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Motivation



Optimization on the Obama campaign
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Sigmoidal programming

Define the sigmoidal programming problem

maximize
∑n

i=1 fi (xi )
subject to x ∈ C

I fi are sigmoidal functions

I C is a convex set of constraints



Sigmoidal functions

A continuous function f : [l , u]→ R is called sigmoidal if it is either
convex, concave, or convex for x ≤ z ∈ R and concave for x ≥ z .

concave

convex

z



Examples of sigmoidal functions
I logistic function logistic(x) = 1/(1 + exp(x))
I profit function f (x) = (v − x)logistic(αx + β)
I admittance function (aproximation to step function)
I CDF of any quasiconcave PDF



Bid optimization

I Each i corresponds to an auction.

I vi is the value of auction i .

I pi (bi ) is the probability of winning auction i with bid bi .

I To maximize winnings (in expectation), choose b by solving

maximize
∑n

i=1 vipi (bi )
subject to b ∈ C.

I C represents constraints on our bidding portfolio.



Convex constraints for auctions

I minimum and maximum bids: l ≤ b ≤ u

I budget constraint:
∑n

i=1 bi ≤ B

I sector constraint:
∑

i∈S bi ≤ BS

I diversification constraint: ∀|S | > k,

∑
i∈S

bi ≥ ε
n∑

i=1

bi

I and more (intersections are ok!)



The politician’s problem

I Each i corresponds to a constituency (e.g. state,
demographic, ideological group).

I pi is # votes in constituency i (e.g. electoral, popular, etc).

I Politician chooses actions y .

I Constituency i prefers actions wi .

I fi (w
T
i y) is the probability of winning constituency i .

I To win the most votes (in expectation), choose y by solving

maximize
∑n

i=1 pi fi (w
T
i y)

subject to y ∈ C.

I C represents constraints on what actions we are willing or able
to take.



Convex constraints for politicians

I min, max position: l ≤ y ≤ u

I max hrs in day:
∑n

i=1 yi ≤ B

I don’t annoy any constituency too much: wT
i y ≥ −γ



Multiple peaks
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Which way to go?
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Sigmoidal programming is NP hard

Reduction from integer linear programming:

find x
subject to Ax = b

x ∈ {0, 1}n

Cast as sigmoidal programming:

maximize
∑n

i=1 g(xi ) = xi (xi − 1)
subject to Ax = b

0 ≤ xi ≤ 1 i = 1, . . . , n

Optimal value of sigmoidal programming problem is 0 ⇐⇒
there is an integral solution to Ax = b

(Also NP-hard to approximate, using reduction from MAXCUT)



Global optimization

mission: find all local maxima

I can’t search every point in the space

I willing to search a lot of boxes — which ones to choose?



Branch and bound

Idea of branch-and-bound method (Lawler and Wood, 1968; Balas
1968):

I Partition space into smaller regions Q ∈ Q.

I Compute upper and lower bounds U(Q) and L(Q) on optimal
function value

f ?(Q) = max
x∈Q

n∑
i=1

fi (xi )

in region Q:
L(Q) ≤ f ?(Q) ≤ U(Q).

I Repeat until we zoom in on global max:

max
Q∈Q

L(Q) ≤ f ? ≤ max
Q∈Q

U(Q).



Ingredients for branch and bound success

We need methods to

I easily compute upper and lower bounds U(Q) and L(Q),

I choose the next region to split, and

I choose how to split it

so that the bounds become provably tight around the true solution
reasonably quickly.



Ingredients for sigmoidal programming
We can do it!

I Easily compute upper and lower bounds U(Q) and L(Q) using
concave envelope of the functions fi .

I Choose the region with highest upper bound as the next
region to split.

I Split it at the solution to the previous problem along the
coordinate with the highest error.



Lower bound

Computing a lower bound is easy, since any feasible point gives a
lower bound:

n∑
i=1

fi (x
′
i ) ≤ max

x∈Q

n∑
i=1

fi (xi ) ∀x ′ ∈ Q.



Upper bound

Upper bound will require solving a maximization problem.

If we have functions f̂i such that

I fi (xi ) ≤ f̂i (xi ) for every x ∈ Q, and

I f̂i are all concave.

Then
∑n

i=1 f̂i (xi ) is also concave, so

maximize
∑n

i=1 f̂i (xi )
subject to x ∈ C

is a convex optimization problem that can be solved efficiently.
Let x? be a solution to this relaxed problem.



Bound f ?(Q)
Then we have an upper and lower bound on f ?(Q). Since

fi (xi ) ≤ f̂i (xi ) ∀x , i = 1, . . . , n
n∑

i=1

fi (xi ) ≤
n∑

i=1

f̂i (xi ) ∀x

max
x∈Q

n∑
i=1

fi (xi ) ≤ max
x∈Q

n∑
i=1

f̂i (xi )

f ?(Q) ≤ max
x∈Q

n∑
i=1

f̂i (xi ),

we have that

n∑
i=1

fi (x
?
i )︸ ︷︷ ︸

L(Q)

≤ f ?(Q) ≤
n∑

i=1

f̂i (x
?
i )︸ ︷︷ ︸

U(Q)

.



Concave envelope

The tightest concave approximation to f is obtained by choosing f̂i
to be the concave envelope of the function f .

f̂i = −(−f )∗∗ is the (negative) bi-conjugate of −f , where

f ?(y) = sup
x∈I

(f (x)− yx)

is the conjugate (also called the Fenchel dual) of f .



Concave envelope
The concave envelope can be computed by first locating the point
w such that f (w) = f (a) + f ′(w)(w − a). Then the concave
envelope f̂ of f can be written piecewise as

f̂ (x) =

{
f (a) + f ′(w)(x − a) a ≤ x ≤ w

f (x) w ≤ x ≤ b

}
.

w

z



Branch

Compute tighter approximation by splitting rectangles wisely.

I optimism: split rectangle Q with highest upper bound

I greed: split along coordinate i with greatest error

I hope: split at previous solution x?i



Convergence

The number of concave subproblems that must be solved to
achieve accuracy ε is bounded by

n∏
i=1

(⌊
(hi (zi )− hi (li )) (zi − li )

ε/n

⌋
+ 1

)
,

where

I Qinit = (l1, u1)× · · · × (ln, un),

I fi (x) =
∫ x
li
hi (t) dt, i = 1, . . . , n, and

I zi = arg max[li ,ui ] hi (x), i = 1, . . . , n.



Prune

max
Q∈Q

L(Q) ≤ f ? ≤ max
Q∈Q

U(Q)

I Q ′ is called active if maxQ∈Q L(Q) ≤ U(Q ′).

I Otherwise, the solution cannot lie in Q ′, and we can ignore it.



Example: opposing interests

maximize
∑

i=1,2 logistic(xi − 2)

subject to
∑

i=1,2 xi = 0
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Example: opposing interests
Black line is feasible set.
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Example: opposing interests

1st iteration:

Best solution so far Active nodes
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Example: opposing interests

2nd iteration:

Best solution so far Active nodes
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Example: opposing interests

3rd iteration:

Best solution so far Active nodes
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Bid optimization

maximize
∑n

i=1 vi logistic(bi − βi )
subject to

∑n
i=1 bi ≤ B

b ≥ 0
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Bid optimization

Simulate for vi ∼ U(0, 1), B = 1/5
∑n

i=1 vi , βi = 1. To solve to
accuracy .00001 · n takes very few steps! (1 step = 1 LP solve)

n steps

10 2
20 4
30 4
40 6
50 7
60 7
70 6
80 6
90 7

100 6



Integer linear programming

maximize
∑n

i=1 |xi − 1/2|
subject to Ax = b

0 ≤ xi ≤ 1 i = 1, . . . , n
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Political positioning: data

I Data comes from 2008 American National Election Survey
(ANES).

I Respondents r rate candidates c as having positions
y rc ∈ [1, 7]m on m issues.

I Respondents say how happy they’d be if the candidate won
hrc ∈ [1, 7].

I We suppose a respondent would vote for a candidate c if
hrc > hrc

′
for any other candidate c ′.

I If so, v rc = 1 and otherwise v rc = 0.



Political positioning: model

I For each candidate c and state i , we predict that a respondent
r ∈ Si in state i will vote for candidate c with probability

logistic((w c
i )T y rc),

depending on the candidate’s perceived positions y rc .

I The parameter vector w c
i is found by fitting a logistic

regression model to the ANES data for each candidate and
state pair.

Note: only 34 states, some with only 14 respondents . . .



Political positioning: electoral vote

I Suppose each state i has vi votes, which they allocate entirely
to the winner of the popular vote.

I y denotes the positions the politician takes on the issues.

I Then using our model, the politician’s pandering to state i is
given by xi = wT

i y , and the expected number of votes from
state i is

vi1(logistic(xi ) > .5),

where 1(x) is 1 if x is true and 0 otherwise.

I Hence the politician will win the most votes if y is chosen by
solving

maximize
∑n

i=1 vi1(logistic(xi ) > .5)
subject to xi = wT

i y ∀i
1 ≤ y ≤ 7.



Optimal solutions to the politician’s problem
Obama’s optimal pandering:

AL AZ CA CO CT

DC DE FL GA IL

IN KS LA MA MI

MN MS NC ND NJ

NM NV NY OH OK

OR PA RI SC TN

TX VA WA WI



Optimal positions for Obama

Issue Optimal position Previous position

Spending and Services 1.26 5.30
Defense spending 1.27 3.69
Liberal conservative 1.00 3.29
Govt assistance to blacks 1.00 3.12

Issue 1 7
Spending and services provide many fewer services provide many more services
Defense spending decrease defense spending increase defense spending
Liberal conservative liberal conservative
Assistance to blacks govt should help blacks blacks should help themselves



Conclusion

I Sigmoidal programs are a new, non-convex problem class.

I Sigmoidal objectives are ideally suited to model allocation
problems with sigmoidal utilities.

I The problem class is NP-hard to approximate to arbitrary
precision,

I but solutions on interesting problems are often easy to
compute.



Questions?



Network utility maximization

maximize
∑n

i=1 fi (xi )
subject to Ax ≤ c

x ≥ 0,

I x represent flows,

I c are edge capacities,

I A is the edge incidence matrix, and

I fi (xi ) is the utility derived from flow i .



Network utility maximization
I 500 flows over 500 edges.
I Flows use on average 2.5 edges.
I Each edge has capacity 2.5.
I fi is an admittance function i = 1, . . . , n.
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