1

2

FIR Filter Design via Spectral Factorization and Convex Optimization

Shao-Po Wu, **Stephen Boyd** (Stanford) & Lieven Vandenberghe (UCLA)

UCSB 10/24/97

FIR Filter Design via Spectral Factorization and Convex Optimization

- Convex optimization & interior-point methods
- FIR filters & magnitude specs
- Spectral factorization
- Examples
 - lowpass filter design
 - minimax logarithmic (dB) approximation
 - third-octave equalization
 - antenna array pattern design
- Spectral factorization methods
- Discretization

Convex optimization problems

minimize
$$f_0(x)$$

subject to $f_1(x) \le 0, \dots, f_L(x) \le 0,$
 $Ax = b$

- $x \in \mathbf{R}^n$ is optimization variable
- f_i are **convex**: for $0 \le \lambda \le 1$, $f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y)$
- examples: linear & (convex) quadratic programs

FIR Filter Design via Spectral Factorization and Convex Optimization

(roughly speaking,)

Convex optimization problems are fundamentally tractable

- computation time is small, grows gracefully with problem size and required accuracy
- large problems solved quickly in practice
- what "solve" means:
 - find **global** optimum within a given tolerance, or,
 - find **proof** (certificate) of infeasibility

Interior-point methods

- handle linear and **nonlinear** convex problems
- based on Newton's method applied to 'barrier' functions that trap
 x in interior of feasible region (hence the name IP)
- worst-case complexity theory: # Newton steps $\sim \sqrt{\text{problem size}}$
- in practice: # Newton steps between 5 & 50 (!)
- can exploit problem structure (sparsity, state equations) to reduce computation per Newton step
- 1000s variables, 10000s constraints feasible on PC

FIR Filter Design via Spectral Factorization and Convex Optimization

Finite impulse response (FIR) filter of order *n*:

$$y(t) = \sum_{k=0}^{n-1} h(k)u(t-k)$$

 $h = ig(h(0), h(1), \dots, h(n\!-\!1)ig) \in \mathbf{R}^n$ are the filter coefficients

Frequency response $H: [0, \pi] \to \mathbf{C}$,

 $H(\omega) = h(0) + h(1)e^{-j\omega} + \dots + h(n-1)e^{-j(n-1)\omega}$

Filter magnitude specs

magnitude spec:

$$L(\omega) \le |H(\omega)| \le U(\omega), \quad \omega \in [0,\pi]$$

 $L, U: [0, \pi] \to \mathbf{R}_+$ given bounds; can take $L(\omega) = 0$, $U(\omega) = \infty$

- arises in many applications (audio, spectrum shaping, ...)
- upper bounds are convex in h; lower bounds are not

Magnitude filter design problem involves magnitude specs

FIR Filter Design via Spectral Factorization and Convex Optimization

Classical example: lowpass filter design

lowpass filter with maximum stopband attenuation:

 $\begin{array}{ll} \text{minimize} & \delta_2 \\ \text{subject to} & 1/\delta_1 \leq |H(\omega)| \leq \delta_1, \quad \omega \in [0, \omega_{\mathrm{p}}] \\ & |H(\omega)| \leq \delta_2, \quad \omega \in [\omega_{\mathrm{s}}, \pi] \end{array}$

- variables: $h \in \mathbf{R}^n$ (filter coefficients), $\delta_2 \in \mathbf{R}$ (stopband attenuation)
- parameters: $\delta_1 \in \mathbf{R}$ (logarithmic passband ripple), n (order), ω_p (passband frequency), ω_s (stopband frequency)

magnitude filter design problems are nonconvex

- can get trapped in local minima
- cannot unambiguously determine feasibility

by change of variables, can formulate as **convex** problem

- can efficiently compute global solution
- unambiguously determine feasibility
- get absolute limit of performance

FIR Filter Design via Spectral Factorization and Convex Optimization

Autocorrelation coefficients

autocorrelation coefficients of filter:

$$r(t) = \sum_{k=-n+1}^{n-1} h(k)h(k+t), \quad t \in \mathbf{Z}$$

- r(t) = r(-t); r(t) = 0 for $t \ge n$
- suffices to specify $r = ig(r(0), \dots, r(n\!-\!1)ig) \in \mathbf{R}^n$

Fourier transform of r is

$$R(\omega) = r(0) + \sum_{k=1}^{n-1} r(k) \left(e^{jk\omega} + e^{-jk\omega} \right) = |H(\omega)|^2$$

Magnitude spec via r

magnitude spec can be expressed as

 $L(\omega)^2 \le R(\omega) \le U(\omega)^2, \quad \omega \in [0,\pi]$

- for each ω , **linear inequality** in r
- hence magnitude spec is **convex** constraint in r

must add: r is the autocorrelation coefficients of **some** $h \in \mathbf{R}^n$.

FIR Filter Design via Spectral Factorization and Convex Optimization

Spectral factorization theorem

$$R(\omega) = r(0) + \sum_{k=0}^{n-1} r(k) \left(e^{jk\omega} + e^{-jk\omega} \right)$$

admits the representation

$$R(\omega) = \left|\sum_{k=0}^{n-1} h(k)e^{-jk\omega}\right|^2$$

if and only if

$$R(\omega) \ge 0, \quad \omega \in [0,\pi]$$

- spectral factorization condition is ${\bf convex}$ constraint in r
- many ways to find spectral factor h given r

Lowpass filter design (again)

with variables r and $\tilde{\delta}_2\text{, problem becomes}$

 $\begin{array}{ll} \mbox{minimize} & \tilde{\delta}_2 \\ \mbox{subject to} & 1/\tilde{\delta}_1 \leq R(\omega) \leq \tilde{\delta}_1, \quad \omega \in [0, \omega_{\rm p}] \\ & R(\omega) \leq \tilde{\delta}_2, \quad \omega \in [\omega_{\rm s}, \pi] \\ & R(\omega) \geq 0, \quad \omega \in [0, \pi] \end{array}$

 $(ilde{\delta}_i ext{ corresponds to } \delta_i^2 ext{ in original problem})$

- a **convex** problem in r and $\tilde{\delta}_2$
- hence, can be efficiently, globally solved

FIR Filter Design via Spectral Factorization and Convex Optimization

- minimize ripple $ilde{\delta}_1$ in dB (nonlinear convex problem)
- minimize order *n* (quasiconvex problem)
- minimize stopband $\omega_{
 m p}$ (quasiconvex problem)
- multiple stop & pass bands

these can be efficiently, globally solved

Minimax logarithmic (dB) approximation

given desired frequency response magnitude $D:[0,\pi]
ightarrow {f R}_+$, find

$$h = \operatorname{argmin}_{\omega \in [0,\pi]} \left| \log |H(\omega)| - \log D(\omega) \right|$$

reformulate as

 $\begin{array}{ll} \mbox{minimize} & \tau \\ \mbox{subject to} & 1/\tau \leq R(\omega)/D(\omega)^2 \leq \tau, \quad \omega \in [0,\pi] \end{array}$

(constraint implies $R(\omega) \geq 0$ for $\omega \in [0,\pi]$)

- a **convex** problem in $r \in \mathbf{R}^n$ and $au \in \mathbf{R}$
- hence efficiently, globally solved

FIR Filter Design via Spectral Factorization and Convex Optimization

Example: 1/f (pink noise) filter

minimax dB fit over $0.01\pi \leq \omega \leq \pi$, $D(\omega) = 1/\sqrt{\omega}$

for 50-tap filter, optimal fit is ± 0.5 dB

third-octave equalization: choose H so $g_k \approx 1$ (gives good results for audio perception) formulate third-octave equalization problem as

$$\begin{array}{ll} \mbox{minimize} & \alpha \\ \mbox{subject to} & 1/\alpha \leq \frac{1}{\Omega_{k+1} - \Omega_k} \int_{\Omega_k}^{\Omega_{k+1}} R(\omega) |T(\omega)|^2 \ d\omega \leq \alpha, \quad k = 1, \ldots, K, \\ & R(\omega) \geq 0, \quad \omega \in [0, \pi] \end{array}$$

- nonlinear **convex** problem in r, α
- hence efficiently, globally solved

FIR Filter Design via Spectral Factorization and Convex Optimization

Third-octave equalization example

- n=20;~15 third-octave bands from $\Omega_1=0.031\pi$ to $\Omega_{16}=\pi$
- constraint $|H(\omega)| \leq 10$ for all ω

equalized (solid) and unequalized (dashed) gains and freq. response:

- gains equalized to $\pm 2 dB$
- deep notch in T near $\omega=0.5$ makes constraint $|H|\leq 10$ active

$$G(\theta) = \sum_{k=0}^{n-1} w(k) \exp\left(j\frac{2\pi kd}{\lambda}\cos\theta\right)$$

- design variables: $w \in \mathbf{C}^n$
- magnitude spec: $L(\theta) \leq |G(\theta)| \leq U(\theta), \ \theta \in [0, 2\pi)$
- can convert to FIR filter problem with complex coefficients
- hence, same techniques work ...

Antenna array pattern design example

- 12 elements, spacing $d=0.45\lambda$
- allowed ripple $\pm 2 dB$ in $\pm 30^{\circ}$ beam
- minimize max of |G| outside $\pm 45^{\circ}$

10dB divisions; -19dB sidelobe attenuation achieved

FIR Filter Design via Spectral Factorization and Convex Optimization

some other specifications/problems that are convex in r:

• bound on size of filter coefficients:

$$r(0) = \sum_{i} h(i)^2 \le M$$

• bounds on log-magnitude slope:

$$a \leq \frac{d|H|}{d\omega} \frac{\omega}{|H(\omega)|} = (1/2) \frac{dR}{d\omega} \frac{\omega}{R(\omega)} \leq b$$

- multi-system magnitude equalization
- magnitude design of infinite impulse response (IIR) filters

Spectral factorization methods

given $T(z) = r(0) + \sum_{k=1}^{n-1} r(k)(z^k + z^{-k})$ with $T(e^{j\omega}) \ge 0, \qquad \omega \in [0,\pi]$

find $S(z) = h(0) + h(1)z^{-1} + \dots + h(n-1)z^{-(n-1)}$ such that

 $T(z) = S(z)S(z^{-1})$

methods:

- compute roots of T inside unit disk
- Cholesky factorization of banded Toeplitz matrix
- solution of algebraic Riccati equation
- Newton's method
- Fast Fourier transform

 FIR Filter Design via Spectral Factorization and Convex Optimization

Discretization

constraints in problems above are **semi-infinite**: have a constraint for each $\omega \in [0, \pi]$

discretization: replace $[0, \pi]$ by finite set, e.g., $\omega_i = i\pi/m$, $i = 0, \ldots, m$

example: discretized max attenuation lowpass filter:

 $\begin{array}{ll} \mbox{minimize} & \tilde{\delta}_2 \\ \mbox{subject to} & 1/\tilde{\delta}_1 \leq R(\omega_i) \leq \tilde{\delta}_1, \quad \omega_i \in [0, \omega_{\rm p}] \\ & R(\omega_i) \leq \tilde{\delta}_2, \quad \omega_i \in [\omega_{\rm s}, \pi] \\ & R(\omega_i) \geq 0, \quad i = 0, \dots, m \end{array}$

 \ldots a linear program in r and $ilde{\delta}_2$

References

- Wu, Boyd, Vandenberghe, FIR filter design via spectral factorization and convex optimization
- Boyd, Vandenberghe, Introduction to convex optimization with engineering applications (course notes 1997)
- Herrman and Schüssler, Design of nonrecursive digital filters with minimum-phase (Electronics Letters 1970)
- Mian and Nainer (1982), Kamp and Wellekens (1983), Chen and Parks (1986), Samueli (1988), ...