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Convex optimization problems

minimize f0(x)

subject to f1(x) � 0; : : : ; fL(x) � 0;

Ax = b

� x 2 Rn is optimization variable

� fi are convex: for 0 � � � 1,

fi(�x+ (1� �)y) � �fi(x) + (1� �)fi(y)

� examples: linear & (convex) quadratic programs
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(roughly speaking,)

Convex optimization problems are

fundamentally tractable

� computation time is small, grows gracefully with problem size and

required accuracy

� large problems solved quickly in practice

� what \solve" means:

{ �nd global optimum within a given tolerance, or,

{ �nd proof (certi�cate) of infeasibility
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Interior-point methods

� handle linear and nonlinear convex problems

� based on Newton's method applied to `barrier' functions that trap

x in interior of feasible region (hence the name IP)

� worst-case complexity theory: # Newton steps � pproblem size

� in practice: # Newton steps between 5 & 50 (!)

� can exploit problem structure (sparsity, state equations) to reduce

computation per Newton step

� 1000s variables, 10000s constraints feasible on PC
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FIR �lter

Finite impulse response (FIR) �lter of order n:

y(t) =

n�1X
k=0

h(k)u(t� k)

h =
�
h(0); h(1); : : : ; h(n�1)

� 2 Rn are the �lter coe�cients

Frequency response H : [0; �]! C,

H(!) = h(0) + h(1)e�j! + � � �+ h(n�1)e�j(n�1)!
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Filter magnitude specs

magnitude spec:

L(!) � jH(!)j � U(!); ! 2 [0; �]

L;U : [0; �]! R+ given bounds; can take L(!) = 0, U(!) =1

� arises in many applications (audio, spectrum shaping, : : : )

� upper bounds are convex in h; lower bounds are not

Magnitude �lter design problem involves magnitude specs
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Classical example: lowpass �lter design

lowpass �lter with maximum stopband attenuation:

minimize �2

subject to 1=�1 � jH(!)j � �1; ! 2 [0; !p]

jH(!)j � �2; ! 2 [!s; �]

� variables: h 2 Rn (�lter coe�cients),

�2 2 R (stopband attenuation)

� parameters: �1 2 R (logarithmic passband ripple), n (order),

!p (passband frequency), !s (stopband frequency)
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magnitude �lter design problems are nonconvex

� can get trapped in local minima

� cannot unambiguously determine feasibility

by change of variables, can formulate as convex problem

� can e�ciently compute global solution

� unambiguously determine feasibility

� get absolute limit of performance
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Autocorrelation coe�cients

autocorrelation coe�cients of �lter:

r(t) =

n�1X
k=�n+1

h(k)h(k + t); t 2 Z

� r(t) = r(�t); r(t) = 0 for t � n

� su�ces to specify r =
�
r(0); : : : ; r(n�1)

� 2 Rn

Fourier transform of r is

R(!) = r(0) +

n�1X
k=1

r(k)
�
e
jk! + e

�jk!
�
= jH(!)j2
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Magnitude spec via r

magnitude spec can be expressed as

L(!)2 � R(!) � U(!)2; ! 2 [0; �]

� for each !, linear inequality in r

� hence magnitude spec is convex constraint in r

must add: r is the autocorrelation coe�cients of some h 2 Rn.
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Spectral factorization theorem

R(!) = r(0) +

n�1X
k=0

r(k)
�
e
jk! + e

�jk!
�

admits the representation

R(!) =

�����
n�1X
k=0

h(k)e�jk!

�����
2

if and only if

R(!) � 0; ! 2 [0; �]

� spectral factorization condition is convex constraint in r

� many ways to �nd spectral factor h given r
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Lowpass �lter design (again)

with variables r and ~�2, problem becomes

minimize ~�2

subject to 1=~�1 � R(!) � ~�1; ! 2 [0; !p]

R(!) � ~�2; ! 2 [!s; �]

R(!) � 0; ! 2 [0; �]

(~�i corresponds to �
2
i in original problem)

� a convex problem in r and ~�2

� hence, can be e�ciently, globally solved
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Variations

� minimize ripple ~�1 in dB (nonlinear convex problem)

� minimize order n (quasiconvex problem)

� minimize stopband !p (quasiconvex problem)

� multiple stop & pass bands

these can be e�ciently, globally solved
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Minimax logarithmic (dB) approximation

given desired frequency response magnitude D : [0; �]! R+, �nd

h = argmin max
!2[0;�]

�� log jH(!)j � logD(!)
��

reformulate as

minimize �

subject to 1=� � R(!)=D(!)2 � �; ! 2 [0; �]

(constraint implies R(!) � 0 for ! 2 [0; �])

� a convex problem in r 2 Rn and � 2 R

� hence e�ciently, globally solved
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Example: 1=f (pink noise) �lter

minimax dB �t over 0:01� � ! � �, D(!) = 1=
p
!
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for 50-tap �lter, optimal �t is �0:5dB



FIR Filter Design via Spectral Factorization and Convex Optimization 17

Equalization

H(!) T (!)

� given system frequency response T : [0; �]! C

� design FIR equalizer H

� so equalized freq response TH has desired properties
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Third-octave equalization

K third-octave frequency intervals in [0; �]:

[
1;
2]; : : : [
K ;
K+1]; 
k = 2(k�1)=3
1

gain of equalized system in kth band is

gk =

 
1


k+1 � 
k

Z 
k+1


k

jTH(!)j2 d!
!1=2

third-octave equalization: choose H so gk � 1

(gives good results for audio perception)
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formulate third-octave equalization problem as

minimize �

subject to 1=� � 1

k+1�
k

R 
k+1

k

R(!)jT (!)j2 d! � �; k = 1; : : : ;K;

R(!) � 0; ! 2 [0; �]

� nonlinear convex problem in r, �

� hence e�ciently, globally solved
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Third-octave equalization example

� n = 20; 15 third-octave bands from 
1 = 0:031� to 
16 = �

� constraint jH(!)j � 10 for all !

equalized (solid) and unequalized (dashed) gains and freq. response:
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� gains equalized to �2dB
� deep notch in T near ! = 0:5 makes constraint jHj � 10 active
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Antenna array magnitude pattern design

�

�

2d

� n isotropic antenna elements with spacing d

� plane harmonic wave incident from angle �

� frequency !, wavelength �

� element outputs linearly combined with complex weights wi
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Antenna array magnitude pattern design

far-�eld pattern G : [0; 2�)! C:

G(�) =

n�1X
k=0

w(k) exp

�
j
2�kd

�
cos �

�

� design variables: w 2 Cn

� magnitude spec: L(�) � jG(�)j � U(�), � 2 [0; 2�)

� can convert to FIR �lter problem with complex coe�cients

� hence, same techniques work : : :
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Antenna array pattern design example

� 12 elements, spacing d = 0:45�

� allowed ripple �2dB in �30� beam

� minimize max of jGj outside �45�

30�
45�

10dB divisions; �19dB sidelobe attenuation achieved
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Extensions

some other speci�cations/problems that are convex in r:

� bound on size of �lter coe�cients:

r(0) =
X
i

h(i)2 �M

� bounds on log-magnitude slope:

a � djHj
d!

!

jH(!)j = (1=2)
dR

d!

!

R(!)
� b

� multi-system magnitude equalization

� magnitude design of in�nite impulse response (IIR) �lters
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Spectral factorization methods

given T (z) = r(0) +
Pn�1

k=1 r(k)(z
k + z

�k) with

T (ej!) � 0; ! 2 [0; �]

�nd S(z) = h(0) + h(1)z�1 + � � �+ h(n� 1)z�(n�1) such that

T (z) = S(z)S(z�1)

methods:

� compute roots of T inside unit disk

� Cholesky factorization of banded Toeplitz matrix

� solution of algebraic Riccati equation

� Newton's method

� Fast Fourier transform
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Discretization

constraints in problems above are semi-in�nite:

have a constraint for each ! 2 [0; �]

discretization: replace [0; �] by �nite set, e.g., !i = i�=m,

i = 0; : : : ;m

example: discretized max attenuation lowpass �lter:

minimize ~�2

subject to 1=~�1 � R(!i) � ~�1; !i 2 [0; !p]

R(!i) � ~�2; !i 2 [!s; �]

R(!i) � 0; i = 0; : : : ;m

: : : a linear program in r and ~�2
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Discretization (cont'd)

� works very well in practice; common rule of thumb m � 15n

� can add appropriate, small `safety factor' to ensure R(!) � 0

between sampled frequencies

� is basis for sophisticated methods (e.g., exchange)
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Conclusions

� magnitude �lter design problems can be reformulated as convex

optimization problems

� hence, e�ciently solved by new interior-point methods

� autocorrelation coe�cients are designed; �lter coe�cients are

obtained via spectral factorization

� can handle many useful extensions, e.g., minimum-order, minimax

dB designs
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