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Abstract

We consider the problem of forecasting multiple values of the future of a vector time
series, using some past values. This problem, and related ones such as one-step-ahead
prediction, have a very long history, and there are a number of well-known methods for
it, including vector auto-regressive models, state-space methods, multi-task regression,
and others. Our focus is on low rank forecasters, which break forecasting up into two
steps: estimating a vector that can be interpreted as a latent state, given the past, and
then estimating the future values of the time series, given the latent state estimate. We
introduce the concept of forecast consistency, which means that the estimates of the
same value made at different times are consistent. We formulate the forecasting prob-
lem in general form, and focus on linear forecasters, for which we propose a formulation
that can be solved via convex optimization. We describe a number of extensions and
variations, including nonlinear forecasters, data weighting, the inclusion of auxiliary
data, and additional objective terms. We illustrate our methods with several examples.

1 Introduction

Forecasting. We consider the problem of forecasting future values of a vector time series
xt ∈ Rn, t = 1, 2, . . ., given previously observed values. At each time t we form an estimate
of the future values xt+1, . . . , xt+H , where H is our prediction horizon. We denote these as
x̂t+1|t, x̂t+2|t, . . . , x̂t+H|t, where x̂τ |t is our prediction of xτ made at time t. These estimates
are based on the M current and past values, xt, xt−1, . . . , xt−M+1, where M is the memory
of our forecaster. When H = 1, forecasting reduces to the common problem of predicting
the next value in the time series, given the previous M values.

We introduce some notation to denote these windows of past and future values. We
define the past at time t as

pt = (xt−M+1, . . . , xt) ∈ RMn, t = M,M + 1, . . . .

We define the future at time t as

ft = (xt+1, . . . , xt+H) ∈ RHn, t = 1, 2, . . . .
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We make the observation that pt and pt+1 are related by a block shift, since

pt+1 = (xt−M+2, . . . , xt+1) = ((pt)n+1:Mn, xt+1),

where ai:j denotes the subvector of a with entries i, . . . , j. A similar shift structure holds for
ft.

We use f̂t to denote our estimate or forecast of the future at time t, i.e.,

f̂t = (x̂t+1|t, . . . , x̂t+H|t) ∈ RHn.

A forecaster has the form f̂t = φ(pt), and φ : RMn → RHn defines the forecaster.
We observe that the forecasts do not necessarily have the shift structure that the past

and future vectors do. While (ft+1)1:n and (ft)n+1:2n are both equal to xt+2, (f̂t+1)1:n and
(f̂t)n+1:2n can be different. The first is x̂t+2|t+1, our estimate of xt+2 made at time t + 1,
whereas the second is x̂t+2|t, our estimate of xt+2 made at time t. These two estimates
need not be the same. (We will come back to this soon with the concept of forecasting
consistency.)

Low rank forecasting and latent state. We say that the forecaster has rank r if the
forecast function factors as φ = V◦U , where U : RMn → Rr is the encoder and V : Rr → RHn

is the decoder, and r ≤ min{Mn,Hn}. This means that the forecast takes place in two steps:
we first form the intermediate r-vector zt = U(pt) by encoding the past, and then compute the
forecast as f̂t = V(zt) by decoding zt. We can interpret the time series zt, t = M,M + 1, . . .
as a latent state. The term state is justified since zt is a summary of the past sufficient to
carry out our forecast. Under Kalman’s definition, the state of a dynamic system is “the
least amount of data one has to know about the past behavior of the system in order to
predict its future behavior” [1]. (We note one small difference: In the traditional abstract
definition of state, the past and future are infinite, whereas here we have limited them to
M and H time periods, respectively.) The term rank for the dimension of the intermediate
value zt is not standard; but we will see later that it coincides with the rank of a certain
matrix when we restrict our attention to linear forecasters.

The latent state can be very useful in applications, since it summarizes what we need to
know to about the past at time t in one vector zt ∈ Rr, in order to carry out our forecast.
In some applications, identifying the latent state can be just as important as carry out the
actual forecasts.

Judging forecaster performance. Suppose we have a T -long observation of the time
series, x1, . . . , xT , with T ≥ M +H. From this data set we extract the N pairs of past and
future,

(pM , fM), . . . , (pT−H , fT−H),

with N = T −H −M + 1. We judge the performance of a forecaster on this data set by its
average loss,

L =
1

N

T−H∑
t=M

`(f̂t − ft),
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where ` : RHn → R is a convex loss function. (The lower the loss function, the better the
forecast.) Common choices include the `2 (squared) loss `(u) = ‖u‖2

2, `1 loss `(u) = ‖u‖1, or
an appropriate Huber penalty function [2, §6.1.2].

When the data set is also the one used to fit or choose the forecaster, L is the training
loss. When the data set is a different set of data, not used to fit or choose the forecaster,
L is the test loss. We are interested in finding a forecaster that has low test loss, i.e.,
makes good forecasts on data that was not used to fit it. Another approach is walk-forward
cross-validation, where one produces a number of successive training and test data sets from
a single data set, where all test data points occur after all training data points. (This is
to avoid look-ahead bias, and is in contrast to standard cross-validation, where one creates
random training and test splits.)

Forecaster consistency. Consider the value xτ , with τ ≥ M + 1. We make predictions
of xτ , denoted as x̂τ |t, at times

t = max{τ −H,M + 1}, . . . ,min{τ − 1, T −H}.

These

min{τ, T−H+1}−max{τ−H,M+1} =


H H +M + 1 ≤ τ ≤ T −H + 1,
τ −M − 1 τ ≤ min{T −H + 1, H +M + 1},
T − τ + 1 τ ≥ max{T −H + 1, H +M + 1},
T −H −M otherwise,

forecasts of the same value, made at different times and with different available information,
need not be the same. We say the forecast is consistent if these forecasts are not too different.
We note that inconsistency is not necessarily bad; it simply means that over the different
periods in which we form a prediction of xτ , we are changing our prediction.

While other measures of inconsistency could be used, we will judge inconsistency of the
forecasts of xτ using a sum of squares measure. Define

x̄τ =
1

min{τ, T −H + 1} −max{τ −H,M + 1}

min{τ−1,T−H}∑
t=max{τ−H,M+1}

x̂τ |t,

the average of the predictions of xτ made at different times. Thus x̂τ |t − x̄τ is the deviation
of the prediction of xτ made at time t and the average of all predictions we make of xτ .

Now consider a T -long observation of the time series, from which we obtain the data set
(pt, ft), t = M, . . . , T −H. We define the (sum of squares) inconsistency as

I =
T∑

τ=M+1

min{τ−1,T−H}∑
t=max{τ−H,M+1}

‖x̂τ |t − x̄τ‖2
2.

While forecaster consistency need not lead to better performance (and indeed, often does
not), it can be considered as a desirable property for a forecaster, independent of forecast
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loss or performance [3]. As a concrete example, suppose we are predicting the future cash
flows of a business, and adjusting business operations based on these forecasts. In this
case, inconsistent forecasts could lead to more changes in business operations than we would
like. We may prefer forecasts that are more consistent, at the cost of some loss in forecast
performance.

Statistical forecasting. We mention here a general method for forecasting that includes
many existing methods (described in more detail below). Suppose we assume that {xt} is
a stationary stochastic process, with a distribution of (pt, ft) ∈ RM+H that, by stationarity,
does not depend on t. A natural forecast in this case is the conditional mean of the future
given the past, i.e.,

f̂t = φ(pt) = E(ft | pt).
(The forecaster function φ does not depend on t.) This forecaster minimizes the mean square
error E ‖f̂t − ft‖2

2 over all possible forecasters.

Outline. In §2 we describe the special case of linear forecasting. In §3 we describe a
number of methods for producing linear forecasters. In §4 we describe our method for low
rank forecasting. In §5 we describe a number of extensions and variations, a number of
which have been incorporated in the software. In §6 we show three examples: simulated,
stock volatility, and traffic. We defer an extended discussion of the very large body of prior
and related work to §7.

2 Linear forecasting

We now focus on linear forecasters, which have the form φ(pt) = θTpt, where θ ∈ RMn×RHn

is the forecaster parameter matrix. We partition θ as θ =
[
θ1 · · · θH

]
, so we have

x̂τ |t = θTτ−tpt, τ = t+ 1, . . . , t+H.

Low rank linear forecasting. The general concept of low rank forecasting introduced
in §1 is very simple in the case of a linear forecaster. Suppose φ = V ◦ U , with V and U
both linear, say U(pt) = UTpt = zt and V(zt) = V T zt, with U ∈ RMn×r and V ∈ Rr×Hn.
Evidently we have θ = UV , so the rank of θ is no more than r. Conversely if θ has rank r,
we can factor it to obtain U and V . So for a linear forecaster, a low rank coefficient matrix
corresponds to a low rank forecaster, in the general sense.

Evidently the latent state associated with a low rank linear forecaster is only defined
up to an invertible linear transformation, since Ũ = US and Ṽ = S−1V define the same
forecaster, when S ∈ Rr×r is invertible. The latent state associated with Ũ and Ṽ is ST zt,
where zt is the latent state associated with U and V .
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Hankel data matrices. Suppose we have data x1, . . . , xT , from which we extract N =
T −H −M + 1 past/future pairs, (pM , fM), . . . , (pT−H , fT−H). From these data we form the
data matrices

P =

 pTM
...

pTT−H

 ∈ RN×Mn, F =

 fTM
...

fTT−H

 ∈ RN×Hn.

These matrices are block Hankel, due to the shift structure mentioned in §1.

Forecasts matrix. We stack the forecasts into the matrix

F̂ =

 f̂TM
...

f̂TT−H

 = Pθ.

This matrix is in general not block Hankel, unless the forecaster is completely consistent,
i.e., never changes its prediction of any value xτ . (This only happens when I = 0.)

Loss. The average loss can be expressed as

L =
1

N
1T `(Pθ − F ),

where we extend ` to apply row-wise to its matrix argument, and 1 is the vector with all
entries one. For the `2 (squared) loss, this can be written as L = (1/N)‖Pθ − F‖2

F , where
‖ · ‖F denotes the Frobenius norm of a matrix.

Inconsistency. The inconsistency measure I can be expressed as

I = dist(F̂ )2,

where dist(F̂ ) is the Frobenius norm distance to the set of block Hankel matrices. It is
readily shown that the projection π(Z) of an N ×Hn matrix Z onto the set of block Hankel
matrices is obtained by replacing each block by the average over the corresponding anti-
diagonal blocks. We observe for future use that I is a convex quadratic function of θ. The
inconsistency measure can be evaluated in O(NHn) flops, and its gradient can be evaluated
in the same order; see appendix §A for the details.

3 Linear forecasting methods

In this section we describe several general and well known methods for constructing a linear
forecaster. Our purpose here is to describe these forecasting methods using our notation; we
will not use the material of this section in the sequel. Some of the methods described here
produce low rank forecasters. In other cases, if a low rank forecaster is desired, we can use
the truncated SVD (singular value decomposition) of the coefficient matrix to obtain a low
rank approximation.
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3.1 Forecasting using statistical models

Forecasting via autocovariance. The methods described below start by modeling (pt, ft)
as a Gaussian zero mean random variable (that does not depend on t),

(pt, ft) ∼ N (0,Σ).

Since (pt, ft) = (xt−M+1, . . . , xt+H), Σ is block Toeplitz,

Σ =


Σ0 Σ1 · · · ΣM+H−1

Σ−1 Σ0 · · · ΣM+H−2
...

...
. . .

...
Σ−M−H+1 Σ−M−H+2 · · · Σ0

 ,
where Σi = Extx

T
t+i is the ith autocovariance of the process {xt} [4]. (So Σ−i = ΣT

i .) There
are many methods available to estimate the autocovariance matrices Σ0, . . . ,ΣM+H−1 from
some training data; see, e.g., [5, 6, 7].

To obtain a forecaster, we partition Σ as

Σ =

[
Σpp Σpf

Σfp Σff

]
,

with Σpp ∈ RMn×Mn and Σff ∈ RHn×Hn. Using a conditional mean forecaster, we have

φ(pt) = E(ft | pt) = ΣfpΣ−1
pp pt = θTpt, (1)

where θ = Σ−1
pp Σpf. This forecaster is not, in general, low rank.

Iterated AR(M) forecasting. Another approach is to posit an AR(M) model of xt, i.e.,

xt+1 =
M∑
i=1

Aixt−i+1 + εt, t = M,M + 1, . . . , (2)

where εt ∼ N (0,W ) are independent and Ai ∈ Rn×n, i = 1, . . . ,m. We implicitly assume
that the coefficients are such that the model is stable, so it defines a stationary stochastic
process. A simple way to fit an AR(M) model is by linear regression [8]; W is an estimate
of the one-step ahead prediction error covariance.

With this model we can work out the autocovariance matrices and then use the general
formula (1), but we can more directly find the conditional mean of the future, given the past.
Evidently we have

E(xt+1 | pt) =
M∑
i=1

Aixt−i+1 =
[
AM AM−1 · · · A1

]
pt,
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and, continuing recursively, for τ = t+ 2, . . ., we have

E(xτ | pt) =
M∑
i=1

Aix̃τ−i|t,

where x̃s|t = xt if s ≤ t and x̃s|t = E(xs | pt) for s > t. This is the same as iterating the
dynamics of the AR(M) model forward, with εs = 0. This forecaster is evidently linear, but
not, in general, low rank. (Of course it agrees with the general formula (1) above.)

Forecasting using a latent state space model. Another approach is to model {xt} as
a stationary Gaussian stochastic process generated by a state space model [9, 1, 10, 11],

zt+1 = Azt + εt, xt = Czt + ηt, t = 1, 2, . . . ,

where zt ∈ Rr is the latent state, A ∈ Rr×r, and C ∈ Rn×r, εt ∼ N (0, Q) is a process noise,
and ηt ∼ N (0, R) is a measurement noise. (We assume that εt and ηt are independent of one
another and across time.) We assume that the matrix A is stable (i.e., its eigenvalues have
magnitude less than one), so this defines a stationary stochastic process. There are many
ways to fit a state space model to time series training data, e.g., via N4SID [12], EM [13],
and least squares auto-tuning [14]. Here too we can work out the autocovariance coefficients
and use the general formula (1) above to find a forecaster. This forecaster, not surprisingly,
has low rank, indeed, rank r.

Here we describe the construction of the associated forecaster in a more natural way,
that explains the factorization of θ into two natural parts: a state estimator, followed by
a forward simulator. The first step is to determine E(zt | pt), our estimate of the current
latent state, given the past. This can be done by solving the Kalman smoothing problem [1]
with memory M

minimize
∑M−1

i=1 εTt−iQ
−1εt−i +

∑M−1
i=0 ηt−iR−1ηt−i

subject to ετ = zτ+1 − Azτ , τ = t−M + 1, . . . , t− 1,
ητ = xτ − Czτ , τ = t−M + 1, . . . , t,

with variables
zs, εs, ηs, s = t−M + 1, . . . , t.

The value of zt is E(zt | pt). This is a linearly constrained least squares problem, so the
solution is a linear function of the past pt, i.e., zt = Kpt, where K ∈ Rr×Mn. The matrix
K is readily found by forming the KKT optimality conditions, and standard linear algebra
computations [2, 15]. We note one slight difference between this state estimator and the
traditional Kalman filter: this one uses only the M previous values of xs (i.e., pt), whereas
the Kalman filter uses all previous values.

It is readily seen that for τ = t+ 1, . . . , t+H, we have

E(zτ | pt) = Aτ−t E(zt | pt) = Aτ−tKpt,
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and
E(xτ | pt) = C E(zτ | pt) = CAτ−tKpt.

So we have

f̂t =


CA
CA2

...
CAH

Kpt.
This shows that θ has rank (at most) r, the dimension of the latent time series. This is
hardly surprising, since under this model the past and future are independent, given the
current state zt.

3.2 Forecasting via regression

Regression yields another set of methods for choosing θ directly from a given training data
set. (Regression methods and statistical methods are closely linked, as we discuss below.)
Let L(θ) denote the loss on the training data set. In (regularized) regression, the parameter
matrix θ is chosen as a minimizer of

L(θ) + λR(θ),

where R : RMn×Hn → R is a convex regularizer function, and λ is a positive hyper-
parameter. This is a convex function, so computing an optimal θ is in principle straightfor-
ward.

The most common regression problem, ridge regression, uses `2 loss and regularization,
so the objective is

1

N
‖Pθ − F‖2

F + λ‖θ‖2
F . (3)

with variable θ. This has the minimizer

θ = (P TP +NλI)−1P TF.

The objective is separable across the columns of θ, which means each column of θ can be
found separately. This forecaster simply uses a separate ridge regression to predict xτ based
on pt, for τ = t+ 1, . . . , t+H.

When λ = 0, ridge regression is ordinary least squares, and coincides with the statistical
method above when we use the empirical estimates of the autocovariance matrices, since
θ = Σ̂−1

pp Σ̂fp, where Σ̂pp is the empirical covariance of pt and Σ̂fp is the empirical covariance
of ft and pt, which are given by

Σ̂pp =
1

N
P TP, Σ̂fp =

1

N
P TF.
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4 A regularized regression method

The method we propose is a regression method with two particular regularization functions,
one that encourages θ to be low rank, and another that encourages forecaster consistency.
We choose θ to minimize

L(θ) + λ‖θ‖∗ + κI(θ), (4)

where ‖·‖∗ is the dual norm of a matrix (also known as the nuclear norm, trace norm, Ky Fan
norm, or Schatten norm), i.e., the sum of its singular values, and λ and κ are positive hyper-
parameters that control the strength of the two types of regularization. The objective (4) is
a convex function of θ, and so in principle straightforward to minimize. The nuclear norm
is widely used as a convex surrogate for the (nonconvex) rank function; roughly speaking it
promotes low rank of its matrix argument. Generally (but not always), the larger λ is, the
lower the rank of θ. The forecaster consistency term, as discussed above, encourages θ to
produce consistent forecasts.

Critical value of λ. There is a critical value λmax, with the property that θ = 0 if and
only if λ ≥ λmax. When L is differentiable, λmax is given by

λmax = ‖∇θL(0)‖2,

where ∇θL(0) ∈ RMn×Hn is the gradient of L(θ) at θ = 0, and ‖ · ‖2 is the `2 norm
(maximum singular value). This can be verified by examining the condition under which
θ = 0 is optimal, i.e., that the subdifferential of (4) includes 0. When the `2 loss is used,
this condition reduces to

λmax =
2

N
‖P TF‖2.

(This can be computed efficiently, without forming the matrix P TF , using power iteration.)
It is convenient to express the nuclear norm regularization as λ = αλmax, with α ∈ [0, 1].

Choosing α and κ. The traditional method for choosing the hyper-parameters α and κ
is to compute θ for a number of combinations of them, and for each forecaster, evaluate the
performance on another (test) data set, not used to form θ, i.e., train the forecaster. Among
these forecasters we choose one that yields least or nearly least test loss, skewing toward
larger values of α and κ.

When consistency is regarded as a second objective, and not a regularizer meant to give
better test performance, we fix κ and do not consider it a hyper-parameter. In this case the
term κI(θ) should also be included when evaluating the test performance.

4.1 Solution method

The objective (4) is convex, and can be minimized using many methods. Smaller instances
of the problem can be solved with just a few lines of generic CVXPY code [16, 17]. There
also exist a number of specialized methods for problems with nuclear norm regularization
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[18, 19, 20]. Generic methods, however, will not scale well, since the number of scalar
variables, HMn2, can be very large when one or more of H, M , or n is large. We describe
here a simple customized method that does scale well. The method is closely related to well
known methods [21, 22, 23, 24, 25, 26], so we simply outline it here.

Factored problem. Suppose we know that the solution to (4) has at most rank k. Then
(4) is equivalent to the factored problem

minimize 1
N

1T `(PUV − F ) + λ/2(‖U‖2
F + ‖V ‖2

F ) + κI(UV ), (5)

with variables U ∈ RMn×k and V ∈ Rk×Hn. That is, U, V is a solution to (5) if and only if
θ = UV is a solution to (4) and ‖U‖2

F = ‖V ‖2
F = 1

2
‖θ‖∗. (See, e.g., [27] for a proof.) Solving

this problem directly gives us the two factors of θ. In fact we obtain a balanced factorization,
i.e., the (positive) singular values of U and V are the same.

Alternating method. The problem (5) is not convex, but it is convex in U for fixed V
and convex in V for fixed U . Each of these minimizations can be carried out efficiently
using, e.g., the limited-memory Broyden Fletcher Goldfarb and Shanno (L-BFGS) method
[28]. This method requires storing a modest number of matrices with the same same sizes
as U and V , and in each iteration, the computation of the gradient of the objective with
respect to U or V . (The gradients of the objective in (5) are given in appendix §A; in
our implementation they are mostly computed automatically using automatic differentiation
techniques.)

Computing the rank of UV . After solving problem (5), it can be the case that the rank
of UV is less than k. We can both find the rank of UV , compute reduced versions of U and
V , and compute the reduced-rank SVD of θ efficiently (i.e., without actually computing the
full SVD of θ = UV or even forming θ) as follows. Denote the rank of U by rU and the rank
of V by rV . First, we compute the SVD of U and V ,

U = UUΣUV
T
U , V = UV ΣV V

T
V ,

where UU ,ΣU , VU and UV ,ΣV , VV are the appropriate sizes. Next we compute the SVD of
the matrix A = ΣUV

T
U UV ΣV , which has rank r = rank(UV ),

A = UAΣAV
T
A ,

where UA,ΣA, VA are the appropriate sizes. Then the reduced rank versions of U and V ,
denoted Ũ ∈ RMn×r and Ṽ ∈ Rr×Hn, are given by

Ũ = UUUAΣ
1/2
A , Ṽ = Σ

1/2
A V T

A V
T
V .

The SVD of θ, θ = UθΣθVθ, is given by

Uθ = UUUA, Σθ = ΣA, Vθ = VV VA. (6)
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Choosing k. We propose the following simple method for choosing the value of k. We
start with a modest value of k (say 10 or 20), solve (5), and then if r = rank(UV ) = k
(computed using the method above), we double k and solve (5) again. If, on the other hand,
r < k, then we know that our choice of k was large enough, and terminate.

Convergence. Since this is an alternating method, the objective is decreasing and so
converges. Whether the alternating method converges to the solution of the original (convex)
problem is another question. We can check for global optimality of θ = UV in the original
convex problem as follows. Suppose ` is differentiable and let

G = ∇θ

(
1

N
1T `(Pθ − F ) + κI(θ)

)
,

i.e., the gradient of the differentiable part of the objective. Then θ is globally optimal if and
only if the following conditions hold

‖G+ λUθV
T
θ ‖2 ≤ λ,

UT
θ G+ λV T

θ = 0,

G+ λVθ = 0,

where θ = UθΣθVθ is the SVD of θ (computed as described in (6) above). The residuals of
these three conditions could be used as a stopping criterion for the alternating method.

We have observed that in all numerical examples when r < k, the final θ is close to
satisfying the optimality conditions above. Unfortunately, verifying optimality requires us
to form a matrix the same size as θ, as well as compute its norm. While the norm could be
evaluated using a power method, never explicitly forming the matrix, we would suggest that
this final global optimality check is not needed in practice.

Practical considerations. When we are solving the problem for many values of α and κ,
or performing walk-forward cross-validation, we can warm-start this iterative algorithm at
the previously computed solution. It is worth noting that we do not need to actually form
P or F . This can be necessary when the size of the original time series fits in memory but P
and F do not, which could be the case when M or H is very large. All we need is to compute
the gradient of the objective with respect to U or V , which can be done without forming P
or F . For example, PU can be implemented as a one-dimensional convolution of the time
series x1, . . . , xT with a number of kernels extracted from U . Since the alternating method
only requires computing the gradient, and basic dense linear algebra, it can be performed
on either a CPU or GPU.

5 Extensions and variations

In this section we describe a number of extensions and variations. Several of these extensions
are quite useful and have been incorporated into the software.
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5.1 Nonlinear forecasting

In this section we describe low rank nonlinear forecasting. Our forecaster has the familiar
form φ = V ◦ U , but instead of the encoder and encoder being linear, they are nonlinear
functions, for example neural networks. The encoder U encodes the past into the latent state
zt, as zt = U(pt; θU) and has parameters θU ∈ RpU . The decoder V decodes the state into
the forecast f̂t, as f̂t = V(zt; θV ) and has parameters θV ∈ RpV .

The fitting problem in the nonlinear forecasting case becomes

minimize 1
N

∑N
i=1 `(f̂t − ft) + λ/2(‖θU‖2

F + ‖θV ‖2
F ) + κdist(F̂ )2,

subject to f̂t = V(U(pt; θU); θV ), t = M, . . . , T −H. (7)

The second term in the objective is no longer the nuclear norm of the forecaster matrix, since
the predictor is nonlinear. However, it can still be useful; it will help control the complexity
of the neural network parameters. We can also use the same forecaster consistency term.

We can approximately solve problem (7) using the stochastic gradient method (SGD).
We refer the reader to [29] and the references therein for possible architectures and training
methods. We note that problem (7) is equivalent to the methods described in §4 with single
layer (i.e., linear) neural networks for U and V .

5.2 Data weighting

We can weight the components of the loss function, based on how much we care about
particular parts of the forecast. That is, we adjust the loss term to

1

N
1T `(W ◦ F̂ ),

where W ∈ RN×Hn
+ is the weight matrix, and ◦ denotes the Hadamard or elementwise

product. We denote the (block) elements of W as wτ |t, i.e.,

W =

 wTM+1|M · · · wTM+H|M
...

. . .
...

wTT−H+1|T−H · · · wTT |T−H


The larger (wτ |t)i is, the more we care about forecasting the ith element of xτ at time t.

There are many ways to construct a weight matrix. One way is via exponentially decaying
weighting on t, τ , and a separate constant weight for each element of the time series. That
is, we specify a halflife for t, denoted ht > 0 and a halflife for τ , denoted hτ > 0. Then let
the weights for time and forecast time be

wt = exp(log(0.5)/ht)τ−t, wτ = exp(log(0.5)/hτ )T−τ .

We also specify a weight for each element of the time series, denoted wcol ∈ Rn
+. For example,

if (wcol)i = 0, then we do not care about forecasting (xt)i. (But note that we do use (xt)i to
forecast the other elements of xt.) The weights are then given by the product of these three
weights,

wτ |t = wtwτwcol.
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5.3 Auxiliary data

Often we have auxiliary information or data separate from the time series that can be useful
for forecasting future values of the time series. Common examples are time-based features,
such as hour, day of week, or month. These features could be useful for forecasting, but are
clearly not worth forecasting themselves. Another example is an additional time series that
is related to or correlated with our time series.

We denote the auxiliary information known at time t by the vector at ∈ Rp. There are
two ways to incorporate auxiliary information into our forecasting problem. The first is to
remove the effect of at on xt, and then forecast the residual time series. We might do this
by solving the problem

minimize
∑T

t=1 ‖Sat − xt‖2
2 (8)

with variable S ∈ Rn×p. (We can of course add regularization here if needed.) When the
auxiliary information are simple functions of time such as linear or sinusoidal, this step is
called de-trending or removing the trend or seasonality from a time series (see, e.g., [5, §9],
[15, §13.1.1], or [30, Appendix A]). We then define a new series x̃t = xt − Sat, and forecast
that series instead of the original series. Our final forecast is then

x̂τ |t = Saτ + ˆ̃xτ |t,

where ˆ̃xτ |t is the forecast for x̃τ made at time t. The first term is the baseline; the second is
the forecast of the residual time series, with the baseline removed.

The second way to incorporate auxiliary information is to make our forecaster a function
of both the past and auxiliary data. That is, we let our forecaster be

f̂t = φ(pt, at) = θTpt + ΦTat,

where Φ ∈ Rp×Hn. We can decide whether or not to make Φ low rank. If we want it to be
low rank, then the nuclear norm regularization term becomes∥∥∥∥[θΦ

]∥∥∥∥
∗
.

5.4 Other regularization

Other convex regularization on θ can be added to problem (5) and the alternating method
will work the same, because it will be biconvex in U and V . Convex regularization on the
factors U and V can be added, and the alternating method will work the same. For example,
if we wanted the encoder U to be sparse, i.e., each element of the state only depends on
a few elements of the time series, then we could add a multiple of the term

∑
i,j |Uij| to

the objective in (5). (We note however that L-BFGS does not handle nonsmooth terms like
absolute value well, so an alternate solution method might be needed.) When regularization
is added to U or V individually, the fitting problem is nonconvex. While the algorithm will
still work, there is no guarantee that it will converge to the global solution.
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5.5 Latent state dynamics

If the sole objective is to forecast the original series xt, the latent series zt is simply an
intermediate quantity used in forming f̂t. In other cases, the latent series zt discovered by
our forecasting method is actually of interest by itself. In those cases, it might be interesting
to look at its dynamics, i.e., how zt evolves over time. One reasonable model of zt is an
autoregressive model,

zt+1 = Azt + εt, t = 1, . . . , T − 1,

where A ∈ Rr×r and εt ∈ N (0,W ) are independent. We can fit such a model by linear
regression.

6 Examples

In this section we apply our method to three examples. All experiments were conducted
using PyTorch [31] on an unloaded Nvidia 1080 TI GPU.

6.1 Simulated state space dataset

We consider a dataset sampled from a state space model,

zt+1 = Azt + εt, xt = Czt + ηt,

where the state is zt ∈ R2 and the observations are xt ∈ R10. The entries of A and C are
randomly sampled according to

Aij ∼
{
N (1, (0.1)2) i = j,

N (0, (0.1)2) otherwise,
Cij ∼ N (0, 1).

We scale A so that its spectral radius is 0.98. We set the covariance matrices to Q = I and
R = (0.1)I. We consider as our training dataset a length 100 sample from the model, and
as our test dataset a length 500 sample from the model. (In both of these datasets z1 was
sampled from the steady state distribution.) We take H = M = 12, so θ ∈ R120×120 and
we are using the 12 most recent values of {xt} to predict the next 12 values of {xt}. The
forecaster matrix θ contains 14400 entries. We use `2 loss.

We begin by constructing the optimal (conditional mean) forecaster using the techniques
described in §2, and the actual (true) values of A, C, Q, and R. This forecaster has a test
loss of 10.54. Aside from the small difference between expectation and the empirical loss
over the test set, no forecaster can do better, since this forecaster minimizes mean square
loss over all forecasters, and uses the true values of the autocovariance matrices. We can
therefore consider 10.54 as an approximate lower bound on achievable performance.

Next we apply our method to the training dataset over 50 values of α ∈ [0.01, 0.3], with
κ = 0, and in figure 1 plot the test loss and rank of θ versus α. Fitting the forecaster took
roughly five seconds. (Warm starting the optimization from the previous value of α reduced
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Figure 1: Test loss and rank of θ versus α on the simulated dataset.

this considerably.) As α increases, the rank goes down. As α increases, the test loss initially
goes down, and then after a certain value, the test loss begins to go up. This suggests that
a good value of α is around 0.1, which corresponds to a forecaster of rank 2, which is the
true dimension of the latent state. The test loss of this forecaster is 18.28, a bit above the
lower bound found when the exact values of A, C, Q, and R are used. For comparison, the
test loss for the zero forecaster is 50.7, and the test loss for the empirical autocovariance
forecaster is 27.23. In figure 2 we show a forecast from our model (with α = 0.1) on the test
dataset.

We can also compare our extracted latent state to the true latent state. As mentioned
above, the latent state is modulo a linear change of coordinates, so to compare the true
latent state and the latent state of our forecaster, we use our latent state to predict the true
latent state of the underlying state space model, by choosing S to minimize

T−H∑
t=M

‖SUTpt − zt‖2
2

over the coordinate transformation S ∈ R2×2. In figure 3 we plot the transformed states.
We can see that our transformed latent states reasonably track the true latent states.

We can trade off forecaster consistency for performance. We fit the forecaster with
α = 0.1 for a number of values of κ ∈ [10−2, 101]. In figure 4 we compare the train and
test loss versus the train and test forecaster consistency for these values of κ. To improve
forecaster consistency, we have to sacrifice performance (e.g., a 1000x reduction in forecaster
consistency more than doubles our test loss). Finally, in figure 5 we demonstrate the effect
of encouraging forecaster consistency.
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Figure 2: Forecast of simulated data made at a time t, shown as vertical line. The solid curve
shows (xτ )1, and the dashed line is our forecast, (x̂τ |t)1, τ = t+ 1, . . . , t+H.
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Figure 3: Simulated dataset. Top. Transformed latent state of the forecaster. Bottom. True
latent state of underlying state space model.
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6.2 Stock index absolute returns

In this example, we use previous absolute returns of a stock index to forecast future absolute
returns of the index. It has been observed that stocks exhibit volatility clustering, first
observed by Mandelbrot when he wrote “large changes tend to be followed by large changes,
of either sign, and small changes tend to be followed by small changes” [32]. In this example
we use the techniques of low rank forecasting to analyze volatility clustering. Along the
way, we find that the latent state in a rank one forecaster very closely resembles the CBOE
Volatility index (VIX), an index that tracks the 30-day expected volatility of the US stock
market. We note that our model is very similar in spirit to a GARCH model, which has
been observed to work well for modeling market volatility [33].

We gathered the daily absolute return of the SPY ETF (exchange traded fund), an ETF
that closely tracks the S&P 500 index, from February 1993 to October 2020 (T ≈ 7000).
We annualize the daily absolute return by multiplying them by

√
250. We split the original

dataset in half, into a training and test dataset. We also pre-process both datasets by
subtracting the mean of {xt} on the training dataset from both the training and test dataset.

Our goal will be to predict the next month of SPY’s absolute returns (H = 20 trading
days) from the past quarter of SPY’s absolute returns (M = 60 trading days). The parameter
θ is thus a 60 by 20 matrix, containing 1200 entries.

We tried a number of values of α, and found that α = 0.05 worked well, and corre-
sponds to a rank one forecaster. Fitting each forecaster took roughly four seconds, not using
warm-start. (Warm starting the optimization from the previous value of α reduced this
considerably.) The test loss of this forecaster is 0.022; for comparison, the test loss for the
mean forecaster is 0.026, meaning our forecaster provides a 15% percent improvement in test
loss. In figure 7 we show a forecast from our model on the test dataset. In figure 8 we show
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Figure 7: SPY absolute return forecast.

the forecaster test loss versus horizon (how many steps it is forecasting out). As expected,
the test loss increases as we forecast further out.

In figure 6 we plot the latent state of the forecaster, along with the VIX, on the test set.
At least visually, the forecaster’s latent state looks like a (shifted and scaled) smooth version
of the VIX. To investigate the correlation between the forecaster latent state and VIX, we
took the deciles of both series, and calculated the number of times each series were in their
respective deciles. In figure 9 we show a heatmap of the deciles. When the VIX index is in
its highest decile, the forecaster latent state is also in its highest decile over 80% of the time.
The heatmap looks very close to diagonal, so we can conclude that the two time series are
very correlated.

Since the encoder U and the decoder V are both vectors (indeed one-dimensional filters),
we can plot them. In figure 10 we show the parameters of the encoder and decoder. We
can see that the decoder is most sensitive to the most recent values of the series, and also
assigns high importance to the absolute returns 40 trading days ago (around i = 20). We
also observe that the decoder V is roughly decreasing in i; this means that the farther out
we are forecasting, the closer the forecast gets to 0, or to simply predicting the mean value.
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6.3 Traffic

We consider a dataset from the Caltrans performance measurement system (PeMS), which
is composed of hourly road occupancy rates at n = 100 stations located on highways in
Caltrans District 4 (the San Francisco Bay Area) from October 2019 to December 2019 [34]
(T = 2000). Each data entry is the average occupancy rate over the hour, between 0 and 1,
which is roughly the average fraction of the time each vehicle was present in that segment
over 30 second windows (for more details see [34]).

Pre-processing. We carried out several pre-processing steps. We first clip or Winsorize
the raw occupancy rates ot to be in [0.001, 0.999], and then perform a logit transform, i.e.,

log

(
ot

1− ot

)
,

where division and log are elementwise. (This yields a more normal distribution.)
We split the dataset in half into a training and test dataset. We subtracted the mean

occupancy rate on the training dataset for each station from the occupancy rates in both
the training and test dataset. We take M = 24 and H = 6, so from the last day of traffic we
predict the next quarter day of traffic. In total, there are around 1.4 million parameters in
a linear forecaster. We use the `2 (squared) loss. The loss of the constant (mean) forecaster
was 1.108 on the training dataset and 0.962 on the test dataset.

De-trending. We de-trend the time series as described in §5.3 by using auxiliary time-
based features. As auxiliary features we use sine and cosine of hour (with periods of 24, 12,
8, 6, and 24/5 hours), hour in week (at harmonic periods of 168, 168/2, 168/3, 168/4, and
168/5 hours), and a binary weekday/weekend feature. We also use all pairwise products of
these auxiliary features, which for products of sines and cosines are sinusoids at the sum and
difference frequencies. In total there are 462 auxiliary features. This (deterministic) baseline
model yields a training loss of 0.099 and a test loss of 0.203.

Forecasting. Next, we construct a low rank forecaster for the residual series. Figure 11
shows the rank and test loss versus the regularization parameter α. The choice α = 0.07
yields a rank 14 forecaster with a test loss of 0.184, and improvement of around 10% over
the baseline model. Fitting the forecaster takes around 11 seconds. An example forecast is
shown in figure 12.
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Figure 11: Test loss and rank of θ versus α on the traffic dataset.
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(xτ )1, and the dashed line is our forecast of the logit occupancy, (x̂τ |t)1, τ = t+ 1, . . . , t+H.
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7 Related work

The general problem of time series forecasting has been studied for decades, and many
books have been written on the subject [35, 36, 37, 5, 38, 39, 40]. Many methods have been
developed, and we survey a subset of them below. We try to focus on methods that are
by our definition low rank, i.e., the forecast can be decomposed as first computing a lower
dimensional vector (the latent state) from the past, and then computing the forecast based
on that low dimensional vector. We also survey general work on general statistical modeling
of time series and low rank decompositions.

Classical time series models. Classical models of time series model them as stationary
stochastic processes. Given the random process, the optimal (in terms of mean squared
loss) forecaster is the conditional mean forecaster, i.e., the forecast of future values is the
mean of the future values given the observed past [5, §5]. Some common linear models that
fall under this category are the Wiener filter [41], exponential smoothing [42, 43], moving
average [5, §3.3], autoregressive [5, §3.2], ARMA [5, §3.4], and ARIMA [5, §4]. Most of
these models are Markov processes, meaning the future is independent of the past, given a
particular state or summarization of the past [44]. Most of these models are also special
cases of linear state space models [1], and exact forecasting can be done by first Kalman
filtering, and then iterating the state space model without disturbances [5, §5.5]. There
exist many methods to fit state space models to data [5, §7], including N4SID [12], EM
[13, 45], and least squares auto-tuning [14]. State space models are very closely related to
dynamic factor models [46, 47, 48, 49, 50, 51, 52], which have found applications in economics
[53, 54, 55, 56, 57, 58, 59, 60, 61]. Our paper is focused on the problem of forecasting, and
does not explicitly construct a stochastic model of the time series.

Minimum order system identification. A closely related problem in system identifica-
tion is finding the minimal order representation of a linear system [9, 10]. One approach is to
construct a Hankel matrix of impulse responses, which was first proposed by Ho and Kalman
[62], and later expanded upon by Tether [63], Risannen [64], Woodside [65], Silverman [66],
Akaike [67], Chow [68, 69], and Aoki [70, 71]. These early papers spawned the field of
subspace identification [72, 73], which has resulted in techniques like N4SID [74, 75, 76, 12],
which take the SVD of a particular block Hankel matrix, and related techniques like MOESP
[77, 78, 79] and CVA [80, 81] (see, e.g., [82, §10.6] for a summary). We also point the reader
to the paper by Jansson [83], which poses subspace identification methods as a regression,
where the forecasting matrix is low rank.

Low rank matrix approximation. The techniques in this paper are closely related to
the formation of low rank approximations to matrices, which dates all the way back to
Eckart’s seminal work on principal component analysis (PCA) [84]. The basis of PCA
is that the truncated SVD of a matrix is the best low rank approximation of the matrix
(in terms of Frobenius norm), and has been expanded heavily and generalized to different
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data types, objective functions, and regularization functions [85, 27]. A standard convex,
continuous approximation of the rank function is the nuclear norm function [86], and convex
optimization problems involving nuclear norms can be expressed as semidefinite programs
[87], and efficient solution methods exist (see, e.g., [88, 89]). The nuclear norm also exhibits
a number of nice theoretical properties, e.g., it can be used to recover the true minimum
rank solution for certain problems [90], and near-optimal solutions in others [91]. It has also
proved to be a useful heuristic for system identification problems [86, 92, 93, 94]. For more
discussion on the nuclear norm, and its applications, see, e.g., [95, 96, 97, 98, 99, 100] and
the references therein.

Reduced rank prediction. A closely related problem is reduced rank prediction. Re-
duced rank regression can be traced back to the work [101], where a likelihood-ratio test
is obtained for the hypothesis that the rank of the regression coefficient matrix is a given
number. Later, the work [102] provided an explicit form of the estimate of the regression
coefficient matrix with a given rank, and discussed the asymptotics of the estimated regres-
sion coefficient matrix. The reduced rank regression problem was approximately solved as a
nuclear norm penalized least squares problem in [103], and then further generalized into an
adaptive nuclear norm penalized reduced rank regression problem in [104]. For more details
on reduced rank regression, please refer to [105]. The optimization problem in the form of
a loss function plus a nuclear norm regularization term has applications in in multi-task
learning; see, e.g., [106, 107, 108, 95].

Reduced rank time series. Similar to reduced rank regression, reduced rank time series
modeling is also closely connected with the low rank forecasting problem. Early work such as
[109, 110, 111] fit reduced rank coefficient models to vector time series to provide a concise
representation of vector time series models. Many of these models work by extracting a
lower dimensional vector time series from the past first, and then perform one-step ahead
forecast (which corresponds to H = 1) based on the extracted low dimensional vector time
series. This is very similar to the (low rank) two step forecasting technique discussed in
this paper. The reduced rank modeling problem has been generalized into the structured
VAR modeling problem [112, 113, 114]. In these papers, regularization terms are added to
encourage certain structures. For example, a nuclear norm term is often used to encourage
the transition matrix to be low rank, and `1 norm is used to encourage the transition matrix
to be sparse.

Extracting a low-dimensional predictable time series. Another related problem is
extract a low-dimensional (self-)predictable time series from a high-dimensional vector time
series. The paper [115] is an early one with the explicit goal of predictability. After this,
many other methods have been developed in different research areas on extracting predictable
time series, including economics [115, 116, 117, 118, 119], machine learning [120, 121, 122],
process system engineering [123, 124, 125, 126], signal processing, and atmospheric research
[127, 128, 129]. Another closely related line of work is on predictive state representations
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[130, 131, 132].

Nonlinear forecasters. There also exist many nonlinear forecasting methods. These
methods are often based on neural networks, e.g., recurrent neural networks [133, 134, 135,
136, 137, 138], convolutional neural networks [139, 140, 141], and autoencoders [142, 143,
144]. Other nonlinear forecasting methods include regime switching models [145, 146] and
NARMAX models [147, 148]. Recently, there have also been methods proposed that perform
vector time series forecasting through matrix completion, where the vector time series are
assumed share some common structures [149, 150].
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[143] André Gensler, Janosch Henze, Bernhard Sick, and Nils Raabe. Deep learning for solar
power forecasting? An approach using autoencoder and LSTM neural networks. In
Proc. IEEE Intl. Conf. Systems, Man, and Cybernetics, pages 2858–2865. IEEE, 2016.

[144] Wangyang Wei, Honghai Wu, and Huadong Ma. An autoencoder and LSTM-based
traffic flow prediction method. Sensors, 19(13):2946, 2019.

[145] Martin Sola and John Driffill. Testing the term structure of interest rates using a
stationary vector autoregression with regime switching. Journal of Economic Dynamics
and Control, 18(3-4):601–628, 1994.

[146] Henri Nyberg. Forecasting US interest rates and business cycle with a nonlinear regime
switching VAR model. Journal of Forecasting, 37(1):1–15, 2018.

[147] Tor Johansen and Bjarne Foss. Constructing NARMAX models using ARMAX models.
International Journal of Control, 58(5):1125–1153, 1993.

[148] Sheng Chen and Steve Billings. Representations of non-linear systems: the NARMAX
model. International Journal of Control, 49(3):1013–1032, 1989.

[149] Jonathan Gillard and Konstantin Usevich. Structured low-rank matrix completion for
forecasting in time series analysis. International Journal of Forecasting, 34(4):582–597,
2018.

[150] Xinyu Chen and Lijun Sun. Low-rank autoregressive tensor completion for multivariate
time series forecasting. arXiv preprint arXiv:2006.10436, 2020.

38



A Gradients

Loss plus nuclear norm. Let

L(U, V ) =
1

N
1T `(PUV − F ) +

λ

2
(‖U‖2

F + ‖V ‖2
F )

denote the loss plus nuclear norm part of the objective in problem (5). Let

gi = ∇f̂i
`(f̂i) ∈ RHn, i = 1, . . . , N

denote the gradient of the loss with respect to the forecast of the ith data point. We have
that

∇UL(U, V ) =
1

N

N∑
i=1

pig
T
i V

T + λU, ∇VL(U, V ) =
1

N

N∑
i=1

UTpig
T
i + λV.

Forecaster consistency. To compute the gradient of the forecaster consistency loss with
respect to U and V , we first compute the gradient with respect to θ, denoted

G = ∇Iθ(θ) = P T (∇F̂ dist(F̂ )2).

The matrix ∇F̂ dist(F̂ )2 is the gradient of the forecaster consistency with respect to the

forecasts F̂ , and its (block) elements are given by

gτ |t = ∇xτ |t dist(F̂ )2 = 2(x̂τ |t − x̄τ )−
min{τ−1,T−H}∑

t1=max{τ−H,M+1}

2

f(τ)
(x̂τ |t1 − x̄τ ),

where

f(τ) = min{τ, T −H + 1} −max{τ −H,M + 1}, τ = M + 1, . . . , T.

Then, using G, the gradients of forecaster consistency with respect to U and V are

∇UI(UV ) = GV T , ∇V I(UV ) = UTG.
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