1,

vk+1 :=
ρk

ρk+1
vk+1,

for some function h. We desire to pick an h such that the primal

and dual residuals are of similar size throughout the algorithm, i.e.,

ρk‖rk‖2 ≈ ‖sk‖2 for all k. To accomplish this task, we use a simple

proportional-derivative controller to update ρ, choosing h to be

h(ρk) = ρk exp(λwk + µ(wk − wk−1)),

where wk = ρk‖rk‖2/‖sk‖2−1 and λ and µ are nonnegative parameters

chosen to control the rate of convergence. Typical values of λ and µ

are between 10−3 and 10−1.

When ρ is updated in such a manner, convergence is sped up in

many examples, sometimes dramatically. Although it can be difficult

to prove convergence of the resulting algorithm, a standard trick is

to assume that ρ is changed in only a finite number of iterations, af-

ter which it is held constant for the remainder of the algorithm, thus

guaranteeing convergence.

5.3. Discussion 101

Non-convex case. When one or more of the device objective func-

tions is non-convex, we can no longer guarantee that proximal message

passing converges to the optimal value of the D-OPF or even that it

converges at all (i.e., reaches a fixed point). Prox functions for non-

convex devices must be carefully defined as the set of minimizers in

(5.3) is no longer necessarily a singleton. Even then, prox functions of

non-convex functions are often intractable to compute.

One solution to these issues is to use proximal message pass-

ing to solve the RD-OPF. It is easy to show that f env(p, θ) =
∑

d∈D f
env
d (pd, θd). As a result, we can run proximal message passing

using the prox functions of the relaxed device objective functions. Since

f env
d is a CCP function for all d ∈ D, proximal message passing in this

case is guaranteed to converge to the optimal value of the RD-OPF

and yield the optimal relaxed locational marginal prices.

5.3 Discussion

To compute the proximal messages, devices and nets only require

knowledge of who their network neighbors are, the ability to send small

vectors of numbers to those neighbors in each iteration, and the abil-

ity to store small amounts of state information and efficiently compute

prox functions (devices) or projections (nets). As all communication is

local and peer-to-peer, proximal message passing supports the ad hoc

formation of power networks, such as micro grids, and is self-healing

and robust to device failure and unexpected network topology changes.

Due to recent advances in convex optimization [61, 46, 47], many

of the prox function calculations that devices must perform can be

very efficiently executed at millisecond or microsecond time-scales on

inexpensive, embedded processors [30]. Since all devices and all nets

can each perform their computations in parallel, the time to execute a

single, network wide proximal message passing iteration (ignoring com-

munication overhead) is equal to the sum of the maximum computation

time over all devices and the maximum computation time of all nets in

the network. As a result, the computation time per iteration is small

and essentially independent of the size of the network.

In contrast, solving the D-OPF in a centralized fashion requires

102 Proximal Message Passing

complete knowledge of the network topology, sufficient communication

bandwidth to centrally aggregate all devices objective function data,

and sufficient centralized computational resources to solve the result-

ing D-OPF. In large, real-world networks, such as the smart grid, all

three of these requirements are generally unattainable. Having accu-

rate and timely information on the global connectivity of all devices

is infeasible for all but the smallest of dynamic networks. Centrally

aggregating all device objective functions would require not only infea-

sible bandwidth and data storage requirements at the aggregation site,

but also the willingness of all devices to expose what could be private

and/or proprietary function parameters in their objective functions.

Finally, a centralized solution to the D-OPF requires solving an opti-

mization problem with Ω(|T |T) variables, which leads to an identical

lower bound on the time scaling for a centralized solver, even if problem

structure is exploited. As a result, the centralized solver cannot scale

to solve the D-OPF on very large networks.

6

Numerical Examples

In this chapter we illustrate the speed and scaling of proximal message

passing with a range of numerical examples. In the first two sections, we

describe how we generate network instances for our examples. We then

describe our implementation, showing how multithreading can exploit

problem parallelism and how proximal message passing would scale in a

fully peer-to-peer implementation. Lastly, we present our results, and

demonstrate how the number of iterations needed for convergence is

essentially independent of network size and also significantly decreases

when the algorithm is seeded with a reasonable warm-start.

6.1 Network topology

We generate a network instance by first picking the number of nets

N . We generate the nets’ locations xi ∈ R2, i = 1, . . . , N by drawing

them uniformly at random from [0,
√
N]2. (These locations will be used

to determine network topology.) Next, we introduce transmission lines

into the network as follows. We first connect a transmission line between

all pairs of nets i and j independently and with probability

γ(i, j) = αmin(1, d2/‖xi − xj‖2
2).

103

104 Numerical Examples

In this way, when the distance between i and j is smaller than d, they

are connected with a fixed probability α > 0, and when they are located

farther than distance d apart, the probability decays as 1/‖xi − xj‖2
2.

After this process, we add a transmission line between any isolated net

and its nearest neighbor. We then introduce transmission lines between

distinct connected components by selecting two connected components

uniformly at random and then selecting two nets, one inside each com-

ponent, uniformly at random and connecting them by a transmission

line. We continue this process until the network is connected.

For the examples we present, we chose parameter values d = 0.11

and α = 0.8 as the parameters for generating our network. This results

in networks with an average degree of 2.1. Using these parameters, we

generated networks with 30 to 100000 nets, which resulted in optimiza-

tion problems with approximately 10 thousand to 30 million variables.

6.2 Devices

After we generate the network topology described above, we randomly

attach a single (one-terminal) device to each net according to the dis-

tribution in table 6.1. We also allow the possibility that a net acts as

a distributor and has no device attached to it other than transmission

lines. About 10% of the transmission lines are DC transmission lines,

while the other are AC transmission lines. The models for each device

and line in the network are identical to the ones given in Chapter 3,

with model parameters chosen in a manner we describe below.

For simplicity, our examples only include networks with the devices

listed below. For all devices, the time horizon was chosen to be T = 96,

corresponding to 15 minute intervals for 24 hour schedules, with the

time period τ = 1 corresponding to midnight.

Generator. Generators have the quadratic cost functions given in

Chapter 3 and are divided into three types: small, medium, and large.

In each case, the generator provides some idling power, so we set

Pmin = 0.01. Small generators have the smallest maximum power out-

put, but the largest ramp rates, while large generators have the largest

maximum power output, but the slowest ramp rates. Medium genera-

6.2. Devices 105

Device Fraction

None 0.4

Generator 0.4

Curtailable load 0.1

Deferrable load 0.05

Battery 0.05

Table 6.1: Fraction of devices present in the generated networks.

Pmin Pmax Rmax α β

Large 0.01 50 3 0.001 0.1

Medium 0.01 20 5 0.005 0.2

Small 0.01 10 10 0.02 1

Table 6.2: Generator parameters.

tors lie in between. Large generators are generally more efficient than

small and medium generators which is reflected in their cost function by

having smaller values of α and β. Whenever a generator is placed into

a network, its type is selected uniformly at random, and its parameters

are taken from the appropriate row in table 6.2.

Battery. Parameters for a given instance of a battery are generated

by setting qinit = 0 and selecting Qmax uniformly at random from the

interval [20, 50]. The charging and discharging rates are selected to be

equal (i.e., Cmax = Dmax) and drawn uniformly at random from the

interval [5, 10].

Fixed load. The load profile for a fixed load instance is a sinusoid,

l(τ) = c+ a sin(2π(τ − φ0)/T), τ = 1, . . . , T,

with the amplitude a chosen uniformly at random from the interval

[0.5, 1], and the DC term c chosen so that c = a+ u, where u is chosen

uniformly at random from the interval [0, 0.1], which ensures that the

load profile remains elementwise positive. The phase shift φ0 is chosen

106 Numerical Examples

uniformly at random from the interval [60, 72], ensuring that the load

profile peaks between the hours of 3pm and 6pm.

Deferrable load. For an instance of a deferrable load, we choose E

uniformly at random from the interval [5, 10]. The start time index A

is chosen uniformly at random from the discrete set {1, . . . , (T −9)/2}.

The end time index D is then chosen uniformly at random over the set

{A + 9, . . . , T}, so that the minimum time window to satisfy the load

is 10 time periods (2.5 hours). We set the maximum power so that it

requires at least two time periods to satisfy the total energy constraint,

i.e., Lmax = 5E/(D −A+ 1).

Curtailable loads. For an instance of a curtailable load, the desired

load l is constant over all time periods with a magnitude chosen uni-

formly at random from the interval [5, 15]. The penalty parameter α is

chosen uniformly at random from the interval [0.1, 0.2].

AC transmission line. For an instance of an AC line, we set the volt-

age magnitude equal to 1 and choose its remaining parameters by first

solving the D-OPF with lossless, uncapacitated lines. Using flow values

given by the solution to that problem, we set Cmax = max(30, 10Fmax)

for each line, where Fmax is equal to the maximum flow (from the

lossless solution) along that line over all periods.

We use the loss function for transmission lines with a series admit-

tance g+ib given by (3.1). We choose a maximum phase angle deviation

(in degrees) in the interval [1, 5] and a loss of 1 to 3 percent of Cmax

when transmitting power at maximum capacity. Once the maximum

phase angle and the loss are determined, g is chosen to provide the

desired loss when operating at maximum phase deviation, while b is

chosen so the line operates at maximum capacity when at maximum

phase deviation.

DC transmission line. DC transmission lines are handled just like AC

transmission lines. We set R = g/b, where g and b are chosen using the

procedure for the AC transmission line.

6.3. Serial multithreaded implementation 107

6.3 Serial multithreaded implementation

Our D-OPF solver is implemented in C++, with the core proximal

message passing equations occupying fewer than 25 lines of C++ (ex-

cluding problem setup and class specifications). The code is compiled

with gcc 4.7.2 on a 32-core, 2.2GHz Intel Xeon processor with 512GB

of RAM running the Ubuntu OS. The processor supports hyperthread-

ing, so we have access to 64 independent threads. We used the compiler

option -O3 to leverage full code optimization.

To approximate a fully distributed implementation, we use gcc’s

implementation of OpenMP (version 3.1) and multithreading to paral-

lelize the computation of the prox functions for the devices. We use 64

threads to solve each example network. Assuming perfect load balanc-

ing among the cores, this means that 64 prox functions are being evalu-

ated in parallel. Effectively, we evaluate the prox functions by stepping

serially through the devices in blocks of size 64. We do not parallelize

the computation of the dual updates over the nets since the overhead

of spawning threads dominates the vector operations themselves.

The prox functions for fixed loads and curtailable loads are separa-

ble over τ and can be computed analytically. For more complex devices,

such as a generator, battery, or deferrable load, we compute the prox

function using CVXGEN [46]. The prox function for a transmission line

is computed by projecting onto the convex hull of the line constraints.

For a given network, we solve the associated D-OPF with an abso-

lute tolerance ǫabs = 10−3. This translates to three digits of accuracy in

the solution. The CVXGEN solvers used to evaluate the prox operators

for some devices have an absolute tolerance of 10−8. We set ρ = 1.

6.4 Peer-to-peer implementation

We have not yet created a fully peer-to-peer, bulk synchronous parallel

[60, 45] implementation of proximal message passing, but have carefully

tracked solve times in our serial implementation in order to facilitate a

first order analysis of such a system. In a peer-to-peer implementation,

the prox schedule updates occur in parallel across all devices followed by

(scaled) price updates occurring in parallel across all nets. As previously

108 Numerical Examples

iter k

|f
k

−
f

⋆
|/
f

⋆

10−7

10−5

10−3

10−2

101

0 250 500 750 1000
iter k

‖p
k
‖ 2
/√

|T
|T

10−7

10−5

10−3

10−2

101

0 250 500 750 1000

Figure 6.1: The relative suboptimality (left) and primal infeasibility (right) of proxi-
mal message passing on a network instance with N = 3000 nets (1 million variables).
The dashed line shows when the stopping criterion is satisfied.

mentioned, the computation time per iteration is thus the maximum

time, over all devices, to evaluate the prox function of their objective,

added to the maximum time across all nets to project their terminal

schedules back to feasibility and update their existing price vectors.

Since evaluating the prox function for some devices requires solving a

convex optimization problem, whereas the price updates only require a

small number of vector operations that can be performed as a handful of

SIMD instructions, the compute time for the price updates is negligible

in comparison to the prox schedule updates. The determining factor in

solve time, then, is in evaluating the prox functions for the schedule

updates. In our examples, the maximum time taken to evaluate any

prox function is 1 ms.

6.5 Results

We first consider a single example: a network instance withN = 3000 (1

million variables). Figure 6.1 shows that after fewer than 200 iterations

of proximal message passing, both the relative suboptimality as well as

the average net power imbalance and average phase inconsistency are

both less than 10−3. The convergence rates for other network instances

over the range of sizes we simulated are similar.

In Figure 6.2, we present average timing results for solving the D-

OPF for a family of examples, using our serial implementation, with

6.5. Results 109

networks of size N = 30, 100, 300, 1000, 3000, 10000, 30000, and

100000. For each network size, we generated and solved 10 network in-

stances to compute average solve times and confidence intervals around

those averages. The times were modeled with a log-normal distribution.

For network instances with N = 100000 nets, the problem has over 30

million variables, which we solve serially using proximal message pass-

ing in 5 minutes on average. By fitting a line to the proximal message

passing runtimes, we find that our parallel implementation empirically

scales as O(N0.996), i.e., solve time is linear in problem size.

For a peer-to-peer implementation, the runtime of proximal message

passing should be essentially constant, and in particular independent of

the size of the network. To solve a problem with N = 100000 nets (30

million variables) with approximately 200 iterations of our algorithm

then takes only 200 ms. In practice, the actual solve time would clearly

be dominated by network communication latencies and actual runtime

performance will be determined by how quickly and reliably packets can

be delivered [34]. As a result, in a true peer-to-peer implementation, a

negligible amount of time is actually spent on computation. However,

it goes without saying that many other issues must be addressed with a

peer-to-peer protocol, including handling network delays and security.

Figure 6.2 shows cold start runtimes for solving the D-OPF. If we

have good estimates of the power and phase schedules and dual vari-

ables for each terminal, we can use them to warm start our D-OPF

solver. To show the effect, we randomly convert 5% of the devices into

fixed loads and solve a specific instance with N = 3000 nets (1 million

variables). Let Kcold to be the number of iterations needed to solve an

instance of this problem. We then uniformly scale the load profiles of

each device by separate and independent lognormal random variables.

The new profiles, l̂, are obtained from the original profiles l via

l̂ = l exp(σX),

where X ∼ N (0, 1), and σ > 0 is given. Using the original solution

to warm start our solver, we solve the perturbed problem and report

the number of iterations Kwarm needed. Figure 6.3 shows the ratio

Kwarm/Kcold as we vary σ, showing the significant savings possible

with warm-starting even under relatively large perturbations.

110 Numerical Examples

N

ti
m

e
(s

ec
on

d
s)

0.1

1

10

100

1000

10 100 1000 10000 100000

Figure 6.2: Average execution times for a family of networks on 64 threads. Error
bars show 95% confidence bounds. The dotted line shows the least-squares fit to the
data, resulting in a scaling exponent of 0.996.

K
w

a
r
m
/K

c
o

ld

σ

0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20

Figure 6.3: Relative number of iterations needed to converge from a warm start for
various perturbations of load profiles compared to original number of iterations.

7

Extensions

Here, we give some possible extensions of our model and method.

7.1 Closed-loop control

So far, we have considered only a static energy planning problem, where

each device on the network plans power and phase schedules extending

T steps into the future and then executes all T steps. This ‘open loop’

control can fail spectacularly, since it will not adjust its schedules in

response to external disturbances that were unknown at the original

time the schedules were computed.

To alleviate this problem, we propose the use of receding horizon

control (RHC) [43, 3, 47] for dynamic network operation. In RHC, at

each time step τ , we determine a plan of action over a fixed time horizon

T into the future by solving the D-OPF using proximal message pass-

ing. The first step of all schedules is then executed, at which point the

entire process is repeated, incorporating new measurements, external

data, and predictions that have become available.

RHC has been successfully applied in many areas, including chemi-

cal process control [50], supply chain management [11], stochastic con-

trol in economics and finance [24, 58], and energy storage system op-

111

112 Extensions

eration [37]. While RHC is in general not an optimal controller, it has

been shown to achieve good performance in many different domains.

RHC is ideally suited for use with proximal message passing. First,

when one time step is executed, we can warm start the next round of

proximal message passing with the T − 1 schedules and dual variables

that were computed, but not otherwise executed, for each device and

each net in the previous iteration of RHC. As was shown in the previ-

ous section, this can dramatically speed up computation and allow for

RHC to operate network-wide at fraction of a second rates. In addition,

RHC does not require any stochastic or formal model of future predic-

tion uncertainty. While statistical predictions can be used if they are

available, predictions from other sources, such as analysts or markets,

are just as simple to integrate into RHC, and are also much easier to

come by in many real-world scenarios.

Perhaps the most important synergy between proximal message

passing and RHC is that the predictions used by each device need

only concern that one device and do not need to include any estimates

concerning other devices. This allows for devices to each use their own

form of prediction without worrying about what other devices exist or

what form of prediction they are using (e.g., even if one generator uses

statistical predictions, other devices need not).

The reason for this is that proximal message passing integrates all

the device predictions into the final solution — just as they would

have been in a centralized solution — but does so through the power

and phase schedules and prices that are shared between neighboring

devices. In this way, for example, a generator only needs to estimate

its cost of producing power at different levels over the time horizon T .

It does not need to predict any demand itself, as those predictions are

passed to it in the form of the power schedule and price messages it

receives from its neighbors. Similarly, loads only need to forecast their

own future demand and utility of power in each time period. Loads do

not need to explicitly predict future prices, as those are the result of

running proximal message passing over the network.

7.2. Security constrained optimal power flow 113

7.2 Security constrained optimal power flow

In the SC-OPF problem, we determine a set of contingency plans for

devices connected on a power network, which tell us the power flows

and phase angles each device will operate at under nominal system

operation, as well as in a set of specified contingencies or scenarios. The

contingencies can correspond, say, to failure or degraded operation of

a transmission line or generator, or a substantial change in a load. In

each scenario the powers and phases must satisfy the network equations

(taking into account any failures for that scenario), and they are also

constrained in various ways across the scenarios. Generators and loads,

for example, might be constrained to not change their power generation

or consumption in any non-nominal scenario.

As a variation on this, we can allow such devices to modify their

powers from the nominal operation values, but only over some range

or for a set amount of time. The goal is to minimize a composite cost

function that includes the cost (and constraints) of nominal operation,

as well as those associated with operation in any of the scenarios. Prox-

imal message passing allows us to parallelize the computation of many

different (and coupled) scenarios across each device while maintaining

decentralized communication across the network.

7.3 Hierarchical models and virtualized devices

The power grid has a natural hierarchy, with generation and trans-

mission occurring at the highest level and residential consumption and

distribution occurring at the most granular. Proximal message passing

can be easily extended into hierarchical interactions by scheduling mes-

sages on different time scales and between systems at similar levels of

the hierarchy [10]. By aggregating multiple devices into a virtual de-

vice (which themselves may be further aggregated into another virtual

device), our framework naturally allows for the formation of composite

entities such as virtual power plants and demand response aggregators.

Let D ⊆ D be a group of devices that are aggregated into a virtual

device, which we will also refer to as ‘D’. We use the notation that

terminal t ∈ D if there exists a device d ∈ D such that t ∈ d. The set of

114 Extensions

terminals {t | t ∈ D} can be partitioned into two sets, those terminals

whose associated net’s terminals are all associated with a device which

is part of D, and those who are not. These two sets can be though

of as those terminal in D which are purely ‘internal’ to D, and those

terminals which are not, as shown in Figure 7.1. These two sets are

given by

Din = {t ∈ D | ∀t′ ∈ nt, t
′ ∈ D},

Dout = {t ∈ D | ∃t′ ∈ nt, t
′ 6∈ D},

respectively, where nt is defined to be the net associated with termi-

nal t (i.e., t ∈ nt). We let (pin, θin) and (pout, θout) denote the power

and phase schedules associated with the terminals in the sets Din and

Dout, respectively. Since the power and phase schedules (pin, θin) never

directly leave the virtual device, they can be considered as internal

variables for the virtual device.

The objective function of the virtual device, fD(pout, θout), is given

by the solution to the following optimization problem

minimize
∑

d∈D fd(pd, θd)

subject to p̄in = 0, θ̃in = 0,

with variables pd and θd for d ∈ D. A sufficient condition for

fD(pout, θout) being a convex function is that all of the virtual device’s

constituent devices’ objective functions are convex functions [7].

By recursively applying proximal message passing at each level of

the aggregation hierarchy, we can compute the objective functions for

each virtual device. This process can be continued down to the indi-

vidual device level, at which point the device must compute the prox

function for its own objective function as the base case.

These models allow for the computations necessary to operate a

smart grid network to be virtualized since the computations specific

to each device do not necessarily need to be carried out on the de-

vice itself, but can be computed elsewhere (e.g., the servers of a vir-

tual power plant, centrally by an independent system operator, . . .),

and then transmitted to the device for execution. As a result, hier-

archical modeling allows one to smoothly interpolate from completely

7.4. Local stopping criteria and ρ updates 115

Figure 7.1: Left: A simple network with four devices and two nets. Right: A hierar-
chical representation with only 2 devices at the highest level. All terminals connected
to the left-most net are internal to the virtual device.

centralized operation of the grid (i.e., all objectives and constraints

are gathered in a single location and solved), to a completely decen-

tralized architecture where all communication is peer to peer. At all

scales, proximal message passing offers all decision making entities an

efficient method to compute optimal power and phase schedules for the

devices under their control, while maintaining privacy of their devices’

objective functions and constraints.

7.4 Local stopping criteria and ρ updates

The stopping criterion and ρ update method in Chapter 5 currently re-

quire global device coordination (via the global primal and dual residu-

als each iteration). These could be computed in a decentralized fashion

by gossip algorithms [53], but this could require many rounds of gos-

sip in between each iteration of proximal message passing, significantly

increasing runtime. We are investigating methods to let individual de-

vices or terminals independently choose both the stopping criterion and

different values of ρ based only on local information such as the primal

and dual residuals of a device and its neighbors.

For dynamic operation another approach is to run proximal message

passing continuously, with no stopping criteria. In this mode, devices

and nets would exchange messages with each other indefinitely and ex-

ecute the first step of their schedules at given times (i.e., gate closure),

at which point they shift their moving horizon forward one time step

and continue to exchange messages.

8

Conclusion

We have presented a fully decentralized method for dynamic network

energy management based on message passing between devices. Prox-

imal message passing is simple and highly extensible, relying solely

on peer to peer communication between devices that exchange energy.

When the resulting network optimization problem is convex, proximal

message passing converges to the optimal value and gives optimal power

and phase schedules and locational marginal prices. We have presented

a parallel implementation that shows the time per iteration and the

number of iterations needed for convergence of proximal message pass-

ing are essentially independent of the size of the network. As a result,

proximal message passing can scale to extremely large networks with

almost no increase in solve time.

116

Acknowledgments

The authors thank Yang Wang and Neal Parikh for extensive discus-

sions on the problem formulation as well as ADMM methods; Yang

Wang, Brendan O’Donoghue, Haizi Yu, Haitham Hindi, and Mikael

Johansson for discussions on optimal ρ selection and for help with the

ρ update method; Steven Low for discussions about end-point based

control; and Ed Cazalet, Ram Rajagopal, Ross Baldick, David Chas-

sin, Marija Ilic, Trudie Wang, and Jonathan Yedidia for many helpful

comments. We would like to thank Marija Ilic, Le Xie, and Boris De-

fourny for pointing us to DYNMONDS and other earlier Lagrangian

approaches. We are indebted to Misha Chertkov, whose questions on

an early version of this paper prodded us to make the concept of AC

and DC terminals explicit. Finally, we thank Warren Powell and Hugo

Simao for encouraging us to release implementations of these methods.

This research was supported in part by Precourt 1140458-

1-WPIAE, by AFOSR grant FA9550-09-1-0704, by NASA grant

NNX07AEIIA, and by the DARPA XDATA grant FA8750-12-2-0306.

After this paper was submitted, we became aware of [31] and [32],

which apply ADMM to power networks for the purpose of robust state

estimation. Our paper is independent of their efforts.

117

References

[1] R. Baldick, Applied Optimization: Formulation and Algorithms for Engineering
Systems. Cambridge University Press, 2006.

[2] S. Barman, X. Liu, S. Draper, and B. Recht, “Decomposition methods for large
scale LP decoding,” Submitted, IEEE Transactions on Information Theory,
2012.

[3] A. Bemporad, “Model predictive control design: New trends and tools,” in
Proceedings of 45th IEEE Conference on Decision and Control, pp. 6678–6683,
2006.

[4] A. Bergen and V. Vittal, Power Systems Analysis. Prentice Hall, 1999.

[5] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods.
Academic Press, 1982.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3, pp. 1–122, 2011.

[7] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[8] J. Carpentier, “Contribution to the economic dispatch problem,” Bull. Soc.
Francaise Elect., vol. 3, no. 8, pp. 431–447, 1962.

[9] E. A. Chakrabortty and M. D. Ilic, Control & Optimization Methods for Electric
Smart Grids. Springer, 2012.

[10] M. Chiang, S. Low, A. Calderbank, and J. Doyle, “Layering as optimization
decomposition: A mathematical theory of network architectures,” Proc. of the
IEEE, vol. 95, no. 1, pp. 255–312, 2007.

[11] E. G. Cho, K. A. Thoney, T. J. Hodgson, and R. E. King, “Supply chain plan-
ning: Rolling horizon scheduling of multi-factory supply chains,” in Proceedings
of the 35th conference on Winter simulation: driving innovation, pp. 1409–1416,
2003.

118

References 119

[12] B. H. Chowdhury and S. Rahman, “A review of recent advances in economic
dispatch,” IEEE Transactions on Power Systems, vol. 5, no. 4, pp. 1248–1259,
1990.

[13] A. O. Converse, “Seasonal energy storage in a renewable energy system,” Pro-
ceedings of the IEEE, vol. 100, pp. 401–409, Feb 2012.

[14] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,”
Operations Research, vol. 8, pp. 101–111, 1960.

[15] J. Eckstein, “Parallel alternating direction multiplier decomposition of convex
programs,” Journal of Optimization Theory and Applications, vol. 80, no. 1,
pp. 39–62, 1994.

[16] J. H. Eto and R. J. Thomas, “Computational needs for the next generation
electric grid,” in Department of Energy, 2011. http://certs.lbl.gov/pdf/lbnl-
5105e.pdf.

[17] H. Everett, “Generalized Lagrange multiplier method for solving problems of
optimum allocation of resources,” Operations Research, vol. 11, no. 3, pp. 399–
417, 1963.

[18] A. Eydeland and K. Wolyniec, Energy and Power Risk Management: New De-
velopments in Modeling, Pricing and Hedging. Wiley, 2002.

[19] G. Forney, “Codes of graphs: Normal realizations,” IEEE Transactions on In-
formation Theory, vol. 47, no. 2, pp. 520–548, 2001.

[20] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear
variational problems via finite element approximations,” Computers and Math-
ematics with Applications, vol. 2, pp. 17–40, 1976.

[21] R. Glowinski and A. Marrocco, “Sur l’approximation, par elements finis d’ordre
un, et la resolution, par penalisation-dualité, d’une classe de problems de Dirich-
let non-lineares,” Revue Française d’Automatique, Informatique, et Recherche
Opérationelle, vol. 9, pp. 41–76, 1975.

[22] H. H. Happ, “Optimal power dispatch — a comprehensive survey,” IEEE Trans-
actions on Power Apparatus and Systems, vol. 96, no. 3, pp. 841–854, 1977.

[23] E. K. Hart, E. D. Stoutenburg, and M. Z. Jacobson, “The potential of intermit-
tent renewables to meet electric power demand: current methods and emerging
analytical techniques,” Proceedings of the IEEE, vol. 100, pp. 322–334, Feb
2012.

[24] F. Herzog, Strategic Portfolio Management for Long-Term Investments: An
Optimal Control Approach. PhD thesis, ETH, Zurich, 2005.

[25] M. R. Hestenes, “Multiplier and gradient methods,” Journal of Optimization
Theory and Applications, vol. 4, pp. 302–320, 1969.

[26] K. Heussen, S. Koch, A. Ulbig, and G. Andersson, “Energy storage in power
system operation: The power nodes modeling framework,” in Innovative Smart
Grid Technologies Conference Europe (ISGT Europe), 2010 IEEE PES, pp. 1–
8, Oct 2010.

[27] T. Hovgaard, L. Larsen, J. Jorgensen, and S. Boyd, “Nonconvex model pre-
dictive control for commercial refrigeration,” International Journal of Control,
vol. 86, no. 8, pp. 1349–1366, 2013.

120 References

[28] M. Ilic, L. Xie, and J.-Y. Joo, “Efficient coordination of wind power and price-
responsive demand — Part I: Theoretical foundations,” IEEE Transactions on
Power Systems, vol. 26, pp. 1875–1884, Nov 2011.

[29] M. Ilic, L. Xie, and J.-Y. Joo, “Efficient coordination of wind power and price-
responsive demand—part ii: Case studies,” IEEE Transactions on Power Sys-
tems, vol. 26, pp. 1885–1893, Nov 2011.

[30] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan,
and M. Morari, “Embedded online optimization for model predictive control at
megahertz rates,” Submitted, IEEE Transactions on Automatic Control, 2013.

[31] V. Kekatos and G. Giannakis, “Joint power system state estimation and breaker
status identification,” in Proceedings of the 44th North American Power Sym-
posium, 2012.

[32] V. Kekatos and G. Giannakis, “Distributed robust power system state estima-
tion,” IEEE Transactions on Power Systems, 2013.

[33] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stability,” Journal of the
Operational Research Society, vol. 49, pp. 237–252, 1998.

[34] A. Kiana and A. Annaswamy, “Wholesale energy market in a smart grid: A
discrete-time model and the impact of delays,” in Control and Optimization
Methods for Electric Smart Grids, (A. Chakrabortty and M. Ilic, eds.), pp. 87–
110, Springer US, 2012.

[35] B. H. Kim and R. Baldick, “Coarse-grained distributed optimal power flow,”
IEEE Transactions on Power Systems, vol. 12, no. 2, pp. 932–939, 1997.

[36] B. H. Kim and R. Baldick, “A comparison of distributed optimal power flow
algorithms,” IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 599–604,
2000.

[37] M. Kraning, Y. Wang, E. Akuiyibo, and S. Boyd, “Operation and configuration
of a storage portfolio via convex optimization,” in Proceedings of the 18th IFAC
World Congress, pp. 10487–10492, 2011.

[38] A. Lam, B. Zhang, and D. Tse, “Distributed algorithms for optimal power flow
problem,” http://arxiv.org/abs/1109.5229, 2011.

[39] J. Lavaei and S. Low, “Zero duality gap in optimal power flow problem,” IEEE
Transactions on Power Systems, vol. 27, no. 1, pp. 92–107, 2012.

[40] J. Lavaei, D. Tse, and B. Zhang, “Geometry of power flows in tree networks,”
IEEE Power & Energy Society General Meeting, 2012.

[41] J. Liang, G. K. Venayagamoorthy, and R. G. Harley, “Wide-area measurement
based dynamic stochastic optimal power flow control for smart grids with high
variability and uncertainty,” IEEE Transactions on Smart Grid, vol. 3, pp. 59–
69, 2012.

[42] S. H. Low, L. Peterson, and L. Wang, “Understanding tcp vegas: a duality
model,” in Proceedings of the 2001 ACM SIGMETRICS international con-
ference on Measurement and modeling of computer systems, (New York, NY,
USA), pp. 226–235, ACM, 2001.

References 121

[43] J. Maciejowski, Predictive Control with Constraints. Prentice Hall, 2002.

[44] S. H. Madaeni, R. Sioshansi, and P. Denholm, “How thermal energy storage
enhances the economic viability of concentrating solar power,” Proceedings of
the IEEE, vol. 100, pp. 335–347, Feb 2012.

[45] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, “Pregel: A system for large-scale graph processing,” in Proceed-
ings of the 2010 International Conference on Management of Data, pp. 135–
146, 2010.

[46] J. Mattingley and S. Boyd, “CVXGEN: Automatic convex optimization code
generation,” http://cvxgen.com/, 2012.

[47] J. Mattingley, Y. Wang, and S. Boyd, “Receding horizon control: Automatic
generation of high-speed solvers,” IEEE Control Systems Magazine, vol. 31,
pp. 52–65, 2011.

[48] W. F. Pickard, “The history, present state, and future prospects of underground
pumped hydro for massive energy storage,” Proceedings of the IEEE, vol. 100,
pp. 473–483, Feb 2012.

[49] M. J. D. Powell, “A method for nonlinear constraints in minimization prob-
lems,” in Optimization, (R. Fletcher, ed.), Academic Press, 1969.

[50] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control
technology,” Control Engineering Practice, vol. 11, no. 7, pp. 733–764, 2003.

[51] P. Ravikumar, A. Agarwal, and M. J. Wainwright, “Message-passing for graph-
structured linear programs: Proximal methods and rounding schemes,” Journal
of Machine Learning Research, vol. 11, pp. 1043–1080, 2010.

[52] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.

[53] D. Shah, “Gossip algorithms,” Foundations and Trends in Networking, vol. 3,
no. 2, pp. 1–125, 2008.

[54] S. Sojoudi and J. Lavaei, “Physics of power networks makes hard problems easy
to solve,” To appear, IEEE Power & Energy Society General Meeting, 2012.

[55] S. Sojoudi and J. Lavaei, “Convexification of generalized network flow prob-
lem with application to power systems,” Preprint available at http://www.ee.

columbia.edu/~lavaei/Generalized_Net_Flow.pdf, 2013.

[56] S. Sojoudi and J. Lavaei, “Semidefinite relaxation for nonlinear optimization
over graphs with application to power systems,” Preprint available at http:

//www.ee.columbia.edu/~lavaei/Opt_Over_Graph.pdf, 2013.

[57] N. Taheri, R. Entriken, and Y. Ye, “A dynamic algorithm for facilitated charg-
ing of plug-in electric vehicles,” arxiv:1112:0697, 2011.

[58] K. T. Talluri and G. J. V. Ryzin, The Theory and Practice of Revenue Man-
agement. Springer, 2004.

[59] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Options for control of re-
active power by distributed photovoltaic generators,” Proceedings of the IEEE,
vol. 99, pp. 1063–1073, 2011.

[60] L. G. Valiant, “A bridging model for parallel computation,” Communications
of the ACM, vol. 33, no. 8, p. 111, 1990.

122 References

[61] Y. Wang and S. Boyd, “Fast model predictive control using online optimiza-
tion,” IEEE Transactions on Control Systems Technology, vol. 18, pp. 267–278,
2010.

[62] J. Zhu, Optimization of Power System Operation. Wiley-IEEE Press, 2009.

