A Minimax Theorem with Applications to Machine Learning, Signal Processing, and Finance

Seung Jean Kim Stephen Boyd Alessandro Magnani

Outline

- A minimax theorem
- Robust Fisher discriminant analysis
- Robust matched filtering
- An extension
- Worst-case Sharpe ratio maximization

A fractional function

$$
f(a, B, x)=\frac{a^{T} x}{\sqrt{x^{T} B x}}, \quad a, x \in \mathbf{R}^{n}, \quad B \in \mathbf{S}_{++}^{n}
$$

- f is homogeneous, quasiconcave in x provided $a^{T} x \geq 0$: for $\gamma \geq 0$,

$$
\{x \mid f(a, B, x) \geq \gamma\}=\left\{x \mid \gamma \sqrt{x^{T} B x} \leq a^{T} x\right\}
$$

is convex (a second-order cone)

- f is quasiconvex in (a, B) provided $a^{T} x \geq 0$: for $\gamma \geq 0$,

$$
\{(a, B) \mid f(a, B, x) \leq \gamma\}=\left\{(a, B) \mid \gamma \sqrt{x^{T} B x} \geq a^{T} x\right\}
$$

is convex (since $\sqrt{x^{T} B x}$ is concave in B)

- f maximized over x by $x^{\star}=B^{-1} a$; optimal value $\sqrt{a^{T} B^{-1} a}$

A Rayleigh quotient

$f(a, B, x)^{2}$ is Rayleigh quotient of $\left(a a^{T}, B\right)$ evaluated at x :

$$
f(a, B, x)^{2}=\frac{\left(x^{T} a\right)^{2}}{x^{T} B x}
$$

- convex in (a, B)
- not quasiconcave in x

Interpretation via Gaussian

- suppose $z \sim \mathcal{N}(a, B)$, and $x \in \mathbf{R}^{n}$
- $z^{T} x \sim \mathcal{N}\left(a^{T} x, x^{T} B x\right)$, so $\operatorname{Prob}\left(z^{T} x \geq 0\right)=\Phi\left(\frac{a^{T} x}{\sqrt{x^{T} B x}}\right)$
- $x^{\star}=B^{-1} a$ gives hyperplane through origin that maximizes probability of z being on one side
- maximum probability is $\Phi\left(\sqrt{a^{T} B^{-1} a}\right)$
- $a^{T} B^{-1} a$ measures how well a linear function can discriminate z from zero

A picture

- expand confidence ellipsoid until it touches origin
- tangent is plane that maximizes $\operatorname{Prob}\left(z^{T} x \geq 0\right)$

Interpretation via Chebyshev bound

- suppose $\mathbf{E} z=a, \mathbf{E}(z-a)^{T}(z-a)=B$ (otherwise arbitrary)
- $\mathbf{E} z^{T} x=a^{T} x, \mathbf{E}\left(z^{T} x-a^{T} x\right)^{2}=x^{T} B x$, so by Chebyshev bound

$$
\operatorname{Prob}\left(z^{T} x \geq 0\right) \geq \Psi\left(\frac{a^{T} x}{\sqrt{x^{T} B x}}\right), \quad \Psi(u)=\frac{u_{+}^{2}}{1+u_{+}^{2}}
$$

ψ is increasing (bound is sharp)

- $x^{\star}=B^{-1} a$ gives hyperplane through origin that maximizes Chebyshev lower bound for $\operatorname{Prob}\left(z^{T} x \geq 0\right)$
- maximum value of Chebyshev lower bound is $\frac{a^{T} B^{-1} a}{1+a^{T} B^{-1} a}$

Worst-case discrimination probability analysis

- uncertain statistics: $(a, B) \in \mathcal{U} \subseteq \mathbf{R}^{n} \backslash\{0\} \times \mathbf{S}_{++}^{n}$ (convex and compact)
- for fixed x, find worst-case statistics:

```
minimize }\operatorname{Prob}(\mp@subsup{z}{}{T}x>0
subject to }(a,B)\in\mathcal{U
```

where $z \sim \mathcal{N}(a, B)$

Worst-case discrimination probability analysis

- worst-case discrimination probability analysis is equivalent to

$$
\begin{array}{ll}
\text { minimize } & \frac{a^{T} x}{\sqrt{x^{T} B x}} \\
\text { subject to } & (a, B) \in \mathcal{U}
\end{array}
$$

- if optimal value is positive, i.e., $a^{T} x>0$ for all $(a, B) \in \mathcal{U}$, equivalent to convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{\left(a^{T} x\right)^{2}}{x^{T} B x} \\
\text { subject to } & (a, B) \in \mathcal{U}
\end{array}
$$

- if optimal value is negative, can solve via bisection, convex optimization

Worst-case discrimination probability maximization

- find x that maximizes worst-case discrimination probability

$$
\min _{(a, B) \in \mathcal{U}} \operatorname{Prob}\left(z^{T} x \geq 0\right)
$$

- equivalent to finding x that maximizes

$$
\min _{(a, B) \in \mathcal{U}} \frac{a^{T} x}{\sqrt{x^{T} B x}}
$$

- not concave in x; not clear how to solve
- studied in context of robust signal processing in 1980s
(Poor, Verdú, . . .) for some specific \mathcal{U} s

Weak minimax property

$$
\max _{x \neq 0} \min _{(a, B) \in \mathcal{U}} \frac{x^{T} a}{\sqrt{x^{T} B x}} \leq \min _{(a, B) \in \mathcal{U}} \max _{x \neq 0} \frac{x^{T} a}{\sqrt{x^{T} B x}}
$$

- LHS: worst-case discrimination probability maximization problem
- RHS can be evaluated via convex optimization:

$$
\min _{(a, B) \in \mathcal{U}} \max _{x \neq 0} \frac{x^{T} a}{\sqrt{x^{T} B x}}=\min _{(a, B) \in \mathcal{U}} \sqrt{a^{T} B^{-1} a}=\left[\min _{(a, B) \in \mathcal{U}} a^{T} B^{-1} a\right]^{1 / 2}
$$

- finds statistics hardest to discriminate from zero

Strong minimax property

in fact, we have equality:

$$
\max _{x \neq 0} \min _{(a, B) \in \mathcal{U}} \frac{x^{T} a}{\sqrt{x^{T} B x}}=\min _{(a, B) \in \mathcal{U}} \max _{x \neq 0} \frac{x^{T} a}{\sqrt{x^{T} B x}}
$$

(and common value is ≥ 0)
equivalently, with $z \sim \mathcal{N}(a, B)$,

$$
\max _{x \neq 0} \min _{(a, B) \in \mathcal{U}} \operatorname{Prob}\left(z^{T} x \geq 0\right)=\min _{(a, B) \in \mathcal{U}} \max _{x \neq 0} \operatorname{Prob}\left(z^{T} x \geq 0\right)
$$

(and common value is $\geq 1 / 2$)

Computing saddle point via convex optimization

- find least favorable statistics $\left(a^{\star}, B^{\star}\right)$, i.e., minimize $a^{T} B^{-1} a$ over $(a, B) \in \mathcal{U}$
- $\left(x^{\star}, a^{\star}, B^{\star}\right)$ with $x^{\star}=B^{\star-1} a^{\star}$ is saddle point:
- x^{\star} solves worst-case discrimination probability maximization problem
- $\left(a^{\star}, B^{\star}\right)$ is worst-case statistics for x^{\star}

Interpretation of least favorable statistics

find statistics with minimum Mahalanobis distance between mean and zero:

$$
a^{\star T} B^{\star-1} a^{\star}=\min _{(a, B) \in \mathcal{U}} a^{T} B^{-1} a
$$

Proof via convex analysis

- let $\left(a^{\star}, B^{\star}\right)$ be least favorable: $\min _{(a, B) \in \mathcal{U}} \sqrt{a^{T} B^{-1} a}=\sqrt{a^{\star T} B^{\star-1} a^{\star}}$
- by minimax inequality

$$
\max _{x \neq 0} \min _{(a, B) \in \mathcal{U}} \frac{x^{T} a}{\sqrt{x^{T} B x}} \leq \min _{(a, B) \in \mathcal{U}} \max _{x \neq 0} \frac{x^{T} a}{\sqrt{x^{T} B x}}=\sqrt{a^{\star T} B^{\star-1} a^{\star}}
$$

- $x^{\star}=B^{\star-1} a^{\star}$ gives lower bound on $\sqrt{a^{\star T} B^{\star-1} a^{\star}}$:

$$
\min _{(a, B) \in \mathcal{U}} \frac{x^{\star T} a}{\sqrt{x^{\star T} B x^{\star}}} \leq \max _{x \neq 0} \min _{(a, B) \in \mathcal{U}} \frac{x^{T} a}{\sqrt{x^{T} B x}} \leq \sqrt{a^{\star T} B^{\star-1} a^{\star}}
$$

- if $\min _{(a, B) \in \mathcal{U}} \frac{x^{\star T} a}{\sqrt{x^{\star T} B x^{\star}}}=\frac{x^{\star T} a^{\star}}{\sqrt{x^{\star T} B^{\star} x^{\star}}}=\sqrt{a^{\star T} B^{\star-1} a^{\star}}$, then minimax equality must hold
- $\left(a^{\star}, B^{\star}\right)$ is optimal for $\min _{(a, B) \in \mathcal{U}} a^{T} B^{-1} a$, so

$$
2 x^{\star T}\left(a-a^{\star}\right)-x^{\star T}\left(B-B^{\star}\right) x^{\star} \geq 0, \quad \forall(a, B) \in \mathcal{U}
$$

with $x^{\star}=B^{\star-1} a^{\star}$
(since z^{\star} minimizes convex differentiable fct. f over convex set C iff $\left.\nabla f\left(z^{\star}\right)^{T}\left(z-z^{\star}\right) \geq 0 \forall z \in C\right)$

- we conclude $\left(a^{\star}, B^{\star}\right)$ is optimal for $\min _{(a, B) \in \mathcal{U}}\left(x^{\star T} a\right)^{2} / x^{\star T} B x^{\star}$, since its optimality condition is also

$$
2 x^{\star T}\left(a-a^{\star}\right)-x^{\star T}\left(B-B^{\star}\right) x^{\star} \geq 0, \quad \forall(a, B) \in \mathcal{U}
$$

- $\left(a^{\star}, B^{\star}\right)$ must be optimal for $\min _{(a, B) \in \mathcal{U}} x^{\star T} a /\left(x^{\star T} B x^{\star}\right)^{1 / 2}$, since $\min _{(a, B) \in \mathcal{U}} x^{\star T} a /\left(x^{\star T} B x^{\star}\right)^{1 / 2}>0$

Fisher linear discriminant analysis

- $x \sim \mathcal{N}\left(\mu_{x}, \Sigma_{x}\right), y \sim \mathcal{N}\left(\mu_{y}, \Sigma_{y}\right)$
- find w that maximizes $\operatorname{Prob}\left(w^{T} x>w^{T} y\right)$
- $x-y \sim \mathcal{N}\left(\mu_{x}-\mu_{y}, \Sigma_{x}+\Sigma_{y}\right)$, so

$$
\operatorname{Prob}\left(w^{T} x>w^{T} y\right)=\Phi\left(\frac{w^{T}\left(\mu_{x}-\mu_{y}\right)}{\sqrt{w^{T}\left(\Sigma_{x}+\Sigma_{y}\right) w}}\right)
$$

- equivalent to maximizing $\frac{w^{T}\left(\mu_{x}-\mu_{y}\right)}{\sqrt{w^{T}\left(\Sigma_{x}+\Sigma_{y}\right) w}}=f\left(\mu_{x}-\mu_{y}, \Sigma_{x}+\Sigma_{y}, w\right)$
- proposed by Fisher in 1930s

Worst-case Fisher linear discrimination

- uncertain statistics:

$$
\left(\mu_{x}, \mu_{y}, \Sigma_{x}, \Sigma_{y}\right) \in \mathcal{V} \subseteq \mathbf{R}^{n} \times \mathbf{R}^{n} \times \mathbf{S}_{++}^{n} \times \mathbf{S}_{++}^{n}
$$

convex and compact; $\mu_{x} \neq \mu_{y}$ for each $\left(\mu_{x}, \mu_{y}, \Sigma_{x}, \Sigma_{y}\right) \in \mathcal{V}$

- worst-case discrimination probability (for fixed w):

$$
\min _{\left(\mu_{x}, \mu_{y}, \Sigma_{x}, \Sigma_{y}\right) \in \mathcal{V}} \operatorname{Prob}\left(w^{T} x>w^{T} y\right)
$$

- can compute via convex optimization

Robust Fisher linear discriminant analysis

- worst-case discrimination probability maximization:
find w that maximizes worst-case discrimination probability

$$
\min _{\left(\mu_{x}, \mu_{y}, \Sigma_{x}, \Sigma_{y}\right) \in \mathcal{V}} \operatorname{Prob}\left(w^{T} x>w^{T} y\right)
$$

- equivalent to maximizing (over w)

$$
\min _{\left(\mu_{x}, \mu_{y}, \Sigma_{x}, \Sigma_{y}\right) \in \mathcal{V}} \frac{w^{T}\left(\mu_{x}-\mu_{y}\right)}{\sqrt{w^{T}\left(\Sigma_{x}+\Sigma_{y}\right) w}}
$$

- our max-min problem, with

$$
\begin{gathered}
a=\mu_{x}-\mu_{y}, \quad B=\Sigma_{x}+\Sigma_{y} \\
\mathcal{U}=\left\{\left(\mu_{x}-\mu_{y}, \Sigma_{x}+\Sigma_{y}\right) \mid\left(\mu_{x}, \mu_{y}, \Sigma_{x}, \Sigma_{y}\right) \in \mathcal{V}\right\}
\end{gathered}
$$

Example

$x, y \in \mathbf{R}^{2} ;$ only μ_{y} is uncertain, $\mu_{y} \in \mathcal{E}$

Results

	$\mathbf{P}_{\text {nom }}$	\mathbf{P}_{wc}
nominal optimal	0.99	0.87
robust optimal	0.98	0.91

- $\mathbf{P}_{\text {nom }}$: nominal discrimination probability
- \mathbf{P}_{wc} : worst-case discrimination probability

Matched filtering

$$
y(t)=s(t) a+v(t) \in \mathbf{R}^{n}
$$

- $s(t) \in \mathbf{R}$ is desired signal; $y(t) \in \mathbf{R}^{n}$ is received signal
- $v(t) \sim \mathcal{N}(0, \Sigma)$ is noise
- filtered output with weight vector $w \in \mathbf{R}^{n}$:

$$
z(t)=w^{T} y(t)=s(t) w^{T} a+w^{T} v(t)
$$

- standard matched filtering:
choose w to maximize (amplitude) signal to noise ratio (SNR) $\frac{w^{T} a}{\sqrt{w^{T} \Sigma w}}$

Robust matched filtering

- uncertain data: $(a, \Sigma) \in \mathcal{U} \subseteq \mathbf{R}^{n} \backslash\{0\} \times \mathbf{S}_{++}^{n}$ (convex and compact)
- worst-case SNR for fixed $w: \min _{(a, \Sigma) \in \mathcal{U}} \frac{w^{T} a}{\sqrt{w^{T} \Sigma w}}$
- robust matched filtering: find w that maximizes worst-case SNR
- can be solved via convex optimization \& minimax theorem for $x^{T} a / \sqrt{x^{T} B x}$

Example

- $a=(2,3,2,2)$ is fixed (no uncertainty)
- uncertain Σ has form

$$
\left[\begin{array}{cccc}
1 & - & + & - \\
& 1 & ? & + \\
& & 1 & ? \\
& & & 1
\end{array}\right], \quad \begin{array}{llll}
+ & \text { means } & \Sigma_{i j} \in[0,1] \\
& & ? & \text { means } \\
\Sigma_{i j} \in[-1,0] \\
& \text { means } & \Sigma_{i j} \in[-1,1]
\end{array}
$$

(and of course $\Sigma \succ 0$)

- we take 'nominal' noise covariance as $\bar{\Sigma}=\left[\begin{array}{cccc}1 & -.5 & .5 & -.5 \\ & 1 & 0 & .5 \\ & & 1 & 0 \\ & & & 1\end{array}\right]$

Results

	nominal SNR	worst-case SNR
nominal optimal	5.5	3.0
robust optimal	4.9	3.6

least favorable covariance: $\left[\begin{array}{cccc}1 & 0 & .38 & -.12 \\ & 1 & .41 & .74 \\ & & 1 & .23 \\ & & & 1\end{array}\right]$

Extension of minimax theorem

\mathcal{U} convex, compact; \mathcal{X} convex cone

$$
\max _{x \in \mathcal{X}} \min _{(a, B) \in \mathcal{U}} \frac{a^{T} x}{\sqrt{x^{T} B x}}=\min _{(a, B) \in \mathcal{U}} \max _{w \in \mathcal{X}} \frac{a^{T} x}{\sqrt{x^{T} B x}}
$$

provided there exists $\bar{x} \in \mathcal{X}$ s.t. $a^{T} \bar{x}>0$ for all a with $(a, B) \in \mathcal{U}$, i.e., LHS > 0

Computing saddle point via convex optimization

- convexity of min-max problem:

$$
\begin{aligned}
\min _{(a, B) \in \mathcal{U}} \max _{x \in \mathcal{X}} \frac{a^{T} x}{\sqrt{x^{T} B x}} & =\min _{(a, B) \in \mathcal{U}} \min _{\lambda \in \mathcal{X}^{*}}\left[(a+\lambda)^{T} B^{-1}(a+\lambda)\right]^{1 / 2} \\
& =\left[\min _{(a, B) \in \mathcal{U}, \lambda \in \mathcal{X}^{*}}(a+\lambda)^{T} B^{-1}(a+\lambda)\right]^{1 / 2}
\end{aligned}
$$

\mathcal{X}^{*} is dual cone

- if $\left(a^{\star}, B^{\star}, \lambda^{\star}\right)$ is optimal for min-max problem, $\left(x^{\star}, a^{\star}, B^{\star}\right)$ with $x^{\star}=B^{\star-1}\left(a^{\star}+\lambda^{\star}\right)$ is a saddle point:

$$
\frac{x^{T} a^{\star}}{\sqrt{x^{T} B^{\star} x}} \leq \frac{x^{\star T} a^{\star}}{\sqrt{x^{\star T} B^{\star} x^{\star}}} \leq \frac{x^{\star T} a}{\sqrt{x^{\star T} B x^{\star}}}, \quad \forall x \in \mathcal{X}, \quad \forall(a, B) \in \mathcal{U}
$$

A key lemma

$$
\max _{x \in \mathcal{X}} \frac{\left(a^{T} x\right)^{2}}{x^{T} B x}=\min _{\lambda \in \mathcal{X}^{*}}(a+\lambda)^{T} B^{-1}(a+\lambda)
$$

using homogeneity of $\left(a^{T} x\right)^{2} / x^{T} B x$, write LHS as

$$
\max _{x \in \mathcal{X}} \frac{\left(a^{T} x\right)^{2}}{x^{T} B x}=\left[\min _{x \in \mathcal{X}, a^{T} x=1} x^{T} B x\right]^{-1}
$$

by convex duality

$$
\min _{x \in \mathcal{X}, a^{T} x=1} x^{T} B x=\max _{\bar{\lambda} \in \mathcal{X}^{*}, \mu \in \mathbf{R}}\left[-(1 / 4)(\bar{\lambda}+\mu a)^{T} B^{-1}(\bar{\lambda}+\mu a)+\mu\right]
$$

defining $\lambda=\bar{\lambda} / \mu$ and optimizing over μ, RHS becomes

$$
\min _{x \in \mathcal{X}, a^{T} x=1} x^{T} B x=\max _{\lambda \in \mathcal{X}^{*}} \frac{1}{(a+\lambda)^{T} B^{-1}(a+\lambda)}
$$

Asset allocation

- n risky assets with (single period) returns $a \sim \mathcal{N}(\mu, \Sigma)$
- portfolio $w \in \mathcal{W}$ (convex); $\mathbf{1}^{T} w=1$ for all $w \in \mathcal{W}$
- $w^{T} a \sim \mathcal{N}\left(w^{T} \mu, w^{T} \Sigma w\right)$, so probability of beating risk-free asset with return μ_{rf} is

$$
\operatorname{Prob}\left(a^{T} w>\mu_{\mathrm{rf}}\right)=\Phi\left(\frac{\mu^{T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma w}}\right)
$$

- maximized by $w \in \mathcal{W}$ that maximizes Sharpe ratio $\frac{\mu^{T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma w}}$ (called tangency portfolio $w_{\text {tp }}$)
- we're only interested in case when maximum Sharpe ratio ≥ 0

Interpretation via Chebyshev bound

- suppose $\mathbf{E} a=\mu, \mathbf{E}(a-\mu)^{T}(a-\mu)=\Sigma$ (otherwise arbitrary)
- $\mathbf{E} a^{T} w=\mu^{T} x, \mathbf{E}\left(a^{T} x-\mu^{T} x\right)^{2}=w^{T} \Sigma w$, so by Chebyshev bound,

$$
\operatorname{Prob}\left(a^{T} w \geq \mu_{\mathrm{rf}}\right) \geq \Psi\left(\frac{\mu^{T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma w}}\right), \quad \Psi(u)=\frac{u_{+}^{2}}{1+u_{+}^{2}}
$$

increasing (bound is tight)

- maximized by tangency portfolio

EF: efficient frontier; CML: capital market line

Asset allocation with a risk-free asset

- affine combination of risk-free asset and risky portfolio $w \in \mathcal{W}$:

$$
x=\left[\begin{array}{c}
(1-\theta) w \\
\theta
\end{array}\right]
$$

θ is amount of risk-free asset

- Tobin's two-fund separation theorem:
- risk s and return r of any $x=((1-\theta) w, \theta)$ with $w \in \mathcal{W}$ cannot lie above capital market line (CML)

$$
r=\mu_{\mathrm{rf}}+S^{\star} s, \quad S^{\star}=\max _{w \in \mathcal{W}} \frac{\mu^{T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma w}}
$$

- CML is formed by affine combinations of two portfolios: tangency portfolio $\left(w_{\mathrm{tp}}, 0\right)$ and risk-free portfolio $(0,1)$

Worst-case Sharpe ratio

- uncertain statistics: $(\mu, \Sigma) \in \mathcal{V} \subseteq \mathbf{R}^{n} \times \mathbf{S}_{++}^{n}$ (convex and compact)
- for fixed $w \in \mathcal{W}$, find worst-case statistics by computing worst-case SR

$$
\min _{(\mu, \Sigma) \in \mathcal{V}} \frac{\mu^{T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma w}}=\min _{(\mu, \Sigma) \in \mathcal{V}} \frac{\left(\mu-\mu_{\mathrm{rf}} \mathbf{1}\right)^{T} w}{\sqrt{w^{T} \Sigma w}}
$$

. . . can be computed via convex optimization

- related to worst-case probability of beating risk-free asset

$$
\min _{(\mu, \Sigma) \in \mathcal{V}} \operatorname{Prob}\left(a^{T} w>\mu_{\mathrm{rf}}\right)=\Phi\left(\min _{(\mu, \Sigma) \in \mathcal{V}} \frac{\mu^{T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma w}}\right)
$$

Worst-case Sharpe ratio maximization

 find portfolio that maximizes worst-case SR:$$
\begin{array}{ll}
\text { maximize } & \min _{(\mu, \Sigma) \in \mathcal{V}} \frac{\mu^{T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma w}} \\
\text { subject to } & w \in \mathcal{W}
\end{array}
$$

this portfolio (called robust tangency portfolio $w_{\text {rtp }}$) maximizes

- worst-case probability of beating risk-free asset

$$
\min _{(\mu, \Sigma) \in \mathcal{V}} \operatorname{Prob}\left(w^{T} a>\mu_{\mathrm{rf}}\right), \quad a \sim \mathcal{N}(\mu, \Sigma)
$$

- worst-case Chebyshev lower bound for $\operatorname{Prob}\left(a^{T} w \geq \mu_{\mathrm{rf}}\right)$

$$
\min _{(\mu, \Sigma) \in \mathcal{V}} \inf \left\{\operatorname{Prob}\left(a^{T} w \geq \mu_{\mathrm{rf}}\right) \mid \mathbf{E} a=\mu, \mathbf{E}(a-\mu)^{T}(a-\mu)=\Sigma\right\}
$$

Solution via minimax

$\mathbf{1}^{T} w=1$ for all $w \in \mathcal{W}$ so

$$
\frac{\mu^{T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma w}}=\frac{\left(\mu-\mu_{\mathrm{rf}} \mathbf{1}\right)^{T} w}{\sqrt{w^{T} \Sigma w}}, \quad \forall w \in \mathcal{W}
$$

can use minimax theorem for $a^{T} x / \sqrt{x^{T} B x}$, with

$$
\begin{gathered}
a=\mu-\mu_{\mathrm{rf}} \mathbf{1}, \quad B=\Sigma, \quad \mathcal{X}=\mathbf{R} \mathcal{W} \\
\mathcal{U}=\left\{\left(\mu-\mu_{\mathrm{rf}} \mathbf{1}, \Sigma\right) \mid(\mu, \Sigma) \in \mathcal{V}\right\}
\end{gathered}
$$

Minimax result for Sharpe ratio

suppose there exists portfolio \bar{w} s.t. $\mu^{T} w>\mu_{\mathrm{rf}}$ for all $(\mu, \Sigma) \in \mathcal{V}$

- strong minimax property:

$$
0<\max _{w \in \mathcal{W}} \min _{(\mu, \Sigma) \in \mathcal{V}} \frac{\mu^{T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma w}}=\min _{(\mu, \Sigma) \in \mathcal{V}} \max _{w \in \mathcal{W}} \frac{\mu^{T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma w}}
$$

- saddle point $\left(w^{\star}, \mu^{\star}, \Sigma^{\star}\right)$ can be computed via convex optimization

$$
\frac{\mu^{\star T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma^{\star} w}} \leq \frac{\mu^{\star T} w^{\star}-\mu_{\mathrm{rf}}}{\sqrt{w^{\star T} \Sigma^{\star} w^{\star}}} \leq \frac{\mu^{T} w^{\star}-\mu_{\mathrm{rf}}}{\sqrt{w^{\star T} \Sigma w^{\star}}}, \quad \forall w \in \mathcal{W}, \quad \forall(\mu, \Sigma) \in \mathcal{V}
$$

Saddle-point property

$\mathcal{P}\left(w^{\star}\right)=\left\{\left(\mu^{T} w^{\star}, \sqrt{w^{\star} T} \Sigma w^{\star}\right) \mid(\mu, \Sigma) \in \mathcal{V}\right\}$ is risk-return set of w^{\star}

Example

7 risky assets with nominal returns $\bar{\mu}_{i}$, variances $\bar{\sigma}_{i}^{2}$, correlation matrix $\bar{\Omega}$

$$
\begin{aligned}
& \bar{\Omega}=\left[\begin{array}{rrrrrrr}
1.00 & .07 & -.12 & .43 & -.11 & .24 & .25 \\
& 1.00 & .73 & -.14 & .09 & .28 & -.10 \\
& & 1.00 & .14 & .5 & .52 & -.13 \\
& & & 1.00 & .04 & .35 & .38 \\
& & & & 1.00 & .7 & .04 \\
& & & & & 1.00 & -.09 \\
& & & & & & 1.00
\end{array}\right]
\end{aligned}
$$

Example

- total short position is limited to 30% of total long position
- mean uncertainty model:

$$
\left|\mathbf{1}^{T} \mu-\mathbf{1}^{T} \bar{\mu}\right| \leq 0.1\left|\mathbf{1}^{T} \bar{\mu}\right|, \quad\left|\mu_{i}-\bar{\mu}_{i}\right| \leq 0.2\left|\bar{\mu}_{i}\right|, \quad i=1, \ldots, 6
$$

- covariance uncertainty model:

$$
\|\Sigma-\bar{\Sigma}\|_{F} \leq 0.1\|\bar{\Sigma}\|_{F}, \quad\left|\Sigma_{i j}-\bar{\Sigma}_{i j}\right| \leq 0.2\left|\bar{\Sigma}_{i j}\right|, \quad i, j=1, \ldots, 6
$$

$\bar{\Sigma}$ is nominal covariance

Results

	nominal SR	worst-case SR
nominal MP robust MP	1.56	0.56
	1.23	0.77
	$\mathbf{P}_{\text {nom }}$	$\mathbf{P}_{\text {wc }}$
nominal MP	0.92	0.77
robust MP	0.89	0.71

- $\mathbf{P}_{\text {nom }}$: probability of beating risk-free asset with nominal statistics ($\bar{\mu}, \bar{\Sigma}$)
- \mathbf{P}_{wc} : probability of beating risk-free asset with worst-case statistics

Two-fund separation under model uncertainty

- robust two-fund separation theorem:
- risk-return set of any $x=((1-\theta) w, \theta)$ with $w \in \mathcal{W}$ cannot lie above robust capital market line (RCML)

$$
r=\mu_{\mathrm{rf}}+S^{\star} s
$$

with slope $S^{\star}=\max _{w \in \mathcal{W}} \min _{(\mu, \Sigma) \in \mathcal{V}} \frac{\mu^{T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma w}}=\min _{(\mu, \Sigma) \in \mathcal{V}} \max _{w \in \mathcal{W}} \frac{\mu^{T} w-\mu_{\mathrm{rf}}}{\sqrt{w^{T} \Sigma w}}$

- RCML is formed by affine combinations of two portfolios:
robust tangency portfolio $\left(w_{\mathrm{rtp}}, 0\right)$, risk-free portfolio $(0,1)$
- for $\mathcal{V}=\{(\mu, \Sigma)\}$, reduces to Tobin's two-fund separation theorem

Two-fund separation under model uncertainty

$\mathcal{P}((1-\theta) w, \theta)$ is risk-return set of $((1-\theta) w, \theta)$

Summary \& comments

- the function $f(a, B, x)=\frac{a^{T} x}{\sqrt{x^{T} B x}}$ comes up alot
- what was known (??): simple minimax result, no constraints on x, product form for \mathcal{U}
- what is new (??): general minimax theorem; convex optimization method for computing saddle point
- minimax theorem for $\frac{\operatorname{Tr} A X}{\operatorname{Tr} B X}$ holds (with conditions)
- minimax theorem for $\frac{x^{T} A x}{x^{T} B x}$ generally false

References

- Kim and Boyd, Two-fund separation under model uncertainty, in preparation
- Kim, Magnani, and Boyd, Robust Fisher discriminant analysis, www.stanford.edu/~boyd/research.html
- Verdú and Poor, On Minimax Robustness: A General Approach and Applications, IEEE Transactions on Information Theory, 30(2): 328-340, 1984
- Sion, On general minimax theorems, Pacific Journal of Mathematics, 8(1): 171-176, 1958

