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Abstract— In this paper we describe an approximate
dynamic programming policy for a discrete-time dynamical
system perturbed by noise. The approximate value function
is the pointwise supremum of a family of lower bounds
on the value function of the stochastic control problem;
evaluating the control policy involves the solution of a
min-max or saddle-point problem. For a quadratically
constrained linear quadratic control problem, evaluating
the policy amounts to solving a semidefinite program at
each time step. By evaluating the policy, we obtain a lower
bound on the value function, which can be used to evaluate
performance: When the lower bound and the achieved
performance of the policy are close, we can conclude that
the policy is nearly optimal. We describe several numerical
examples where this is indeed the case.

I. INTRODUCTION

We consider an infinite horizon stochastic control

problem with discounted objective and full state infor-

mation. In the general case this problem is difficult to

solve, but exact solutions can be found for certain special

cases. When the state and action spaces are finite, for

example, the problem is readily solved. Another case

for which the problem can be solved exactly is when

the state and action spaces are finite dimensional real

vector spaces, the system dynamics are linear, the cost

function is convex quadratic, and there are no constraints

on the action or the state. In this case optimal control

policy is affine in the state variable, with coefficients

that are readily computable [1], [2], [3], [4].

One general method for finding the optimal policy

is to use dynamic programming (DP). DP represents

the optimal policy in terms of an optimization problem

involving the value function of the stochastic control

problem [3], [4], [5]. However, due to the ‘curse of di-

mensionality’, even representing the value function can

be intractable when the state or action spaces are infinite,

or as a practical matter, when the number of states or

actions is very large. Even when the value function

can be represented, evaluating the optimal policy can

still be intractable. As a result approximate dynamic

programming (ADP) has been developed as a general

method for finding suboptimal control policies [6], [7],

[8]. In ADP we substitute an approximate value function

for the value function in the expression for the optimal

policy. The goal is to choose the approximate value

function (also known as a control-Lyapunov function)

so that the performance of the resulting policy is close

to optimal, or at least, good.

In this paper we develop a control policy which we

call the min-max approximate dynamic programming

policy. We first parameterize a family of lower bounds

on the true value function; then we perform control,

taking the pointwise supremum over this family as our

approximate value function. The condition we use to

parameterize our family of bounds is related to the

‘linear programming approach’ to ADP, which was first

introduced in [9], and extended to approximate dynamic

programming in [10], [11]. The basic idea is that any

function which satisfies the Bellman inequality is a lower

bound on the true value function [3], [4].

It was shown in [12] that a better lower bound can

be attained via an iterated chain of Bellman inequalities,

which we use here. We relate this chain of inequalities to

a forward look-ahead in time, in a similar sense to that

of model predictive control (MPC) [13], [14]. Indeed

many types of MPC can be thought of as performing

min-max ADP with a particular (generally affine) family

of underestimator functions.

In cases where we have a finite number of states

and inputs, evaluating our policy requires solving a

linear program at every time step. For problems with an

infinite number of states and inputs, the method requires

the solution of a semi-infinite linear program, with a

finite number of variables, but an infinite number of

constraints (one for every state-control pair). For these

problems we can obtain a tractable semidefinite program

(SDP) approximation using methods such as the S-

procedure [8], [12]. Evaluating our policy then requires

solving an SDP at each time step [15], [16].

Much progress has been made in solving structured

convex programs efficiently (see, e.g., [17], [18], [19],

[20]). These fast optimization methods make our policies

practical, even for large problems, or those requiring fast

sampling rates.

II. STOCHASTIC CONTROL

Consider a discrete time-invariant dynamical system,

with dynamics described by

xt+1 = f(xt, ut, wt), t = 0, 1, . . . , (1)
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where xt ∈ X is the system state, ut ∈ U is the

control input or action, wt ∈ W is an exogenous noise

or disturbance, at time t, and f : X × U × W →
X is the state transition function. The noise terms

wt are independent identically distributed (IID), with

known distribution. The initial state x0 is also random

with known distribution, and is independent of wt. We

consider causal, time-invariant state feedback control

policies

ut = φ(xt), t = 0, 1, . . . ,

where φ : X → U is the control policy or state feedback

function.

The stage cost is given by ℓ : X × U → R ∪ {+∞},

where the infinite values of ℓ encode constraints on the

states and inputs: The state-action constraint set C ⊂
X × U is C = {(z, v) | ℓ(z, v) < ∞}. (The problem is

unconstrained if C = X × U .)

The stochastic control problem is to choose φ in order

to minimize the infinite horizon discounted cost

Jφ = E

∞
∑

t=0

γtℓ(xt, φ(xt)), (2)

where γ ∈ (0, 1) is a discount factor. The expectations

are over the noise terms wt, t = 0, 1, . . ., and the

initial state x0. We assume here that the expectation and

limits exist, which is the case under various technical

assumptions [3], [4]. We denote by J⋆ the optimal value

of the stochastic control problem, i.e., the infimum of Jφ

over all policies φ : X → U .

A. Dynamic programming

In this section we briefly review the dynamic pro-

gramming characterization of the solution to the stochas-

tic control problem. For more details, see [3], [4].

The value function of the stochastic control problem,

V ⋆ : X → R ∪ {∞}, is given by

V ⋆(z) = inf
φ

E

(

∞
∑

t=0

γtℓ(xt, φ(xt))

)

,

subject to the dynamics (1) and x0 = z; the infimum

is over all policies φ : X → U , and the expectation

is over wt for t = 0, 1, . . .. The quantity V ⋆(z) is the

cost incurred by an optimal policy, when the system is

started from state z. The optimal total discounted cost

is given by

J⋆ = E
x0

V ⋆(x0).

It can be shown that the value function is the unique

fixed point of the Bellman equation

V ⋆(z) = inf
v

(

ℓ(z, v) + γ E
w

V ⋆(f(z, v, w)
)

for all z ∈ X . We can write the Bellman equation in the

form

V ⋆ = T V ⋆, (3)

where we define the Bellman operator T as

(T g)(z) = inf
v

(

ℓ(z, v) + γ E
w

g(f(z, v, w))
)

for any g : X → R ∪ {+∞}.

An optimal policy for the stochastic control problem

is given by

φ⋆(z) = argmin
v

(

ℓ(z, v) + γ E
w

V ⋆(f(z, v, w))
)

, (4)

for all z ∈ X .

B. Approximate dynamic programming

In many cases of interest, it is intractable to compute

(or even represent) the value function V ⋆, let alone

carry out the minimization required evaluate the optimal

policy (4). In such cases, a common alternative is to

replace the value function with an approximate value

function V̂ [6], [7], [8]. The resulting policy, given by

φ̂(z) = argmin
v

(

ℓ(z, v) + γ E
w

V̂ (f(z, v, w))
)

,

for all z ∈ X , is called an approximate dynamic

programming (ADP) policy. Clearly, when V̂ = V ⋆,

the ADP policy is optimal. The goal of approximate

dynamic programming is to find a V̂ for which the ADP

policy can be easily evaluated (for instance, by solving

a convex optimization problem), and also attains near-

optimal performance.

III. MIN-MAX APPROXIMATE DYNAMIC

PROGRAMMING

We consider a family of linearly parameterized (can-

didate) value functions Vα : X → R,

Vα =
K
∑

i=1

αiV
(i),

where α ∈ RK is a vector of coefficients and V (i) :
X → R are fixed basis functions. Now suppose we have

a set A ⊂ RK for which

Vα(z) ≤ V ⋆(z), ∀z ∈ X , ∀α ∈ A.

Thus {Vα | α ∈ A} is a parameterized family of

underestimators of the value function. (We will discuss

how to obtain such a family later.) For any α ∈ A we

have

Vα(z) ≤ sup
α∈A

Vα(z) ≤ V ⋆(z), ∀z ∈ X ,
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i.e., the pointwise supremum over the family of under-

estimators must be at least as good an approximation of

V ⋆ as any single function from the family. This suggests

the ADP control policy

φ̃(z) = argmin
v

(

ℓ(z, v) + γ E
w

sup
α∈A

Vα(f(z, v, w))

)

,

where we use supα∈A Vα(z) as an approximate value

function. Unfortunately, this policy may be diffi-

cult to evaluate, since evaluating the expectation of

the supremum can be hard, even when evaluating

EVα(f(z, v, w)) for a particular α can be done.

Our last step is to exchange expectation and supre-

mum to obtain the min-max control policy

φmm(z) = argminv supα∈A(ℓ(z, v)
+γ Ew Vα(f(z, v, w)))

(5)

for all z ∈ X . Computing this policy involves the

solution of a min-max or saddle-point problem, which

we will see is tractable in certain cases. One such case is

where the function ℓ(z, v)+Ew Vα(f(z, v, w)) is convex

in v for each z and α and the set A is convex.

A. Bounds

The optimal value of the optimization problem in the

min-max policy (5) is a lower on the value function at

every state. To see this we note that

infv supα∈A

(

ℓ(z, v) + γ EVα(f(z, u, w))

)

≤ infv

(

ℓ(z, v) + γ E supα∈A Vα(f(z, u, w))

)

≤ infv

(

ℓ(z, v) + γ EV ⋆(f(z, u, w))

)

= (T V ⋆)(z) = V ⋆(z),

where the first inequality is due to Fatou’s lemma [21],

the second inequality follows from the monotonicity of

expectation, and the equality comes from the fact that

V ⋆ is the unique fixed point of the Bellman operator.

Using the pointwise bounds, we can evaluate a lower

bound on the optimal cost J⋆ via Monte Carlo simula-

tion:

J lb = (1/N)
N
∑

j=1

V lb(zj)

where z1, . . . , zN are drawn from the same distribution

as x0 and V lb(zj) is the lower bound we get from

evaluating the min-max policy at zj .

The performance of the min-max policy can also be

evaluated using Monte Carlo simulation, and provides an

upper bound Jub on the optimal cost. Ignoring Monte

Carlo error we have

J lb ≤ J⋆ ≤ Jub.

Theses upper and lower bounds on the optimal value

of the stochastic control problem are readily evaluated

numerically, through simulation of the min-max control

policy. When J lb and Jub are close, we can conclude

that the min-max policy is almost optimal. We will use

this technique to evaluate the performance of the min-

max policy for our numerical examples.

B. Evaluating the min-max control policy

Evaluating the min-max control policy often requires

exchanging the order of minimization and maximization.

For any function f : Rp × Rq → R and sets W ⊆ Rp,

Z ⊆ Rq , the max-min inequality states that

sup
z∈Z

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z). (6)

In the context of the min-max control policy, this

means we can swap the order of minimization and

maximization in (5) and maintain the lower bound prop-

erty. To evaluate the policy, we solve the optimization

problem

maximize infv (ℓ(z, v) + γ Ew Vα(f(z, v, w)))
subject to α ∈ A

(7)

with variable α. If A is a convex set, (7) is a convex

optimization problem, since the objective is the infimum

over a family of affine functions in α, and is therefore

concave. In practice, solving (7) is often much easier

than evaluating the min-max control policy directly.

In addition, if there exist w̃ ∈ W and z̃ ∈ Z such that

f(w̃, z) ≤ f(w̃, z̃) ≤ f(w, z̃),

for all w ∈ W and z ∈ Z , then we have the strong max-

min property (or saddle-point property) and (6) holds

with equality. In such cases the problems (5) and (7) are

equivalent, and we can use Newton’s method or duality

considerations to solve (5) or (7) [16], [22].

IV. ITERATED BELLMAN INEQUALITIES

In this section we describe how to parameterize a

family of underestimators of the true value function. The

idea is based on the Bellman inequality, [10], [8], [12],

and results in a convex condition on the coefficients α
that guarantees Vα ≤ V ⋆.
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A. Basic Bellman inequality

The basic condition works as follows. Suppose we

have a function V : X → R, which satisfies the Bellman

inequality

V ≤ T V. (8)

Then by the monotonicity of the Bellman operator, we

have

V ≤ lim
k→∞

T kV = V ⋆,

so any function that satisfies the Bellman inequality

must be a value function underestimator. Applying this

condition to Vα and expanding (8) we get

Vα(z) ≤ inf
v

(

ℓ(z, v) + γ E
w

Vα(f(z, v, w))
)

,

for all z ∈ X . For each z, the left hand side is linear

in α, and the right hand side is a concave function

of α, since it is the infimum over a family of affine

functions. Hence, the Bellman inequality leads to a

convex constraint on α.

B. Iterated Bellman inequalities

We can obtain better (i.e., larger) lower bounds on the

value function by considering an iterated form of the

Bellman inequality [12]. Suppose we have a sequence

of functions Vi : X → R, i = 0, . . . , M , that satisfy a

chain of Bellman inequalities

V0 ≤ T V1, V1 ≤ T V2, . . . VM−1 ≤ T VM , (9)

with VM−1 = VM . Then, using similar arguments as

before we can show V0 ≤ V ⋆. Restricting each function

to lie in the same subspace

Vi =

K
∑

j=1

αijV
(j),

we see that the iterated chain of Bellman inequalities

also results in a convex constraint on the coefficients

αij . Hence the condition on α0j , j = 1, . . . , K , which

parameterizes our underestimator V0, is convex. It is

easy to see that the iterated Bellman condition must give

bounds that are at least as good as the basic Bellman

inequality, since any function that satisfies (8) must be

feasible for (9) [12].

V. BOX CONSTRAINED LINEAR QUADRATIC

CONTROL

This section follows a similar example presented in

[12]. We have X = Rn, U = Rm, with linear dynamics

xt+1 = Axt + But + wt,

where A ∈ Rn×n and B ∈ Rn×m. The noise has zero

mean, Ewt = 0, and covariance Ewtw
T
t = W . (Our

bounds and policy will only depend on the first and

second moments of wt.) The stage cost is given by

ℓ(z, v) =

{

vT Rv + zT Qz, ‖v‖∞ ≤ 1
+∞, ‖v‖∞ > 1,

where R = RT � 0, Q = QT � 0.

A. Iterated Bellman inequalities

We look for convex quadratic approximate value

functions

Vi(z) = zT Piz + 2pT
i z + si, i = 0, . . . , M,

where Pi = PT
i � 0, pi ∈ Rn and ri ∈ R, are the

coefficients of our linear parameterization. The iterated

Bellman inequalities are

Vi−1(z) ≤ ℓ(z, v) + γ EVi(Az + Bv + w),

for all ‖v‖∞ ≤ 1, z ∈ Rn, i = 1, . . . , M . Defining

Si =





0 0 0
0 Pi pi

0 pT
i si



 , L =





R 0 0
0 Q 0
0 0 0



 ,

Gi =





BT PiB BT PiA BT pi

AT PiB AT PiA AT pi

pT
i B pT

i A Tr(PiW ) + si



 ,

for i = 0, . . . , M , we can write the Bellman inequalities

as a quadratic form in (v, z, 1)





v
z
1





T

(L + γGi − Si−1)





v
z
1



 ≥ 0, (10)

for all ‖v‖∞ ≤ 1, z ∈ Rn, i = 1, . . . , M .

We will obtain a tractable sufficient condition for this

using the S-procedure [15], [12]. The constraint ‖v‖∞ ≤
1 can be written in terms of quadratic inequalities

1 − vT (eie
T
i )v ≥ 0, i = 1, . . . , m,

where ei denotes the ith unit vector. Using the S-

procedure, a sufficient condition for (10) is the existence

of diagonal matrices Di � 0, i = 1, . . . , M for which

L + γGi − Si−1 + Λi � 0, i = 1, . . .M, (11)

where

Λi =





Di 0 0
0 0 0
0 0 −Tr(Di)



 . (12)

Finally we have the terminal constraint, SM−1 = SM .
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B. Min-max control policy

For this problem, it is easy to show that the strong

max-min property holds, and therefore problems (5)

and (7) are equivalent. To evaluate the min-max control

policy we solve problem (7), which we can write as

maximize infv(ℓ(z, v) + γ Ew V0(Az + Bv + w))
subject to (11), SM−1 = SM , P0 � 0

Pi � 0, Di � 0, i = 1, . . . , M,

with variables Pi, pi, si, i = 0, . . . , M , and diagonal

Di, i = 1, . . . , M . We will convert this max-min

problem to a max-max problem by forming the dual

of the minimization part. Introducing a diagonal matrix

D0 � 0 as the dual variable for the box constraints, we

obtain the dual function

inf
v





v
z
1





T

(L + γG0 − Λ0)





v
z
1



 ,

where Λ0 has the form given in (12). We can minimize

over v analytically. If we block out the matrix L+γG0−
Λ0 as

(L + γG0 − Λ0) =

[

M11 M12

MT
12 M22

]

(13)

where M11 ∈ Rm×m, then

v⋆ = −M−1
11 M12

[

z
1

]

.

Thus our problem becomes

maximize

[

z
1

]

(M22 − MT
12M

−1
11 M12)

[

z
1

]

subject to (11), SM−1 = SM

Pi � 0, Di � 0, i = 0, . . . , M,

which is a convex optimization problem in the variables

Pi, pi, ri, Di, i = 0, . . . , M , and can be solved as an

SDP.

To implement the min-max control policy, at each

time t, we solve the above problem with z = xt, and let

ut = −M⋆−1
11 M⋆

12

[

xt

1

]

,

where M⋆
11 and M⋆

12 denote the matrices M11 and M12,

computed from P ⋆
0 , p⋆

0, s⋆
0, D⋆

0 .

C. Interpretations

We can easily verify that the dual of the above

optimization problem is a variant of model predictive

control, that uses both the first and second moments of

the state. In this context, the number of iterations, M , is

the length of the prediction horizon, and we can interpret

Policy / Bound Value

MPC policy 1.3147

Min-max policy 1.3145

Lower bound 1.3017

TABLE I: Performance comparison, box constrained example.

our lower bound as a finite horizon approximation to

an infinite horizon problem, which underestimates the

optimal infinite horizon cost. The S-procedure relaxation

also has a natural interpretation: in [23], the author

obtains similar LMIs by relaxing almost sure constraints

into constraints that are only required to hold in expec-

tation.

D. Numerical instance

We consider a numerical example with n = 8, m =
3, and γ = 0.9. The parameters Q, R, A and B are

randomly generated; we set ‖B‖ = 1 and scale A so that

max |λi(A)| = 1 (i.e., so that the system is marginally

stable). The initial state x0 is Gaussian, with zero mean.

Table I shows the performance of the min-max policy

and certainty equivalent MPC, both with horizons of

M = 15 steps, as well as the lower bound on the optimal

cost. In this case, both the min-max policy and MPC

are no more than around 1% suboptimal, modulo Monte

Carlo error.

VI. DYNAMIC PORTFOLIO OPTIMIZATION

In this example, we manage a portfolio of n assets

over time. Our state xt ∈ Rn is the vector of dollar

values of the assets, at the beginning of investment

period t. Our action ut ∈ Rn represents buying or

selling assets at the beginning of each investment period:

(ut)i > 0 means we are buying asset i, for dollar value

(ut)i, (ut)i < 0 means we sell asset i. The post-trade

portfolio is then given by xt+ut, and the total gross cash

put in is 1T ut, where 1 is the vector with all components

one.

The portfolio propagates over time (i.e., over the

investment period) according to

xt+1 = At(xt + ut)

where At = diag(ρt), and (ρt)i is the (total) return of

asset i in investment period t. The return vectors ρt are

IID, with first and second moments

E(ρt) = µ, E(ρtρ
T
t ) = Σ.

5
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(Here too, our bounds and policy will only depend on the

first and second moments of ρt.) We let Σ̂ = Σ − µµT

denote the return covariance.

We now describe the constraints and objective. We

constrain the risk of our post-trade portfolio, which we

quantify as the portfolio return variance over the period:

(xt + ut)
T Σ̂(xt + ut) ≤ l,

where l ≥ 0 is the maximum variance (risk) allowed.

Our action (buying and selling) ut incurs a transaction

cost with an absolute value and a quadratic component,

given by κT |u| + uT Ru, where κ ∈ Rn
+ is the vector

of linear transaction cost rates (and |u| means element-

wise), and R ∈ Rn×n, which is diagonal with positive

entries, represents a quadratic transaction cost coeffi-

cients. (Linear transactions cost model effects such as

crossing the bid-ask spread, while quadratic transaction

costs model effects such as price-impact.) Thus at time

t, we put into our portfolio the net cash amount

g(ut) = 1T ut + κT |ut| + uT
t Rut.

(When this is negative, it represents revenue.) The first

term is the gross cash in from purchases and sales; the

second and third terms are the transaction fees. The stage

cost, including the risk limit, is

ℓ(z, v) =

{

g(v), (z + v)T Σ̂(z + v) ≤ l

+∞, otherwise.

Our goal is to minimize the discounted cost (or equiv-

alently, to maximize the discounted revenue). In this

example, the discount factor has a natural interpretation

as reflecting the time value of money.

A. Iterated Bellman Inequalities

We incorporate another variable, y ∈ Rn, to remove

the absolute value term from the stage cost function, and

add the constraints

−(yt)i ≤ (vt)i ≤ (yt)i, i = 1, . . . , n. (14)

We define the stage cost with these new variables to be

ℓ(z, v, y) = 1T v + κT y + (1/2)vT Rv + (1/2)yT Ry

for (z, v, y) that satisfy

−y ≤ v ≤ y, (z + v)Σ̂(z + v) ≤ l, (15)

and +∞ otherwise. Here, the first set of inequalities is

interpreted elementwise.

We look for convex quadratic candidate value func-

tions, i.e.

Vi(z) = zT Piz + 2pT
i z + si, i = 0, . . . , M,

where Pi � 0, pi ∈ Rn, si ∈ R are the coefficients of

our linear parameterization. Defining

L =











R/2 0 0 1/2

0 R/2 0 κ/2

0 0 0 0

1T /2 κT /2 0 0











,

Gi =











Pi ◦ Σ 0 Pi ◦ Σ pi ◦ µ

0 0 0 0

Pi ◦ Σ 0 Pi ◦ Σ pi ◦ µ

(pi ◦ µ)T 0 (pi ◦ µ)T 0











,

Si =











0 0 0 0

0 0 0 0

0 0 Pi pi

0 0 pT
i si











, i = 0, . . . , M,

where ◦ denotes the Hadamard product, we can write

the iterated Bellman inequalities as











v

y

z

1











T

(L + γGi − Si−1)











v

y

z

1











≥ 0,

for all (v, y, z) that satisfy (15), for i = 1, . . . , M .

A tractable sufficient condition for the Bellman in-

equalities is (by the S-procedure) the existence of λi ≥
0, νi ∈ Rn

+, τi ∈ Rn
+, i = 1, . . . , M such that

L + γGi − Si−1 + Λi � 0, i = 1, . . . , M, (16)

where

Λi =











λiΣ̂ 0 λiΣ̂ νi − τi

0 0 0 νi + τi

λiΣ̂ 0 λiΣ̂ 0

νT
i − τT

i νT
i + τT

i 0 −λil











. (17)

Lastly we have the terminal constraint, SM−1 = SM .

B. Min-max control policy

The discussion here follows almost exactly the one

presented for the previous example. It is easy to show

that in this case we have the strong max-min property. At

each step, we solve problem (7) by converting the max-

min problem into a max-max problem, using Lagrangian

duality. We can write problem (7) as

maximize infv,y(ℓ(z, v, y) + γ Eρ V0(A(z + v)))

subject to (16), SM−1 = SM

Pi � 0, i = 0, . . . , M,
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with variables Pi, pi, si, i = 0, . . . , M , and λi ∈ R+,

νi ∈ Rn
+, τi ∈ Rn

+, i = 1, . . . , M .

Next, we derive the dual function of the minimization

part. We introduce variables λ0 ∈ R+, ν0 ∈ Rn
+,

τ0 ∈ Rn
+, which are dual variables corresponding to the

constraints (15) and (14). The dual function is given by

inf
v,y











v

y

z

1











T

(L + γG0 + Λ0)











v

y

z

1











,

where Λ0 has the form given in (17). If we define

L + γG0 + Λ0 =

[

M11 M12

MT
12 M22

]

, (18)

where M11 ∈ R2n×2n, then the minimizer of the

Lagrangian is

(v⋆, y⋆) = −M−1
11 M12

[

z

1

]

.

Thus our problem becomes

maximize

[

z

1

]

(M22 − MT
12M

−1
11 M12)

[

z

1

]

subject to (16), SM−1 = SM

Pi � 0, i = 0, . . . , M,

which is convex in the variables Pi, pi, si, i = 0, . . . , M ,

and λi ∈ R+, νi ∈ Rn
+, τi ∈ Rn

+, i = 0, . . . , M .

To implement the policy, at each time t we solve the

above optimization problem (as an SDP) with z = xt,

and let

ut = −
[

Im 0
]

M⋆−1
11 M⋆

12

[

xt

1

]

,

where M⋆
11 and M⋆

12 denote the matrices M11 and M12,

computed from P ⋆
0 , p⋆

0, s⋆
0, λ⋆

0, ν⋆
0 , τ⋆

0 .

C. Numerical instance

We consider a numerical example with n = 8 assets

and γ = 0.96. The initial portfolio x0 is Gaussian, with

zero mean. The returns follow a log-normal distribution,

i.e., log(ρt) ∼ N (µ̃, Σ̃). The parameters µ and Σ are

given by

µi = exp(µ̃i + Σ̃ii/2), Σij = µiµj exp(Σ̃ij).

Table II compares the performance of the min-max

policy for M = 40 and M = 5, and certainty equivalent

model predictive control with horizon T = 40, over

1150 simulations each consisting of 150 time steps. We

can see that the min-max policy significantly outper-

forms MPC, which actually makes a loss on average

(since the average cost is positive). The cost achieved by

the min-max policy is close to the lower bound, which

shows that both the policy and the bound are nearly

optimal. In fact, the gap is small even for M = 5, which

corresponds to a relatively myopic policy.

Bound / Policy Value

MPC policy, T = 40 25.4

Min-max policy, M = 5 -224.1

Min-max policy, M = 40 -225.1

Lower bound, M = 40 -239.9

Lower bound, M = 5 -242.0

TABLE II: Performance comparison, portfolio example.

VII. CONCLUSIONS

In this paper we introduce a control policy which we

refer to as min-max approximate dynamic programming.

Evaluating this policy at each time step requires the

solution of a min-max or saddle point problem; in

addition, we obtain a lower bound on the value function,

which can used to estimate (via Monte Carlo simulation)

the optimal value of the stochastic control problem.

We demonstrate the method with two examples, where

the policy can be evaluated by solving a convex opti-

mization problem at each time-step. In both examples

the lower bound and the achieved performance are very

close, certifying that the min-max policy is very close

to optimal.

REFERENCES

[1] R. Kalman, “When is a linear control system optimal?” Journal

of Basic Engineering, vol. 86, no. 1, pp. 1–10, 1964.
[2] S. Boyd and C. Barratt, Linear controller design: Limits of

performance. Prentice-Hall, 1991.
[3] D. Bertsekas, Dynamic Programming and Optimal Control:

Volume 1. Athena Scientific, 2005.
[4] ——, Dynamic Programming and Optimal Control: Volume 2.

Athena Scientific, 2007.
[5] D. Bertsekas and S. Shreve, Stochastic optimal control: The

discrete-time case. Athena Scientific, 1996.
[6] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming,

1st ed. Athena Scientific, 1996.
[7] W. Powell, Approximate dynamic programming: solving the

curses of dimensionality. John Wiley & Sons, Inc., 2007.
[8] Y. Wang and S. Boyd, “Performance bounds for linear stochastic

control,” Systems & Control Letters, vol. 58, no. 3, pp. 178–182,
Mar. 2009.

[9] A. Manne, “Linear programming and sequential decisions,”
Management Science, vol. 6, no. 3, pp. 259–267, 1960.

[10] D. De Farias and B. Van Roy, “The linear programming approach
to approximate dynamic programming,” Operations Research,
vol. 51, no. 6, pp. 850–865, 2003.

7

430



[11] P. Schweitzer and A. Seidmann, “Generalized polynomial ap-
proximations in markovian decision process,” Journal of mathe-

matical analysis and applications, vol. 110, no. 2, pp. 568–582,
1985.

[12] Y. Wang and S. Boyd, “Approximate dynamic programming via
iterated bellman inequalities,” 2010, manuscript.

[13] C. Garcia, D. Prett, and M. Morari, “Model predictive control:
theory and practice,” Automatica, vol. 25, no. 3, pp. 335–348,
1989.

[14] J. Maciejowski, Predictive Control with Constraints. Prentice-
Hall, 2002.

[15] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear
Matrix Inequalities in System and Control Theory. Society for
Industrial Mathematics, 1994.

[16] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, Sept. 2004.

[17] Y. Wang and S. Boyd, “Fast model predictive control using
online optimization,” IEEE Transactions on Control Systems

Technology, vol. 18, pp. 267–278, 2010.
[18] ——, “Fast evaluation of quadratic control-lyapunov policy,”

IEEE Transactions on Control Systems Technology, pp. 1–8,
2010.

[19] J. Mattingley, Y. Wang, and S. Boyd, “Code generation for
receding horizon control,” in IEEE Multi-Conference on Systems
and Control, 2010, pp. 985–992.

[20] J. Mattingley and S. Boyd, “CVXGEN: A code generator for
embedded convex optimization,” 2010, manuscript.

[21] D. Cohn, Measure Theory. Birkhäuser, 1997.
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