
Efficient Shapley Performance Attribution
for Least-Squares Regression

Logan Bell Nikhil Devanathan Stephen Boyd

January 10, 2024

Abstract

We consider the performance of a least-squares regression model,
as judged by out-of-sample R2. Shapley values give a fair attribu-
tion of the performance of a model to its input features, taking into
account interdependencies between features. Evaluating the Shapley
values exactly requires solving a number of regression problems that is
exponential in the number of features, so a Monte Carlo-type approxi-
mation is typically used. We focus on the special case of least-squares
regression models, where several tricks can be used to compute and
evaluate regression models efficiently. These tricks give a substantial
speed up, allowing many more Monte Carlo samples to be evaluated,
achieving better accuracy. We refer to our method as least-squares
Shapley performance attribution (LS-SPA), and describe our open-
source implementation.

1

1 Introduction

We consider classic least-squares regression, with p features, judged by an
out-of-sample R2 metric. A natural question is how much each of the p
features contributes to our R2 metric; roughly speaking, how valuable is each
feature to our least-squares predictor? Except for a special case described
below in §2.4, this question seems difficult to answer, since the value of a
feature depends on the other features.

Our interest is in attributing the overall performance of a least-squares
model to the features. A related task is attributing a specific prediction of a
least-squares model to the features, which is a popular method for so-called
explainable AI called SHAP, an acronym for Shapley additive explanations
[LL17, Mol22, CCLL23]. That is a very different task, discussed in more
detail below. In this paper, we consider only performance attribution, and
not explaining a specific prediction from a model. We refer to this task as
Shapley performance attribution to features.

This performance attribution problem was essentially solved in Lloyd
Shapley’s 1953 paper “A Value for n-person Games” [Sha52]. He proposed
a method to allocate the payoff in a cooperative game to the players, which
came to be known as the Shapley values. The Shapley values provide a fair
distribution of the total payoff in a game, taking into account the contribu-
tions of each player to the coalition. The Shapley values are provably the only
attribution for which fairness, monotonicity, and full attribution (three key
desiderata for attribution) all hold. We refer the reader to other papers for
more discussion and justification of Shapley values for attributing regression
model performance to its features [HS12, ZSGJ23, FSN21, OP17].

We focus on efficiently computing (an approximation of) the Shapley
values for least-squares regression problems, i.e., to attribute the overall R2

to the p features. We seek a number Sj associated with feature j, where we
interpret Sj as the portion of the achieved R2 metric that is attributed to
feature j. Full attribution means

∑p
j=1 Sj = R2.

The Shapley values rely on solving and evaluating around 2p least-squares
problems. This is impractical for p larger than around 10, so Monte Carlo
approximation is typically used to compute an approximation to the Shapley
values. We propose a simple but effective quasi-Monte Carlo method that in
practice gives better approximations of the Shapley values than Monte Carlo
for the same number of least-square regression problems.

We do not introduce any new mathematical or computational methods.

2

Instead, we collect well-known ideas and assemble them into an efficient
method for computing the Shapley values for a least-squares regression prob-
lem, exploiting special properties of least-squares problems.

1.1 Prior work

Cooperative game theory. The Shapley value originated in cooperative
game theory as a means of fairly splitting a coalition’s reward between the
individual players [Sha52]. The notion of a fair split is defined by four ax-
ioms, which Shapley proved resulted in a unique method for attribution.
Since Shapley’s seminal paper, numerous extensions, variations, and gener-
alizations have been developed; see, for instance, [MS02, DNW81, Owe77,
AFSS19, CEW12, K0́7].

Computing the Shapley value in general has a cost that increases expo-
nentially in the number of players. Nonetheless, many games have structure
that enables efficient exact computation of the Shapley values. Examples
include weighted hypergraph games with fixed coalition sizes [DP94], de-
termining airport landing costs [LO73], weighted voting games restricted
by trees [FAB+02], cost allocation problems framed as extended tree games
[GKC02], sequencing games [CPT89], games represented as marginal contri-
bution networks [IS05], and determining certain notions of graph centrality
[MAS+13]. On the other hand, computing the Shapley value in weighted ma-
jority games is #P-complete [DP94], as are elementary games, i.e., games
whose value function is an indicator on a coalition [FK92].

Approximating Shapley values. Due to the computational complexity
of computing exact Shapley values in general, various methods have been
proposed for efficiently approximating Shapley values. Shapley initially de-
scribed a Monte Carlo method for approximating Shapley values by sampling
coalitions in 1960 [MS60]. Subsequent works have considered sampling per-
mutations using simple Monte Carlo methods [ZR94, CGT09, MBA22] or
with methods that ensure that each player appears in each position of a
sampled permutation more uniformly [vCHHL17, CGMT17].

Beyond Monte Carlo approaches, other works have explored numerical in-
tegration schemes for approximating the Shapley values. The paper [Owe72]
describes a multilinear extension of the characteristic function of an n-person
game that allows for the computation of the Shapley value as a contour in-
tegral. This method has been further explored in [Lee03] and [FWJ08].

3

Applications of Shapley values. Although they arose in the context of
game theory, Shapley values have been applied across a variety of fields.
In finance, Shapley values have been applied to attribute the performance
of a portfolio to constituent assets [MBA22] and to allocate insurance risk
[Pow07]. Elsewhere, Shapley values have been used to identify key individ-
uals in social networks [MRS+13, vCHHL17], to identify which components
of a user interface draw the most user engagement [ZMB18], to distribute
rewards in multi-agent reinforcement learning [WZKG20], and to attribute
the performance of a machine learning model to the individual training data
points [GZ19]. We refer to [MP08] and [AFSS19] for a deeper review of
applications of the Shapley value.

Explainable ML. Shapley attribution has recently found extensive use in
machine learning in the context of model interpretability, in Shapley addi-
tive explanation (SHAP) [LL17]. SHAP uses approximate Shapley values to
attribute a single prediction of a machine learning model across the input
features. Although SHAP and Shapley performance attribution both involve
prediction models and both use Shapley values, they otherwise have little
relation. We refer to [Mol22] and [CCLL23] for a more thorough review of
SHAP.

Shapley values for statistics. In statistical learning, researchers often
seek to assign a relative importance score to the features of a model. One
approach is Shapley attribution. This method has been independently redis-
covered numerous times and called numerous names [LMG80, LC01, Kru87,
Mis16, Grö06, Grö15]. All of these works utilize Shapley attribution to de-
compose the R2 of a regression model, though often without reference to
Shapley. The paper [Bud93] decomposes the R2 using a method similar to
Shapley attribution but with different weights, and [CS91] decomposes any
goodness-of-fit metric of a regression model using a method shown in [Stu92]
to be equivalent to Shapley attribution.

Feature importance. While not directly related to the computation of
Shapley values, the application of Shapley values to feature importance is
a primary motivation behind their calculation in many contexts [MBA22,
MRS+13, vCHHL17]. In statistics, the use of Shapley values for determining
feature importance has been significantly explored [KVSF20, HPR22, WF20,

4

FSN21, OP17], and papers [HS12, ZSGJ23, FSN21, OP17] further argue why
the Shapley attribution is a particularly appropriate method for evaluating
feature importance.

1.2 This paper

We introduce an efficient method for (approximately) computing Shapley
attribution of performance in least-squares regression problems, called least-
squares Shapley performance attribution (LS-SPA). LS-SPA uses several
computational tricks that exploit special properties of least-squares problems.
The first is a reduction of the original train and test data to a compressed
form in which the train and test data matrices are square. The second is to
solve a set of p least-squares problems, obtained as we add features one by
one, with one QR factorization, in a time comparable to solving one least-
squares problem. Finally, we propose using a quasi-Monte Carlo method,
a variation of Monte Carlo sampling, to efficiently approximate the Shapley
values. (This trick does not depend on any special properties of least-squares
problems.)

Outline. In §2 we present a mathematical overview of least-squares and
Shapley values, setting our notation. We describe our method for efficiently
estimating Shapley values for least-squares problems in §3. In §4, we de-
scribe some extensions and variations on our algorithm, and we conclude
with numerical experiments in §5.

2 Least-squares Shapley performance values

In this section, we review the least-squares regression problem, set our nota-
tion, and define the Shapley values for the features.

2.1 Least-squares

We consider the least-squares regression problem

minimize ∥Xθ − y∥22, (1)

with variable θ ∈ Rp, the model parameter. Here X ∈ RN×p is a given
data or feature matrix and y ∈ RN is a given vector of responses or labels.

5

The rows of X, denoted xT
i with xi ∈ Rp, correspond to N samples or

observations, and each column of X corresponds to a feature. We will assume
that X has rank p, which implies N ≥ p, i.e., X is square or tall. We denote
the solution of the least-squares problem (1) as

θ⋆ = X†y = (XTX)−1XTy.

The data X and y are the training data since they are used to find the model
parameter θ⋆.

While not technically needed, we will assume that the columns of X and
the vector y are de-meaned, and our model does not have an intercept.

Out-of-sample R2 metric. We evaluate the performance of a model pa-
rameter θ via out-of-sample validation. We have a second (test) data set of
M observations Xtst ∈ RM×p and ytst ∈ RM , and evaluate the model on
these data to obtain ŷtst = Xtstθ. We assume that columns of Xtst are de-
meaned according to the column means of X and ytst is demeaned according
to the mean of y. The prediction errors on the test set are given by ŷtst−ytst.
To evaluate the least-squares model with parameter θ, we use the R2 metric

R2 =
∥ytst∥22 − ∥ŷtst − ytst∥22

∥ytst∥22
, (2)

which is the fractional reduction in mean square test error compared to the
baseline prediction ŷ = 0. Larger values of R2 are better. It is at most one
and can be negative.

2.2 Feature subsets and chains

Feature subsets. In later sections, we will be interested in the R2 metric
obtained with the least-squares model using only a subset S ⊆ {1, . . . , p} of
the features, i.e., using a parameter vector θ that satisfies θj = 0 for j ̸∈ S.
The associated least-squares problem is

minimize ∥Xθ − y∥22
subject to θj = 0, j ̸∈ S. (3)

We denote the associated parameter as θ⋆S . From this we can find the R2

metric, denoted R2
S , using (2). We use R2 to denote the metric obtained

using all features, i.e., R2
{1,...,p}.

6

Feature chains. A feature chain is an increasing sequence of p subsets of
features obtained by adding one feature at a time,

∅ ⊂ S1 ⊂ · · · ⊂ Sp = {1, . . . , p},

where |Sk| = k. We denote πk as the index of the feature added to form Sk.
Evidently π = (π1, . . . , πp) is a permutation of {1, . . . , k}. With this notation
we have

Sk = {π1, . . . , πk}, k = 1, . . . , p.

Roughly speaking, π gives the order in which we add features in the feature
chain. We will set S0 = ∅.

Lifts associated with a feature chain. Consider feature j. It is the lth
feature to be added in the feature chain given by π, where l = π−1(j). We
define the lift associated with feature j in chain π as

L(π)j = R2
Sl
−R2

Sl−1
.

Roughly speaking, L(π)j is the increase in R2 obtained when we add feature
j to the ones before it in the ordering π, i.e., features π1, . . . , πl−1. The lift
L(π)j can be negative, which means that adding feature j to the ones that
come before it reduces the R2 metric.

We refer to the vector L(π) ∈ Rp as the lift vector associated with the
feature chain given by π. We observe that

p∑
j=1

L(π)j =

p∑
j=1

(
R2

Sl
−R2

Sl−1

)
= R2,

the R2 metric obtained using all features. The vector L(π) gives an attri-
bution of the values of each feature to the final R2 obtained, assuming the
features are added in the order π. In general, it depends on π.

2.3 Shapley attributions

The vector of Shapley attributions for the features, denoted S ∈ Rp, is given
by

S =
1

p!

∑
π∈P

L(π), (4)

7

where P is the set of all p! permutations of {1, . . . , p}. We interpret Sj as the
average lift, or increase in R2, obtained when adding feature j, over all feature
chains. The average is over all feature chains, i.e., orderings of the features.
In Appendix 2.5, we present a simple example of a Shapley attribution for a
least-squares model with a small number of features.

For p more than 10 or so, it is impractical to evaluate the lift vector for
all p! permutations. Instead, we estimate it as

Ŝ =
1

K

∑
π∈Π

L(π), (5)

where Π ⊂ P is a subset of permutations with |Π| = K ≪ p!. This is
a Monte Carlo approximation of (4) when Π is a subset of permutations
chosen uniformly at random from S with replacement. (We will describe a
better choice in §3.5.)

2.4 Uncorrelated features

We mention here one case in which the Shapley performance attribution for
least-squares regression is easily found: When the empirical covariance of the
features on both the train and test sets are diagonal, i.e.,

(1/N)XTX = Λ, (1/M)(Xtst)TXtst = Λ̃,

with Λ and Λ̃ diagonal. In this case, we have θ⋆j = Λ−1
jj (X

Ty)j, for any
subset S that contains j. The test error is also additive, i.e., the sum of
contributions from each feature. It follows that the lift vectors do not depend
on π, so S = L(π) for any π.

When these assumptions almost hold, i.e., the features are not too cor-
related on the train and test sets, the method we propose exhibits very fast
convergence.

2.5 Toy example

To illustrate the ideas above we present a simple example. We use a synthetic
dataset with p = 3 features, N = 50 training examples, and M = 50 test
examples. We generate feature matrices X and Xtst by taking, respectively,
N and M independent samples from a multivariate normal distribution with

8

S R2

{1, 2, 3} 0.92
{1, 2} 0.92
{1, 3} 0.82
{2, 3} 0.69
{1} 0.81
{2} 0.69
{3} −0.43
∅ 0.00

Table 1: R2 for each subset S of the features.

π L(π)
(1, 2, 3) (0.81, 0.11, 0.00)
(1, 3, 2) (0.81, 0.10, 0.01)
(2, 1, 3) (0.23, 0.69, 0.00)
(2, 3, 1) (0.23, 0.69, 0.00)
(3, 1, 2) (1.25, 0.10, −0.43)
(3, 2, 1) (0.23, 1.12, −0.43)

Table 2: Lift vector L generated by each permutation π of the features.

mean zero and covariance

Σ =

 1.0 0.7 −0.4
0.7 1.0 −0.5
−0.4 −0.5 1.0

 .

Using true weights θ = (2.1, 1.4, 0.1), we take y = Xθ+ω and ytst = Xtstθ+
ωtst where the entries of ω ∈ RN and ωtst ∈ RM are independently sampled
from a standard normal distribution.

Table 1 shows the out-of-sample R2 for each of the 8 subsets of features.
Table 2 shows the lift associated with each of 6 feature orderings. We display
the same data as a lattice in figure 1. In this figure, vertices are labeled with
subsets of the features and subscripted with the associated R2. The edges,
oriented to point to the subset to which one feature was added, are labeled
with the lift for adding that feature to the subset. Every path from ∅ to
{1, 2, 3} corresponds to an ordering of the features, with the lifts along the
path giving the associated lift vector.

9

{1, 2, 3}
0.92

{1, 2}
0.92

{1, 3}
0.82

{2, 3}
0.69

{1}
0.81

{2}
0.69

{3}
−0.43

∅
0.00

−0.430.690.81

0.11

0.230.01 0.00

1.12

0.100.00 0.23

1.25

Figure 1: Shapley attribution on the toy data represented as a lattice.

10

The R2 using all features is 0.92, and the Shapley values are

S = (0.59, 0.47,−0.14).

Roughly speaking, most of our performance comes from feature 1, followed
closely by feature 2, with feature 3 negatively affecting performance. Indeed,
we can see that the performance using only features 1 and 2 is the same (to
two decimal places) as the performance using all three.

3 Efficient computation

In this section, we explain LS-SPA, our method for efficiently computing Ŝ,
an approximation of S. The method can be broken into two parts. The first
is a method to efficiently compute L(π), the lift associated with a specific fea-
ture ordering π. The second is a method for choosing the set of permutations
Π that gives a better approximation than basic Monte Carlo sampling.

3.1 The näıve method

The näıve method for computing Ŝ is to solve a chain of p least-squares
problems K times, and evaluate them on a test set. Solving a least-squares
problem with k (nonzero) coefficients has a cost O(Nk2) flops. (It can be
done, for example, via the QR factorization.) Evaluating its performance
costs O(Mk). Assuming M is no more than Nk in order, this second term
is negligible. Summing O(Nk2) from k = 1 to p gives O(Np3). This is done
for K permutations so the näıve method requires

O(KNp3) (6)

flops. This näıve method can be parallelized: All of the least-squares prob-
lems can be solved in parallel.

We will describe a method to carry out this computation far more effi-
ciently. The computation tricks we describe below are all individually well
known; we are merely assembling them into an efficient method.

3.2 Initial reduction of training and test data sets

We can carry out an initial reduction of the original train and test data
matrices, so each has p rows instead of N and M respectively. Let X = QR

11

denote the QR factorization of X, with Q ∈ RN×p and R ∈ Rp×p. Simple
algebra shows that

∥Xθ − y∥22 = ∥Rθ −QTy∥22 + ∥y −Q(QTy)∥22. (7)

The righthand side consists of a least-squares objective with square data
matrix R and righthand side ỹ = QTy, plus a constant. The cost to compute
R and ỹ = QTy is O(Np2). We do this once and then solve the least-squares
problem (3) using the objective ∥Rθ− ỹ∥22. Ths cost for this is O(pk2), where
k = |S|.

Computing the least-squares solutions for a chain now costsO(p4), whereas
in the näıve method, the cost was O(Np3) per chain. The cost of computing
least-squares solutions for K chains is then

O(Np2 +Kp4),

compared to O(KNp3) for the näıve method. When N or K is large (which
is typical), the cost savings is substantial.

The same trick can be used to efficiently evaluate the R2 metrics. We
carry out one QR factorization of the test matrix at a cost of O(Mp2), after
which we can evaluate the metric with O(pk) flops, where k = |S|. To
evaluate the metrics for a chain is then O(p2) flops, compared to O(Mp) for
the näıve method. To compute Ŝ for K chains has cost

O(Mp2 +Kp2),

which is negligible compared to the cost of solving the least-squares problems.
Using this initial reduction trick, we obtain a complexity of O(Np2+Kp4),

compared to O(KNp3) for the näıve method. This simple trick has been
known since at least the 1960s [BG65, Gol65].

3.3 Efficiently computing lift vectors

In this section, we show how the cost of computing regression models and
evaluating them for one chain can be reduced from O(p4) to O(p3), using a
well-known property of the QR factorization.

To evaluate a chain defined by π, we can permute the features to the stan-
dard ordering, and then permute back once we have evaluated the R2 values.
So without loss of generality, we can consider the case π = (1, 2, . . . , p). Our

12

task is to compute least-squares parameters θ⋆j , j = 1, . . . , p, where θ⋆j = 0
for j > k. We collect these parameter vectors into one p×p upper triangular
matrix Θ⋆, with columns θ⋆1, . . . , θ

⋆
p.

Let X̃ ∈ Rp×p be the reduced data matrix with its columns permuted,
and ỹ = QTy the reduced righthand side, so our problem is to find Θ⋆, the
solution of the matrix least-squares problem

minimize ∥X̃Θ− Ỹ ∥2F
subject to Θ upper triangular,

with variable Θ ∈ Rp×p. Here ∥ · ∥2F is the Frobenius norm squared, i.e., the
sum of the entries. The matrix Ỹ is given by Ỹ = ỹ1T , where 1 is the vector
with all entries one, i.e., Ỹ is the matrix with all columns ỹ. (The p different
least-squares problems are uncoupled, but it is convenient to represent them
as one matrix least-squares problem [BV18].)

Let Q̃R̃ = X̃ denote the QR decomposition of X̃. Substituting Q̃R̃ for X̃
above, and multiplying the argument of the Frobenius norm the orthogonal
matrix Q̃T , the problem above can be written as

minimize ∥R̃Θ− Q̃T Ỹ ∥2F
subject to Θ upper triangular,

with variable Θ ∈ Rp×p. The solution has the simple form

Θ⋆ = R̃−1triu(Q̃T Ỹ). (8)

where triu(·) gives the upper triangular part of its argument, i.e., sets the
strictly lower triangular entries to zero. Note that the righthand side is upper
triangular since upper triangularity is preserved under inversion and matrix
multiplication. This result is equivalent to application of the Frish–Waugh–
Lovell theorem from econometrics [FW33, Lov63] and is also well-known in
statistics [HTF09].

Complexity. Computing the QR factorization of X̃ costs O(p3). We can
form Q̃T Ỹ = Q̃T ỹ1 in O(p2), which is negligible. We can compute Θ⋆ using
(8) in O(p3) flops. In other words: We can find the parameter vectors for a
whole chain in O(p3), the same cost as solving a single least-squares problem
with p variables and p equations. We evidently save a factor of p, compared to
the näıve method of solving p least-squares problems, which has cost O(p4).

13

It is easily verified that the cost of evaluating the p least-squares param-
eters on the test data is also O(p3), so the cost of evaluating the lifts for the
chain is O(p3).

3.4 Summary

Altogether, the complexity of LS-SPA is

O(Np2 +Kp3), (9)

which can be compared to the complexity of the näıve method, O(KNp3)
(6). The speedup over the näıve method is at least the minimum of N and
Kp, neither of which is typically small. We note that LS-SPA can also be
parallelized, by computing the lifts for each π ∈ Π in parallel.

3.5 Quasi-Monte Carlo approximation

Here we explain an improvement over the simple Monte Carlo method in (5).
(This improvement has nothing to do with the problems being least-squares
and is applicable in other cases.) We will use quasi-Monte Carlo (QMC)
sampling instead of randomly sampling permutations to obtain Π. One pro-
posed method (which we call permutohedron QMC) is given in [MCFH22].
It maps a Sobol’ sequence in [0, 1]p−2 onto the permutohedron for p-element
permutations by mapping to the (p− 1)-sphere, then embedding the (p− 1)-
sphere into Rp via an area-preserving transform and rounding points to the
nearest permutohedron vertex.

We propose another method (which we call argsort QMC), which is to
take a Sobol’ sequence on [0, 1]p ⊂ Rp, and choose the permutations as the
argsort (permutation that gives the sorted ordering) of each point in the
sequence. We have found empirically that this method does as well or bet-
ter than permutohedron sampling for this problem, and is computationally
simpler.

3.6 Risk estimation

Error. We define the error in the estimate of the jth Shapley attribution
to be

|Ŝj − Sj|, (10)

14

where S ∈ Rp is the true vector of Shapley attributions and Ŝ ∈ Rp is the
estimated vector of Shapley attributions as described in §2.3. We also define
the overall error in the Shapley estimate to be

∥Ŝ − S∥2. (11)

Risk estimation. If a permutation π is sampled from the uniform dis-
tribution on P , then the expected value of L(π) is S. Let Σ denote the
covariance of L(π). The central limit theorem guarantees that

√
K(Ŝ − S)

converges in distribution to N (0,Σ) as K → ∞. We can thus estimate the
qth quantile values of (10) and (11) over the distribution of Ŝ for K sam-
ples via Monte Carlo. We take Σ̂ to be the unbiased sample covariance of
{L(π)}π∈Π, and sample D vectors ∆(1), . . . ,∆(D) from N (0, 1

K
Σ̂). We then

report the estimated error for feature j as

ρ̂j = quantile({|∆(i)
j |}Di=1; q)

and the estimated overall error as

σ̂j = quantile({∥∆(i)∥2}Di=1; q),

where quantile(·; q) denotes the qth quantile.

Batching. We can efficiently compute a batched version of the risk esti-
mate on the fly for use as a stopping criterion. For any subset Π of permu-
tations, define the sample mean

Ŝ(Π) =
1

|Π|
∑
π∈Π

L(π)

and the biased sample covariance

Σ̂b(Π) =
1

|Π|
∑
π∈Π

(L(π)− Ŝ(Π))(L(π)− Ŝ(Π))T .

We set a batch size B, a maximum number of batches K/B, and a risk
tolerance ϵ > 0. Instead of computing Π, Ŝ, and the risk estimate all at
once, we compute them iteratively via batches Π(1), . . . ,Π(K/B), each of size
B. Initialize the estimated Shapley values Ŝ(0) = 0 and the estimated biased

15

sample covariance Σ̂
(0)
b = 0. In iteration j, we can compute Ŝ(j) using the

update rule

Ŝ(j) =
j − 1

j
Ŝ(j−1) +

1

j
Ŝ(Π(j)), (12)

which holds since Π(1), . . . ,Π(K/B) are equally sized. We can also compute
Σ̂

(j)
b using the update rule provided in [SG18],

Σ̂
(j)
b =

j − 1

j
Σ̂

(j−1)
b +

1

j
Σ̂b(Π

(j)) +
j − 1

j2
(Ŝ(j−1) − Ŝ(Π(j)))(Ŝ(j−1) − Ŝ(Π(j)))T .

(13)

The unbiased sample covariance Σ̂(j) is jB
jB−1

Σ̂
(j)
b , which we can use to generate

our risk estimates.
Note that batching in this manner can result in terminating early when Ŝ

is computed on a number of permutations that is not a power of 2. This can
destroy the balance properties expected of QMC, but in practice, we have
found this does not matter.

The central limit theorem is based on random samples, which is not the
case for QMC methods. As a result, risk estimates when Ŝ is computed via
a QMC method to sample permutations do not come with the theoretical
guarantees that random samples have. We have observed empirically that
estimates using QMC are still good estimates of the actual errors.

3.7 Algorithm summary

Algorithm 3.1 Least-squares Shapley attribution (LS-SPA)

given X ∈ RN×p, y ∈ RN , Xtst ∈ RM×p, ytst ∈ RM , K ∈ Z++,

1. Reduce X, y,Xtst, ytst as described in §3.2.

2. Generate K permutations π1, . . . , πK as described in §3.5.

3. For k = 1, . . . ,K, compute L(πk) as described in §3.3.

4. Form Ŝ = 1
K

∑K
k=1 L(πk) as described in §2.2.

5. Form ρ̂j , j = 1, . . . , p and σ̂ as described in §3.5.

6. Return Ŝ, {ρ̂j}pj=1, and σ̂.

16

We note that the Cholesky reduction described in §4.4 may be used in-
stead of the QR reduction described in §3.2 step 1. Furthermore, as described
in §3.6, the algorithm may be performed in batches, allowing for early ter-
mination via a stopping criterion based on the overall error estimate σ̂.

3.8 Implementation

We have written two Python implementations of algorithm 3.1. The com-
putational results we present in §5 are derived from a JAX-based [BFH+23]
implementation of algorithm 3.1 and some of the extensions discussed in §4.
The JAX implementation, along with our numerical experiments, is available
at

https://github.com/cvxgrp/ls-spa-benchmark.

We also provide a more user-friendly, NumPy-based [HMvdW+20] library
implementing algorithm 3.1 at

https://github.com/cvxgrp/ls-spa.

4 Extensions and variations

In this section, we describe some extensions to the basic problem and method
described above.

4.1 Cross validation metric

In the discussion above we used simple out-of-sample validation, but we can
also use other more sophisticated validation methods, such as M -fold cross
validation [ET93, Ch. 17]. Here the original data are split into M different
‘folds’. For m = 1, . . . ,M we fit a model using as training data all folds
except m and validate it on fold m. We use the average validation mean-
square error to obtain the R2 score. The methods above apply immediately
to this situation.

17

https://github.com/cvxgrp/ls-spa-benchmark
https://github.com/cvxgrp/ls-spa

4.2 Ridge regularization

In ridge regression, we choose the parameter θ by solving the ℓ2-regularized
least-squares problem

minimize 1
N
∥Xθ − y∥22 + λ∥θ∥22, (14)

where θ ∈ Rp is the optimization variable, X ∈ RN×p and y ∈ RN are data,
and λ is a positive regularization hyperparameter. Observe that (14) can be
reformulated as

minimize ∥X̃θ − ỹ∥22, (15)

where X̃ and ỹ are the stacked data

X̃ =

[
X/

√
N√

λI

]
, ỹ =

[
y/

√
N

0

]
.

This reformulation transforms the regularized problem (14) into a least-
squares problem in the form of (1). As such, we can now perform LS-SPA
on the regularized problem.

4.3 Hyper-parameter selection

To choose the value of the hyper-parameter λ, we consider a set of candidate
values λ1, . . . , λL. We solve the regularized least-squares regression problem
for each one and evaluate the resulting parameter λ using out-of-sample
or cross-validation. We then choose λ as the one among our choices that
achieves the lower mean-square test error. We use this value to compute the
R2 metric.

4.4 Very large data

If X is too large to fit into memory such that performing the initial QR
factorization cannot be done, one alternative is to compute the Cholesky
factorization of the covariance matrix of [X y], i.e., the matrix

Σ̂ =

[
XT

yT

] [
X y

]
=

[
XTX XTy
yTX yTy

]
.

The covariance matrix Σ̂ is p × p and can be computed via block matrix
multiplication by blocking [X y] vertically, making it possible to distribute

18

the computation across multiple devices or compute iteratively on one device.
The upper-triangular factor R̃ in the Cholesky factorization R̃T R̃ = Σ̂ can
then be blocked as

R̃ =

[
R QTy
0 ∥y −Q(QTy)∥2

]
where QR = X is the QR factorization of X. We can thus extract R, QTy,
and ∥y−Q(QTy)∥2 from R̃ to compute the reduction (7) for use in LS-SPA.
This alternative approach costs O(Np2) flops for the computation of Σ̂ and
O(p3) flops for the computation of R̃, giving a total cost of O(Np2), the same
as the QR method. However, Cholesky factorization is less stable than QR
and will fail for poorly conditioned Σ̂.

4.5 Non-quadratic regularizers

We consider the case where the quadratic loss is paired with a non-quadratic
but convex regularizer. This means we choose the model parameter θ by
solving

minimize ∥Xθ − y∥22 + λr(θ) , (16)

with variable θ ∈ Rp, data X ∈ RN×p and y ∈ RN , and convex but non-
quadratic regularizer r : Rp → R∪{∞}. Here λ is the regularization hyper-
parameter. Simple examples include the nonnegative indicator function, so
the problem above is a non-negative least-squares problem. Another example
is r(θ) = ∥θ∥1, which gives the lasso problem [HTF09].

While our formula for θ given in §3.2 no longer holds, we can still reduce
the complexity of the computation with the initial reduction. Thus when we
find θ we solve a smaller convex optimization problem with a square data
matrix.

5 Numerical experiments

5.1 Experiment descriptions

We describe two numerical experiments, one medium size and one large,
that demonstrate the relationship between the runtime of the LS-SPA and
the accuracy of the approximated Shapley attribution. The code for the
experiments can be found in

https://github.com/cvxgrp/ls-spa-benchmark.

19

https://github.com/cvxgrp/ls-spa-benchmark

Medium size experiment. The medium size experiment uses a data set
with p = 100 features, and N = M = 105 data points for the train and test
data sets. It is meant to show how the error in the estimate of the Shapley
attributions evolves with an increasing number of feature chains. All three
methods of feature chain sampling (MC, permutohedron QMC, and argsort
QMC) were tested in the medium size experiment. The quantile used for risk
estimation is q = 0.95.

Large experiment. The large experiment uses a data set with p = 1000
features and N = M = 106 data points for the train and test data sets. It
is meant to demonstrate that LS-SPA scales to large problems. The large
experiment uses argsort QMC only. The quantile used for risk estimation is
q = 0.95.

Computation platforms. The medium size experiment was done with an
8-core AMD Ryzen 9 5900HX at 3.3 GHz with 32 GB RAM and an NVIDIA
GeForce RTX 3080 Mobile with 16 GB RAM. The large experiment was done
with two 20-core Intel Xeon E5-2698 v4 CPUs at 2.2 GHz with 512 GB RAM
and eight NVIDIA Tesla V100 GPUs, each of which has 16 GB RAM. Note
that in both experiments, all numerical computations were done on GPU.
Furthermore, in the large experiment, all eight GPUs were utilized to perform
the Cholesky reduction described in §4.4, but all remaining computations
were done on only one GPU.

5.2 Data generation

For both experiments, we solved instances of (1) on randomly generated
train and test data, (Xtrn, ytrn) and (Xtst, ytst), respectively. To generate the
data, we first randomly generate a feature covariance matrix Σ = FF T + I,
where F ∈ Rp×(p/20) is generated by sampling its entries independently from
a N (0, 1) distribution. We then let C be the correlation matrix of Σ.

Next, the true vector of feature coefficients θ was generated by randomly
selecting ⌊(p+ 1)/10⌋ entries to be 2 and the remaining entries to be 0.

Finally, we generate Xtrn ∈ RN×p and Xtst ∈ RM×p, consisting, respec-
tively, of N and M observations generated independently at random from a
N (0, C) distribution. We then generate noise vectors ωtrn, ωtst ∈ Rp indepen-
dently from a N (0, (3p2/2)I) distribution and construct ytrn = Xtrnθ + ωtrn

20

21 23 25 27 29 211 213

Number of Samples

10−3

10−2

10−1

E
rr

or
,
‖S
−
Ŝ
‖ 2

MC

Permutohedron QMC

Argsort QMC

Figure 2: Error versus number of samples on the medium-size dataset using
MC (blue), permutohedron QMC (orange), and argsort QMC (green) to
sample feature chains.

and ytst = Xtstθ + ωtst. We finally demean the columns of Xtrn and Xtst

column means of Xtrn, and we demean ytrn and ytst with the mean of ytrn.

5.3 Results

Medium size experiment. We used each of MC, permutohedron QMC,
and argsort QMC to sample D = 213 feature chains, done in 25 batches of size
28, to illustrate the progress we keep track of the running sample mean. LS-
SPA took around 3.2 seconds to compute 213 samples, including compilation
time. To get the “ground-truth” Shapley values, we ran argsort QMC with
D = 228 feature chains. The errors for each method as a function of the
number of feature chains completed are shown in figure 2. Note that the
condition number of C was 248.0.

In figure 3, we also plot the “ground-truth” error against the error es-
timate, which was computed using the risk estimation procedure described
in §3.6, at each step of the algorithm using argsort QMC to sample feature

21

28 29 210 211 212 213

Number of Samples

10−2

5× 10−35× 10−3

E
rr

or
True Error, ‖S − Ŝ‖2

Estimated Error, ‖Ŝ − S̃‖2

Figure 3: True error (blue) and estimated error (orange) while running LS-
SPA using argsort QMC to sample feature chains.

chains.

Large experiment. We used argsort QMC to sample 24 batches each with
29 permutations. We use the Cholesky reduction presented in §4.4. The
correlation matrix C has condition number 4.3× 105.

The algorithm took 3.5 seconds to complete the initial reduction. LS-
SPA ran for 14.6 seconds to reach an error estimate of 8.4 × 10−3, and ran
for 113.3 seconds to complete all 213 permutations, for a total time of 116.8
seconds to complete, reaching an error estimate of 2.0× 10−3.

Acknowledgments

We thank Ron Kahn for suggesting the topic, Kunal Menda for recommend-
ing the use of quasi-Monte Carlo, Trevor Hastie and Emmanuel Candès for
suggesting the risk estimation method, and Thomas Schmelzer for helpful

22

feedback on an early draft.

23

References

[AFSS19] Encarnación Algaba, Vito Fragnelli, and Joaqúın Sánchez-Soriano.
Handbook of the Shapley Value. Chapman & Hall/CRC, Boca Ra-
ton, Florida, USA, 2019.

[BFH+23] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam
Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: Composable transformations of Python+NumPy pro-
grams. http://github.com/google/jax, 2023.

[BG65] Peter Businger and Gene Golub. Linear least squares solutions by
householder transformations. Numerische Mathematik, 7(3):269–
276, June 1965.

[Bud93] David Budescu. Dominance analysis: A new approach to the prob-
lem of relative importance of predictors in multiple regression. Psy-
chological Bulletin, 114(3):542–551, 1993.

[BV18] Stephen Boyd and Lieven Vandenberghe. Introduction to Applied
Linear Algebra: Vectors, Matrices, and Least Squares. Cambridge
University Press, 2018.

[CCLL23] Hugh Chen, Ian Covert, Scott Lundberg, and Su-In Lee. Algorithms
to estimate Shapley value feature attributions. Nature Machine
Intelligence, 5(6):590–601, May 2023.

[CEW12] Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge.
Computational Aspects of Cooperative Game Theory. Springer In-
ternational Publishing, Cham, 2012.

[CGMT17] Javier Castro, Daniel Gómez, Elisenda Molina, and Juan Tejada.
Improving polynomial estimation of the Shapley value by stratified
random sampling with optimum allocation. Computers & Opera-
tions Research, 82:180–188, June 2017.

[CGT09] Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial cal-
culation of the Shapley value based on sampling. Computers &
Operations Research, 36(5):1726–1730, May 2009.

[CPT89] Imma Curiel, Giorgio Pederzoli, and Stef Tijs. Sequencing games.
European Journal of Operational Research, 40(3):344–351, June
1989.

24

http://github.com/google/jax

[CS91] Albert Chevan and Michael Sutherland. Hierarchical partitioning.
The American Statistician, 45(2):90–96, May 1991.

[DNW81] Pradeep Dubey, Abraham Neyman, and Robert Weber. Value
theory without efficiency. Mathematics of Operations Research,
6(1):122–128, 1981.

[DP94] Xiaotie Deng and Christos Papadimitriou. On the complexity of
cooperative solution concepts. Mathematics of Operations Research,
19(2):257–266, May 1994.

[ET93] Bradley Efron and Robert Tibshirani. An Introduction to the Boot-
strap. Number 57 in Monographs on Statistics and Applied Prob-
ability. Chapman & Hall/CRC, Boca Raton, Florida, USA, 1993.

[FAB+02] Julio Fernández, Encarnación Algaba, Jesús Bilbao, Andrés
Jiménez, Nerecsy Jiménez, and Jorge López. Generating functions
for computing the Myerson value. Annals of Operations Research,
109(1/4):143–158, 2002.

[FK92] Ulrich Faigle and Walter Kern. The Shapley value for cooperative
games under precedence constraints. International Journal of Game
Theory, 21(3):249–266, September 1992.

[FSN21] Daniel Fryer, Inga Strümke, and Hien Nguyen. Shapley values for
feature selection: The good, the bad, and the axioms. IEEE Access,
9:144352–144360, 2021.

[FW33] Ragnar Frisch and Frederick Waugh. Partial time regressions as
compared with individual trends. Econometrica, 1:387, 1933.

[FWJ08] Shaheen Fatima, Michael Wooldridge, and Nicholas Jennings. A
linear approximation method for the Shapley value. Artificial In-
telligence, 172(14):1673–1699, 2008.

[GKC02] Daniel Granot, Jeroen Kuipers, and Sunil Chopra. Cost allocation
for a tree network with heterogeneous customers. Mathematics of
Operations Research, 27(4):647–661, November 2002.

[Gol65] Gene Golub. Numerical methods for solving linear least squares
problems. Numerische Mathematik, 7(3):206–216, June 1965.

[Grö06] Ulrike Grömping. Relative importance for linear regression in R:
The package relaimpo. Journal of Statistical Software, 17(1), 2006.

25

[Grö15] Ulrike Grömping. Variable importance in regression models.
WIREs Computational Statistics, 7(2):137–152, February 2015.

[GZ19] Amirata Ghorbani and James Zou. Data Shapley: Equitable val-
uation of data for machine learning. In Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 2242–2251. PMLR,
09–15 Jun 2019.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser,
Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020.

[HPR22] Chris Harris, Richard Pymar, and Colin Rowat. Joint Shapley
values: a measure of joint feature importance. In International
Conference on Learning Representations, 2022.

[HS12] Frank Huettner and Marco Sunder. Axiomatic arguments for de-
composing goodness of fit according to Shapley and Owen values.
Electronic Journal of Statistics, 6:1239–1250, 2012.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Ele-
ments of Statistical Learning. Springer New York, 2009.

[IS05] Samuel Ieong and Yoav Shoham. Marginal contribution nets. In
Proceedings of the 6th ACM conference on Electronic commerce.
ACM, June 2005.

[K0́7] László Kóczy. A recursive core for partition function form games.
Theory and Decision, 63(1):41–51, 2007.

[Kru87] William Kruskal. Relative importance by averaging over orderings.
The American Statistician, 41:6–10, 1987.

[KVSF20] I. Elizabeth Kumar, Suresh Venkatasubramanian, Carlos Scheideg-
ger, and Sorelle Friedler. Problems with Shapley-value-based expla-
nations as feature importance measures. In Proceedings of the 37th

26

International Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 5491–5500. PMLR,
13–18 Jul 2020.

[LC01] Stan Lipovetsky and Michael Conklin. Analysis of regression in
game theory approach. Applied Stochastic Models in Business and
Industry, 17(4):319–330, 2001.

[Lee03] Dennis Leech. Computing power indices for large voting games.
Management Science, 49(6):831–837, June 2003.

[LL17] Scott Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. In Advances in Neural Information Processing
Systems 30, pages 4765–4774. Curran Associates, Inc., 2017.

[LMG80] Richard Lindeman, Peter Merenda, and Ruth Gold. Introduction
to Bivariate and Multivariate Analysis. Foresman Scott, 1980.

[LO73] Stephen Littlechild and Guilliermo Owen. A simple expression for
the Shapley value in a special case. Management Science, 20(3):370–
372, 1973.

[Lov63] Michael Lovell. Seasonal adjustment of economic time series and
multiple regression analysis. Journal of the American Statistical
Association, 58(304):993–1010, December 1963.

[MAS+13] Tomasz Michalak, Karthik Aadithya, Piotr Szczepanski, Balaraman
Ravindran, and Nicholas Jennings. Efficient computation of the
Shapley value for game-theoretic network centrality. Journal of
Artificial Intelligence Research, 46:607–650, April 2013.

[MBA22] Nicholas Moehle, Stephen Boyd, and Andrew Ang. Portfolio perfor-
mance attribution via Shapley value. Journal of Investment Man-
agement, 20(3):33–52, 2022.

[MCFH22] Rory Mitchell, Joshua Cooper, Eibe Frank, and Geoffrey Holmes.
Sampling permutations for Shapley value estimation. Journal of
Machine Learning Research, 23(43):1–46, 2022.

[Mis16] Sudhanshu Mishra. Shapley value regression and the resolution of
multicollinearity. SSRN Electronic Journal, 2016.

[Mol22] Christoph Molnar. Interpretable machine learning. https://

christophm.github.io/interpretable-ml-book, 2022.

27

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book

[MP08] Stefano Moretti and Fioravante Patrone. Transversality of the
Shapley value. TOP, 16(1):1–41, April 2008.

[MRS+13] Tomasz Michalak, Talal Rahwan, Piotr Szczepanski, Oskar Skibski,
Ramasuri Narayanam, Nicholas Jennings, and Michael Wooldridge.
Computational analysis of connectivity games with applications to
the investigation of terrorist networks. In International Joint Con-
ference on Artificial Intelligence, 2013.

[MS60] Irwin Mann and Lloyd Shapley. Values of Large Games, IV: Evalu-
ating the Electoral College by Montecarlo Techniques. RAND Cor-
poration, Santa Monica, CA, 1960.

[MS02] Dov Monderer and Dov Samet. Variations on the Shapley value. In
Handbook of Game Theory with Economic Applications Volume 3,
volume 3 of Handbook of Game Theory with Economic Applications,
chapter 54, pages 2055–2076. Elsevier, 2002.

[OP17] Art Owen and Clémentine Prieur. On Shapley value for measuring
importance of dependent inputs. SIAM/ASA Journal on Uncer-
tainty Quantification, 5(1):986–1002, 2017.

[Owe72] Guillermo Owen. Multilinear extensions of games. Management
Science, 18(5):64–79, 1972.

[Owe77] Guillermo Owen. Values of games with a priori unions. In Mathe-
matical Economics and Game Theory, pages 76–88, Berlin, Heidel-
berg, 1977. Springer Berlin Heidelberg.

[Pow07] Michael Powers. Using Aumann–Shapley values to allocate insur-
ance risk. North American Actuarial Journal, 11(3):113–127, 2007.

[SG18] Erich Schubert and Michael Gertz. Numerically stable parallel
computation of (co-)variance. In Proceedings of the 30th Interna-
tional Conference on Scientific and Statistical Database Manage-
ment. ACM, July 2018.

[Sha52] Lloyd Shapley. A value for N -person games. In Contributions to the
Theory of Games (AM-28), Volume II, pages 307–318. Princeton
University Press, December 1952.

[Stu92] John Stufken. Letters to the editor: On hierarchical partitioning.
The American Statistician, 46(1):70–77, 1992.

28

[vCHHL17] Tjeerd van Campen, Herbert Hamers, Bart Husslage, and Roy Lin-
delauf. A new approximation method for the Shapley value applied
to the WTC 9/11 terrorist attack. Social Network Analysis and
Mining, 8(1), December 2017.

[WF20] BrianWilliamson and Jean Feng. Efficient nonparametric statistical
inference on population feature importance using shapley values.
In Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research,
pages 10282–10291. PMLR, 13–18 Jul 2020.

[WZKG20] Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yunjie Gu.
Shapley Q-value: A local reward approach to solve global reward
games. Proceedings of the AAAI Conference on Artificial Intelli-
gence, 34(05):7285–7292, April 2020.

[ZMB18] Kaifeng Zhao, Seyed Hanif Mahboobi, and Saeed Bagheri. Shap-
ley value methods for attribution modeling in online advertising.
https://arxiv.org/abs/1804.05327, 2018.

[ZR94] Gilad Zlotkin and Jeffrey Rosenschein. Coalition, cryptography,
and stability: Mechanisms for coalition formation in task oriented
domains. In Proceedings of the Twelfth AAAI National Conference
on Artificial Intelligence, AAAI’94, pages 432–437. AAAI Press,
1994.

[ZSGJ23] Haoran Zhang, Harvineet Singh, Marzyeh Ghassemi, and Shalmali
Joshi. ”Why did the model fail?”: Attributing model performance
changes to distribution shifts. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 41550–41578. PMLR, 23–29
Jul 2023.

29

https://arxiv.org/abs/1804.05327

	Introduction
	Prior work
	This paper

	Least-squares Shapley performance values
	Least-squares
	Feature subsets and chains
	Shapley attributions
	Uncorrelated features
	Toy example

	Efficient computation
	The naïve method
	Initial reduction of training and test data sets
	Efficiently computing lift vectors
	Summary
	Quasi-Monte Carlo approximation
	Risk estimation
	Algorithm summary
	Implementation

	Extensions and variations
	Cross validation metric
	Ridge regularization
	Hyper-parameter selection
	Very large data
	Non-quadratic regularizers

	Numerical experiments
	Experiment descriptions
	Data generation
	Results

