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Abstract—In this paper, we propose a provably optimal tech-
nique for minimizing intersymbol interference (ISI) in multimode
fiber (MMF) systems using adaptive optics via convex optimiza-
tion. We use a spatial light modulator (SLM) to shape the spatial
profile of light launched into an MMF. We derive an expression for
the system impulse response in terms of the SLM reflectance and
the field patterns of the MMF principal modes (PMs). Finding op-
timal SL.M settings to minimize ISI, subject to physical constraints,
is posed as an optimization problem. We observe that our problem
can be cast as a second-order cone program, which is a convex opti-
mization problem. Its global solution can, therefore, be found with
minimal computational complexity, and can be implemented using
fast, low-complexity adaptive algorithms. We include simulation
results, which show that this technique opens up an eye pattern
originally closed due to ISI. We also see that, contrary to what one
might expect, the optimal SLM settings do not completely suppress
higher order PMs.

Index Terms—Adaptive optics, optical fiber dispersion, spatial
light modulators (SLMs).

I. INTRODUCTION

ULTIMODE FIBER (MMF) is the dominant type of

fiber used for data communications in current local-area
networks. In achieving higher signalling rates, the dominant
limiting factor is the intersymbol interference (ISI) caused by
modal dispersion [1]. Light propagates in an MMF in modes,
with each mode propagating at its group velocity. The set of
modes excited depends on launch conditions at the input of the
fiber. Thus, a pulse of light that excites many modes in the fiber
arrives as several pulses at the output of the fiber—a phenom-
enon known as modal dispersion. This effect is analogous to
multipath in wireless.

In describing modal dispersion, the relevant modes are typi-
cally not the modes of an ideal fiber—ideal modes (IM). Imper-
fections (bends, variations in refractive index profile, etc.) cause
coupling between IMs. This means that a pulse launched into
an IM will come out as a sequence of pulses. However, it has
been shown [2] that there exists a complete set of orthonormal
modes, called principal modes (PMs), such that a pulse launched
into a PM at the input of the fiber emerges as a single pulse
at the output, even in the presence of mode coupling. PMs in
MMFs with mode coupling are analogous to principal states of
polarization (PSPs) in single-mode fibers (SMF) with polariza-
tion-mode dispersion.
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In the past, electrical equalization [3], [4] has been used to
mitigate IST caused by modal dispersion. However, this can lead
to noise enhancement, and, therefore, degradation of achievable
bit-error ratio (BER) [5]. Instead, the use of adaptive optics was
proposed in [6]. This involves shaping the spatial profile of the
electric field at the input end of the fiber using a spatial light
modulator (SLM) to excite only desired PMs. An SLM is a 2-D
array of mirrors, capable of modifying the local phase and/or
amplitude of an incident electric field. This technique leads to
no noise enhancement. Experiments [7] have shown that this
approach is capable of realizing high bit rates. In [6], a basic
theoretical framework was developed. This framework, how-
ever, did not model all physics of the system pertinent to the
problem. It also led to a very hard optimization problem—one
with many local optima and no method to identify the global op-
timum. The algorithm proposed for adaptation of the SLM had
no guarantee of convergence to the global optimum, or even a
good local optimum.

In this paper, we develop a comprehensive theoretical frame-
work for an MMF system that uses an SLM for ISI mitigation.
Our objective is to find an SLM setting that minimizes the ISI.
The system uses intensity detection, and the SLM modifies the
electric field. Since intensity is a nonlinear function of electric
field, this is a nonlinear filtering problem. Therefore, conven-
tional techniques for optimization of linear filters are not ap-
plicable. Moreover, the resultant optimization problem is not
in any standard form that leads to an efficient global solution.
However, we observe that the optimal SLM settings may be ob-
tained by solving an equivalent convex optimization problem.
This convex problem is a second-order cone program (SOCP),
and has O(NN3) complexity. This means that the solution may be
computed almost as easily as inverting an N x N matrix. The
solution thus obtained is globally optimal. Moreover, the new
framework enables us to develop efficient adaptive algorithms.

The remainder of this paper is organized as follows. In
Section II, we introduce our transmission scheme, and de-
velop a theoretical framework. We start by analyzing PMs
and the SLM. From these, we derive the impulse response
of the system. Finally, we derive an expression for the eye
opening as a function of SLM settings. At the end of Section II,
we pose minimization of ISI as an optimization problem. In
Section III, we solve this optimization problem. We first prove
the equivalence between the original optimization problem and
the convex problem. We then solve this problem, and suggest
adaptive techniques. In Section IV, we give simulation results,
using parameters of commercially available components. We
show that the algorithm cleans up the impulse response, and
opens up the resulting eye pattern. We investigate the effect of
SLM resolution, and adaptation after offset launch. Finally, we
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Fig. 1. Adaptive transmission system: output of the single mode fiber is imaged onto the SLM, SLM output is imaged onto MMF, and MMF output is detected

and fed to an adaptive algorithm that controls the SLM.

see that the optimal impulse response, contrary to what might
be expected, does not involve complete suppression of higher
order PMs, even though the system is capable of it.

II. ADAPTIVE TRANSMISSION SYSTEM

First, we describe a physical system which enables ISI mit-
igation using an SLM. Then, we set up a mathematical frame-
work for analysis. We look at two key components, PMs and the
SLM, and derive an equation for the continuous-time impulse
response of the system. Then, we link system performance—the
eye opening—to the impulse response, and pose minimization
of ISI as an optimization problem.

A. Adaptive Transmission System

The system configuration is shown in Fig. 1, and it was orig-
inally proposed in [6]. It consists of a transmitter, the MMF it-
self, and a receiver in which received light pulses are detected
and decoded. At the transmitter, we have an SMEF, from which
light carrying the data signal is imaged onto an SLM. This is
followed by an imaging system that focuses the light from the
SLM into the input end of the MMF. The SLM is a 2-D array of
pixels and is used to manipulate the phase and/or amplitude of
the electric field incident on the MMF, in the spatial domain. The
IST at the receiver depends on the excitation pattern of modes in
the MMF. Therefore, we try to set the SLM pixels to optimally
shape the light field incident on the MMF and selectively ex-
cite modes in the MMF. At the receiver, light from the MMF is
detected by a photodetector, and decoded by a recovery circuit.
The detected signal is also used for ISI estimation, which drives
an adaptive algorithm that controls the SLM.

B. Principal Modes

PMs [2] provide a framework for modeling pulse propagation
in MMFs. If a pulse of light is launched in one of the IMs of
a fiber (i.e., Bessel, Hermite—Gaussian, or Laguerre—Gaussian
modes), in the presence of mode coupling, we get a sequence of
pulses at the output. Fundamentally, this is because IMs are not
eigenvectors of the group delay operator. It is shown in [2] that
the eigenvectors of the group delay operator are in fact PMs.
This means that a pulse of light launched into an input PM will
come out as a single pulse in the corresponding output PM even
in the presence of mode coupling. PMs also form an orthogonal
basis over all propagating modes.

We now derive an explicit orthogonality relationship for
PMs.! Let EPM,i(x,y) and ﬁpk,[,,i(x,y) be the electric and
magnetic fields corresponding to the ith input PM, where the
fiber supports 2M modes in both polarizations. Let Z be the
unit vector along the fiber axis.

Theorem 2.1:

/ [EPM,i(a:vy) X ﬁ;hd,j($7y):| <Zdrdy = 6;5. (1)

Proof: We know that the IMs of a fiber form an or-
thonormal basis for propagating modes; so PMs can be
expanded in the basis of IMs. Let En i(z,y) and Hpy i(z,y)
be the electric and magnetic fields corresponding to the sth IM
at the input face of the fiber. Also

/ [En\q,i(x,y) X I_-i’fM,j(x?y)] - Zdzdy = 65 2)
[8]. Therefore
EPM iz, y) ZGL]EIM i(z,y)
Hpri( al Z az]HIM j(z,y) 3)
for an appropriate choice of a;;. Let a; = [ai1 azon)t

Since PMs are orthonormal, a{I aj = 6;;. Therefore

/ [EPM@(%Q) X ﬁ;M,j(%y)] - zdzdy

= / Z aikEIM,k(xa Y)

k

Z ajlﬁIM,l(xv Y) zdxdy
1

=3 aik“}k'z/ [EIM,k(w»y) X ﬁfM,z(x,y)] Zdzdy
k l

* H
= E aikajk = aj aj = (51']'. (4)
k |

ITn our analysis, we introduce the electric and magnetic field patterns of the
IMs and of the PMs. These fields are functions of the optical frequency w.
Throughout this paper, we suppress the dependence on w, assuming that the
optical signals of interest occupy a narrow bandwidth, over which the modal
field patterns can be considered independent of frequency. In particular, when
we consider data-modulated signals, these are assumed to occupy a bandwidth
smaller than the coherence bandwidth of the PMs. This assumption is valid when
using quasi-monochromatic (laser) sources modulated at rates (e.g., 10 Gb/s)
less than the coherence bandwidth of the PMs (e.g., tens to hundreds of giga-
hertz [7]). It is not expected to be valid when using light-emitting diode sources,
which have bandwidths much greater than the bandwidths of the PMs.
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C. Spatial Light Modulator

The SLM is a passive reflective device comprising a 2-D
array of mirrors (the analysis remains identical for a transmis-
sion SLM). It can, therefore, be represented by a 2-D com-
plex reflectance function V' (z, y). Since it is a passive device,
|V (z,y)| < 1. Also, since it comprises a discrete array of mir-
rors

N
= visi(z,y) )

=1

where N is the number of SLM blocks, v; € C is the reflectance
of the ith SLM block, and s;(z, ) is an indicator function over
the 7th SLM block, defined as

si(z,y) = { (1):

The imaging from the SLM to the fiber face is assumed to be
done using a linear optical device, e.g., lens. Therefore, propa-
gation of light from the SLM to the fiber face may be represented
by a linear operator L. Let the electric field incident on the SLM
be ESLMin (z,v), and let the output electric field of the SLM at
the SLM face be Espyiout (z,y). Then

(z,y) in the interior of the ith block
otherwise.

(6)

Estvout (2, ) = V (2, y)Estatin(7, )

N
szsz T,y ESLMm(x y) (7)
=1

EﬁberIn($7 y) =L I:ESLN[out (.CIZ' y)j|

=L

N
Z v;8;(x,y)Espmin (2, y)]
i=1

viEi(x,y) ®)

Il
.MZS

=1

where E; (z,y) = L[si(z, y)f)SLMin(:m y)], and the electric
field at the input face of the fiber is ﬁﬁborln (z,y). We thus see
that the electric field at the input face of the fiber is a linear func-
tion of the SLM reflectances.

D. Continuous-Time Impulse Response

We now derive an expression for the continuous-time impulse
response of the system. Any electric field profile at the input face
of the fiber may be decomposed in the basis of input PMs using
the orthogonality relationship derived in Theorem 2.1

Eﬁberln($7 y) = Z CiEpMJ(I& y) + radiation modes  (9)

i

where
¢ = / [Eﬁherln(ﬂ?:y) X ﬁFl\h(%?J)} - Zdzdy. (10)

If a time-domain pulse is sent into the fiber with an electric
field profile Egpe,mn(2, y), at the output, we expect a sequence
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of pulses, with time delays 7; corresponding to group de-
lays of the PMs, and amplitudes |c;|, along with an overall
attenuation due to loss in the fiber. Therefore, for an input
]:jﬂberIn (z,y)6(t), we expect the output intensity to be

2M

) =e™> a6 (t — i)
=1
2M

e Z /[Eﬂbeﬂn z,y) x Hpyg il y)} -2dxdy
(5(t — Ti)

2

(11)

where « is the fiber loss coefficient (approximated as mode-in-
dependent?), [ is the fiber length, 2M is the number of propa-
gating PMs in all polarizations, and 7; is the group delay of the
ith PM. We see that h(t) is the impulse response of the fiber.3
Using (8)4

oM | . N ?
=Y | [ 3 [0Bstonn) xBipag (o) oy
i=1 |7 j=1
x6(t — 7). (12)
Let u;; = f[]:j;‘(a:,y) x Hpyi(,y)] - 2 dz dy. Then
2
2M
ST R
i=1|
2M )
=Y |ufv] 8(t — ) (13)
i=1
where v = [v; ... vn]T and w; = [u;y ... u;n]T. Therefore
2M
= [Z uiuflé(t—n)] v (14)
i=1

with the constraint |v;| < 1,7 =1,...,N.

E. Minimization of ISI as an Optimization Problem

1) Minimization of ISI Is Equivalent to Maximization of Eye
Opening: If 1 bit, described by an input intensity waveform
p(t), is transmitted, and the receiver impulse response is 7(t),
the receiver output waveform is given by g(¢) = p(t) * h(t) =
r(t). This is the pulse response of the continuous-time system.
When a sequence of 0 and 1 bits is transmitted, and the receiver
output is sampled once per bit, the effect of ISI is characterized
by the impulse response of the discrete-time system g(nT’; o) =
9(t)|to+nT> where n is an integer, T' is the bit duration, and ¢y is
an initial offset [9]. In a well-designed receiver with low group-

2Qur approximation of loss as mode-independent is expected to be accurate
for low-order modes in silica fibers, which is the main application intended for
this work. This approximation may not be valid for higher order modes in silica
fibers or in plastic fibers.

31t is to be noted that the impulse response k(%) is not to be used without
convolution with a narrowband time-domain pulse. In this paper, that pulse is
the convolution of the transmit pulse and the receiver impulse response, and it
will ensure that any analysis is consistent with the narrowband nature of PMs.

4Equation (12) is a correction to (1) in [7].
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delay distortion and time-domain overshoot, g(¢), the filtered
intensity waveform, will be such that g(¢) > 0, to a very good
approximation. An objective function that quantifies ISI is

F =g(0;tg) — Zg(nT; to)-
n#0

At high signal-to-noise ratio (SNR), the effect of ISI on the BER
depends on g(nT';to) only through F [9]. F is directly propor-
tional to the eye opening, with F' < 0 when the eye is closed,
and F' > 0 when the eye is open. Thus, minimization of ISI is
equivalent to maximization of F'.

2) Maximization of Eye Opening as an Optimization
Problem: Let q(t) = p(t) * r(t). Then

g(t) =h(t) = q(t)

15)

2M
=vi [Z u,ulg(t — Tm)] V. (16)
m=1
Therefore, from (15)
2M
F=vf [Z woulq(to— 7)) | v
m=1
2M
- Z vH [Z u,ug(to + nT — Tm)] v
n#0 m=1
=viPv (17)
where
2M
P=> u,uf |gto—7m) =D alto+nT — 1)
m=1 n#0
(18)

Rearranging terms in (18), we see that

2
P =" u,u |qlto—7mm) = D qlto +nT — 7,)
m=1 n#0
2M
- Z u,,u Z q(to +nT — 1) — q(to — Tm)
m=3 n#0

2M

:wlulu{{ + w2u2u51 - Z wmumug. (19)
m=3

In Section II-E3, we show that w,,, m = 1,...,2M are posi-

tive.

Maximization of eye opening is therefore equivalent to max-
imization of F' = vHPv.

3) Structure in the Optimization Problem—Insights From
Physics: In this section, we explore the structure of the matrix
P, since this determines the nature of the optimization problem
we need to solve. P is an N x N Hermitian matrix, and,
therefore, has NV real eigenvalues. We assume that modes 1 and
2 correspond to the two polarizations of the strongest spatial
mode. We first show that w,,, > 0, m =1,...,2M.

In a typical MMF system, polarization-mode dispersion is
weak. This means that modes 1 and 2 have small delay separa-
tions in comparison to the width of ¢(¢) and are therefore indis-
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tinguishable at the receiver. In a well-designed system, the sam-
pling instant ¢ is chosen to be close to 7y and 7». Therefore, 7
and 7 lie in the first bit interval. Also, ¢(t) is a unimodal pulse,
since ¢(t) = p(t) * r(t), and p(t) and r(t) are both unimodal;
s0 q(to — 71) and q(to — 72) are large, while q(tg — 7, ) is small
for m > 2. Therefore, since wm = q(to — Tim) = 3,0 4(to +
nT — 7,,) for m = 1,2, wy and wey are positive. Otherwise,
even if all power is directed into modes 1 and 2 (both of which
are expected to lie within the first bit interval), the eye will not
be open. Also

W =Y q(to+nT =73m) = q(to —Tm),
n#0

m=3,...,2M.

(20)
When higher order modes (m > 3) have delays that put them
outside the first bit interval, and ¢(t) and ¢, satisfy properties
stated previously, w,, > 0 for m > 3. Thus, w,, > 0, m =
1,...,2M. Therefore, P has at most 2 positive eigenvalues and
at most 2M — 2 negative eigenvalues.

If P has no positive eigenvalues, v Pv will be nonpositive
for all v, meaning that the eye will be closed for all possible
SLM settings. However, experiments [7] show that it is pos-
sible to open the eye with suitable SLM settings. This suggests
that P has at least one positive eigenvalue. We know that the
SLM only does spatial filtering and cannot control polarization.
If P has two positive eigenvalues, it means that modes 1 and 2,
which are expected to be spatially similar but polarization de-
generate, can be independently controlled using spatial filtering
alone. However, this is not physically possible. Since P has a
total of N eigenvalues, we conclude that, in practice, P has 1
positive eigenvalue and N — 1 nonpositive eigenvalues.

4) Final SLM Optimization Problem: The optimization
problem we wish to solve is, therefore

maximize vZPv

subject to  |v;]? < 1, (21

where v (the vector of SLM reflectances) is the optimization
variable, and P (the matrix characterizing the fiber and the op-
tical system) is problem data. Here,v € CV,v = [v; ... vy]7T,
and P € CV*Y are Hermitian (P¥ = P). Since P has one
positive and N — 1 nonpositive eigenvalues, we may write it as
P = p;pff — P,P¥, where p; € CV, Py € CVXN-1 and
ng p1 = 0. We may, therefore, rewrite (21) as

maximize |pf1v|2 — ||P£Iv||2

subject to  |v;|? < 1, i=1,...,N. (22)

Henceforth, we refer to (22) as the SLM optimization (SLMO)
problem.

III. OPTIMIZING THE SLM

In this section, we solve the SLMO problem (22). This
problem is not in any standard form that leads to an efficient
global solution; for example, it is not convex. To solve it, we
will transform it to an equivalent problem that is convex and
is easily solved. We start by observing that replacing v by
e/%v leaves the objective function and constraints unchanged.
Therefore, we may arbitrarily choose an overall phase ¢ for v.
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In particular, we can choose 6 so that pv € R and pfv > 0.
The SLMO problem can, therefore, be written as

maximize ¢ —x¥x

subjectto pHv =1t

Plv=x
t>0
lvi|? < 1, i=1,...,N (23)

where t € Rand x € CV~! are additional variables introduced.

The choice v = 0 is feasible, and has zero objective value.
It follows that when we solve the SLMO problem, the objective
value must be nonnegative, i.e., we can assume that ¢> — x"x >
0. We introduce another variable y € R and rewrite our problem
as

maximize >

subject to 2 —xfx > g/2

p{{v:t

Plv=x

t>0

li?<1, i=1,...,N. 24)

This is equivalent to SLMO, because the first inequality con-
straint must be tight at the optimal point. Since y? is monoton-
ically increasing in y for y > 0, we can take the square root of
the objective function and rewrite the problem as

maximize y

subjectto /xHx + 92 <t

prv =1t
Plv=x
lvg|* < 1, i=1,...,N. (25)

Here,v € CV,x € CN1,t € R, and y € R are the optimiza-
tion variables, and p; and P are problem data. This problem
is a second-order cone program (SOCP), which can be globally
solved very efficiently [10]. The computational cost of solving
this problem is N3—the same order as solving a set of N linear
equations. We will refer to the SOCP (25) as the convex form
SLMO. Many publicly distributed software packages can be
used to solve this convex form SLMO, e.g., CVX [11] or Se-
DuMi.

We note that in real fiber systems, P is not known explicitly,
since it captures the details of the mode coupling and the optical
system and depends on the exact refractive profile, every bend
and twist in the fiber, and so on. However, if for every SLM
setting v, we can observe vHEPv, we can still find the optimal
solution. v7Pv is the eye opening and can often be measured
directly. When the eye is closed, it may be estimated from the
response to a training sequence.

One simple algorithm to solve the problem using only mea-
surements of eye opening is sequential coordinate ascent (SCA).
We choose one component of v, v; (corresponding to the ¢th
block on the SLM), and maximize the objective function (the
eye opening) with respect to (w.r.t.) v;. This can be done empir-
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ically. We then choose v;41 and repeat this procedure. The value
of the objective function increases to the global maximum, al-
though this may require several passes over the SLM. This is
a very simple algorithm, both in computational complexity and
hardware implementation. Since it is adaptive, it is also capable
of tracking drift in the system. All these factors make SCA very
promising as a practical solution.

We note that convexity of the problem (25) can be used to
show that any locally optimal point for the original SLMO
problem must in fact be global. In particular, we can be sure that
when the SCA method converges to a locally optimal solution,
it is in fact global.

IV. RESULTS

A. Fiber and System Parameters

For simulation, we use parameters from the experimental
setup used in [7]. We use a 50-pm-core graded-index multimode
fiber, 1 km in length. We use the infinite-core approximation,
and therefore approximate the IMs as Hermite—Gaussian
modes. Mode sizes and propagation constants ((;) are com-
puted analytically. The group delays of the IMs are scaled up
by a factor of 10, so as to make them comparable to modal
delays observed in experiment. This is because the differential
group delay in a fiber with perfectly quadratic refractive index
profile is less than that observed in most real fibers by about an
order of magnitude. We operate at a wavelength of 1550 nm.
We use a bit rate of 10 Gb/s. Note that the actual delay spreads
do not affect our results, because our analysis is independent of
the time scale of modal delays. At a wavelength of 1550 nm,
the fiber supports 55 modes in each polarization.

Light from a standard 10.4-pm-diameter core SMF is imaged
onto the SLM through a 10.4-mm focal length lens. The guided
mode of the SMF is approximated as Gaussian. Light reflected
by the SLM is imaged onto the MMF through a 10.4-mm focal-
length lens. Both fibers are in the focal plane of their respective
lenses.

Although the SLM in [7] provided phase control only, here,
the SLM is assumed to control both amplitude and phase with a
128 x 128 array of pixels, covering a region containing 95% of
the incident power. Each pixel is 18 x 18 ym?. These pixels are
grouped into larger square blocks during operation. A typical
block size is 16 x 16 pixels, to have a 2-D array of 8 x 8 blocks
on the SLM, though block size is part of the parameter space
explored in this simulation. The total area of the SLM is always
kept constant. Grouping a large number of pixels into blocks
means that even if, in practice, the SLM has only phase con-
trol, both amplitude and phase control may be achieved at the
block level by introducing high spatial frequency (pixel-level)
phase gratings to diffract light away from the fiber core. Sim-
ulations show that a block size of 4 x 4 pixels is sufficient to
mimic amplitude-and-phase control with a phase-only SLM for
the imaging system, wavelength, and fiber parameters used in
this simulation.

Mode coupling is simulated by coupling the IMs with ran-
domly generated complex unitary matrices. PMs are thus uni-
tary combinations of IMs. Unitarity ensures conservation of en-
ergy. High mode-coupling regime is simulated using unitary
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Fig. 2. SLM settings after adaptation, and impulse response and eye diagram
before and after adaptation—I1-km, 50-pm-core graded-index MMF, with
random mode coupling, center launch.

matrices that have large off-diagonal terms. The fiber loss co-
efficient & may be assumed to be zero without loss of gen-
erality. Correspondence between simulated impulse responses
and those observed in experiment suggests that this is a reason-
able model.

Our figure of merit is the objective function v Pv. P is nor-
malized so that, when the SLM blocks are all set to amplitude
1 and phase 0 (v; = 1), the total power in all modes excited in
the MMF is unity. Note that a negative value of the objective
function indicates a closed eye.

The optimal solution is computed by solving using CVX, a
freely distributed convex optimization library for Mat1ab [11].
‘We compare our solution to those obtained by other algorithms
currently available— two-phase and four-phase SCA. These in-
volve selecting an SLM block, trying two or four different phase
settings, respectively, picking the best one, and repeating this for
another SLM block, cycling over the SLM many times till the
algorithm converges. These were the algorithms used in the ex-
periments reported in [7] and [12].

B. Simulation Results

Fig. 2 shows the impulse response of the system before and
after adaptation of the SLM. The SLM is a 2-D array of 8x 8
blocks, each of 16 x 16 pixels. Before adaptation, all SLM
blocks have unit amplitude and zero phase. The fiber has random
mode coupling, simulated as described in Section IV-A. We see
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Fig. 3. SLM settings after adaptation, and impulse response and eye diagram
before and after adaptation—1-km, 50-pm-core graded-index MMF, 5-pm
offset launch.

that, after adaptation, higher order PMs are no longer excited.
This leads to reduction in ISI and a larger eye opening, as is ev-
ident from the eye diagrams before and after adaptation. Fig. 2
also shows the optimal SLM settings. Note that these settings
are achieved irrespective of the initial state of the SLM.

Next, we look at a system with offset launch. The fiber has
no mode coupling, the SLM uses 8 x 8 blocks, each of 16 x 16
pixels, and the beam launched into the SLM is offset from the
center of the MMF along the diagonal by 5 ;sm. Fig. 3 shows the
impulse response and eye diagrams before and after adaptation,
as well as the optimal SLM settings. We see that the optimal
SLM setting has a phase that appears to vary linearly along the
diagonal, as expected, because the SLM tries to steer the beam
back on center.

Table I compares the objective function before and after adap-
tation for this and the previous example, as well as for other
values of offset at launch. We also give comparisons with two-
phase and four-phase SCA.

Table II gives a comparison of performance across various
blocks sizes, in a system with random mode coupling. A smaller
sized block translates to higher resolution in spatial frequency.
We see that an SLM with 8 x 8 blocks, each of 16 x 16 pixels,
gives good performance, while minimizing complexity.

The optimal SLM settings in Fig. 2 and Fig. 3 clearly show
that at optimum, the SLM reflectances do not have unit magni-
tude. This is contrary to what is stated in [6]. However, Fig. 4
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TABLE I
PERFORMANCE COMPARISON OF PROPOSED OPTIMAL TECHNIQUE, TWO-PHASE
SCA, AND FOUR-PHASE SCA, FOR FIBER WITH RANDOM MODE COUPLING
AND CENTER LAUNCH, AND FOR FIBER WITH NO MODE COUPLING AND
OFFSET LAUNCH, 8 X 8 BLOCK SLM

Objective function
Before Optimal ~ 2-phase  4-phase
adaptation  solution SCA SCA
Random

mode coupling

Low coupling 0.1234 0.5163 0.3990 0.4430

High coupling -0.2885 0.2964 -0.0234 | 0.2178
Offset launch

2 pm 0.4710 0.6430 0.5093 0.5449

5 pm -0.0950 0.6290 0.1224 0.4343

10 pm -0.8795 0.5837 -0.0836 | 0.4808

TABLE II

OPTIMAL SOLUTION FOR VARIOUS SLM RESOLUTIONS: TOTAL ACTIVE AREA
OF THE SLM 1S KEPT CONSTANT AT 128 X 128 PIXELS

Number of Objective function
SLM blocks | Before adaptation  Optimal solution
4 x4 0.1234 0.3767
8 x 8 0.1234 0.5163
16 x 16 0.1234 0.5452
32 x 32 0.1234 0.5575

shows that at higher spatial resolution, at optimal setting, most
of the SLM blocks have unit magnitude. This means that the dif-
ference in performance of phase-only and amplitude-and-phase
SLMs decreases with increasing spatial resolution.

Finally, we look at the effect of completely suppressing all
higher order modes, so that exactly one PM is excited. Intu-
itively, one may think that the best thing to do to minimize ISI
is to suppress all higher order modes. However, our objective is
to have a large eye opening. This does not necessarily translate
to suppressing higher order modes. It turns out that if we allow
some higher order modes to be excited, we more than compen-
sate by having higher power in the lowest order mode. This is
clearly demonstrated in Fig. 5, where we see the impulse re-
sponses of the optimal solution, and the solution involving se-
lective excitation of the lowest order mode and no excitation of
higher order modes, with the SLM at high spatial resolution.
Comparing the eye diagrams, we see that one eye is clean, but
small, while the other eye is less clean, but more open.

C. Comparison of Optical and Electrical Equalization

The proposed optical equalization scheme offers scalability
advantages over electrical equalization schemes. One SLM can
serve several wavelength-division-multiplexed channels [7],
[12], unlike electrical equalizers, which must be implemented
separately for each channel. The optical technique scales more
easily to high bit rates and long fibers, because requirements on
the SLM are independent of bit rate and fiber length, and depend
only on the mode structure. By contrast, in maximum-likeli-
hood sequence detection (MLSD) [5], the optimal electrical
equalization scheme, complexity scales exponentially with the
bit rate x length product. In the optical technique, once the
SLM has been adapted, the steady-state power consumption can
be very low. Electrical equalizers must process each received
bit, which can lead to high power consumption.
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Fig. 4. Amplitude and phase of the SLM after adaptation—1-km, 50-zzm-core
graded-index MMF, with random mode coupling, center launch, SLM at high
spatial resolution (32 X 32 blocks).
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Fig. 5. Impulse responses before adaptation, after adaptation to optimal
setting, and after adaptation to excite a single PM, and eye diagrams—1-km,
50-pzm-core graded-index MMEF, with random mode coupling, center launch,
SLM at high spatial resolution (32 X 32 blocks), showing that selective
excitation of a single mode does not maximize eye opening.

Fig. 6 gives a comparison of the BER performances of the
best optical and electrical equalizers. The channel used is the
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Fig. 6. Comparison of performance of optical equalization and electrical
equalization using MLSD—I1-km, 50-gzm-core graded-index MMEF, with
random mode coupling, center launch, SLM at high spatial resolution (32 x 32
blocks), MLSD with 219 states.

same as that in Fig. 4. We consider optical equalization with the
SLM at high spatial resolution (32 x 32 blocks). This is com-
pared to MLSD using 2'° states, with survivor sequences trun-
cated to the 50 most recent symbols (no optical equalization is
used). MLSD using a larger number of states is difficult to sim-
ulate and would be very difficult to implement in practice. For
a fixed transmit power, the noise power is varied to change the
electrical SNR. The electrical SNR is defined as the ratio of the
square of the average signal photocurrent with a blank SLM to
the variance of the noise power. We see that optical equalization
outperforms MLSD. Other electrical equalizers, such as linear
or decision-feedback equalizers, are known to perform worse
than MLSD [5].

V. CONCLUSION

We have proposed an optimal technique to minimize ISI in
MMF systems, using an SLM. A mathematical model of the
system, incorporating light propagation in the presence of mode
coupling and constraints on the SLM, is developed. Finding op-
timal SLM settings to minimize ISI is posed as an optimiza-
tion problem. The globally optimal solution to this problem is
found by solving an equivalent convex optimization problem,
which can be solved with low computational complexity. The
solution can be implemented using fast, low-complexity adap-
tive algorithms. We present simulation results, using parameters
of commercially available fibers and SLMs, and show that this
technique mitigates IST and opens up an otherwise closed eye
pattern. This work also shows that combining optimization and
physical modeling leads to solutions that are not obvious from
the physics of the problem. In particular, it suggests that mere
suppression of higher order modes is not the best strategy to
combat ISIL.

Future work will involve development of custom adaptive al-
gorithms designed to exploit structure in our problem, thereby
ensuring fast convergence and robustness to noise. These will
then be tested in experiment to quantify performance in pres-
ence of noise and system drift.
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