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   Abstract—A  convex  optimization  model  predicts  an  output
from  an  input  by  solving  a  convex  optimization  problem.  The
class  of  convex  optimization  models  is  large,  and  includes  as
special  cases  many  well-known  models  like  linear  and  logistic
regression. We propose a heuristic for learning the parameters in
a convex optimization model given a dataset of input-output pairs,
using recently  developed methods  for  differentiating the  solution
of a convex optimization problem with respect to its parameters.
We describe three general classes of convex optimization models,
maximum  a  posteriori  (MAP)  models,  utility  maximization
models,  and  agent  models,  and  present  a  numerical  experiment
for each.
    Index Terms—Convex  optimization,  differentiable  optimization,
machine learning.
  

I.  Introduction
  

A.  Convex Optimization Models

y ∈ Y x ∈ X
D = {(xi,yi)}Ni=1 ⊆ (X×Y)N Y ⊆ Rm

X
ϕ : X→Y

W E  consider  the  problem  of  learning  to  predict  outputs
 from  inputs ,  given  a  set  of  input-output

pairs . We assume that  is a
convex set, but make no assumptions on . In this paper, we
specifically consider models  that predict the output
y by  solving  a  convex optimization  problem that  depends  on
the input x. We call such models convex optimization models.
While convex optimization has historically played a large role
in fitting machine learning models, we emphasize that in this
paper,  we  solve  convex  optimization  problems  to  perform
inference.

A convex optimization model has the form
 

ϕ(x;θ) = argmin
y∈Y

E(x,y;θ) (1)

E : X×Y→ R∪{+∞}
θ ∈ Θ
Θ

E(x,y;θ)
E(x,y;θ)

θ

E(x,y;θ) = +∞ ϕ(x;θ) , y

y ∈ Y ϕ

where the objective function  is convex
in its second argument, and  is a parameter belonging to
a  set  of  allowable  parameters .  The  objective  function E  is
the model’s energy function,  and the quantity  is  the
energy  of y  given  x ;  the  energy  can  depend
arbitrarily  on x  and  ,  as  long  as  it  is  convex  in y .  Infinite
values  of E  encode  additional  constraints  on  the  prediction,
since  implies  .  Evaluating a  convex
optimization  model  at x  corresponds  to  finding  an  output

 of  minimum  energy.  The  function  is  in  general  set-
valued,  since  the  convex  optimization  problem  in  (1)  may

have zero, one, or many solutions. Throughout this paper, we
only consider the case where the argmin exists and is unique.

y ∈ Y

Y
Y

Y

Convex optimization models are particularly well-suited for
problems  in  which  the  outputs  are  known  to  have
structure.  For  example,  if  the  outputs  are  probability  mass
functions, we can take  to be the probability simplex; if they
are sorted vectors, we can take  to be the monotone cone; or
if they are covariance matrices, we can take  to be the set of
symmetric positive semidefinite matrices. In all cases, convex
optimization  models  provide  an  efficient  way  of  searching
over a structured set  to produce predictions satisfying known
priors.

θ
Because convex optimization models can depend arbitrarily

on x  and  ,  they  are  quite  general.  They  include  familiar
models for regression and classification as specific instances,
such as linear and logistic regression. In the basic examples of
linear  and  logistic  regression,  the  corresponding  convex
optimization  models  have  analytical  solutions.  But  in  most
cases,  convex  optimization  models  must  be  evaluated  by
iterating a numerical algorithm.

D
Learning a parametric model requires tuning the parameters

to  make  good  predictions  on  and  ultimately  on  held-out
input-output pairs. In this paper, we present a gradient method
for  learning  the  parameters  in  a  convex  optimization  model;
this  learning  problem  is  in  general  non-convex,  since  the
solution map of a convex optimization model is a complicated
function.  Our  method  uses  the  fact  that  the  solution  map  is
often  differentiable,  and  its  derivative  can  be  computed
efficiently,  without  differentiating  through  each  step  of  the
numerical solver [1]–[4].

θ E(x,y;θ) = ∥y− f (x, θ)∥2 f (x, θ)

We  limit  our  attention  to  optimization  models  that  are
convex  for  three  reasons:  convex  programs  can  be  solved
globally,  efficiently,  and  reliably  [5],  which  makes  inference
tractable;  the  solution  map  is  often  differentiable  [1],  [3],
which  makes  learning  tractable;  and  convex  optimization
models are general, since they can depend arbitrarily on x and
 (e.g., we can take , where  can

be any function, such as a neural network).
Contributions: The  contributions  of  our  paper  are  the

following:
1) We describe a new type of machine learning model,  the

convex optimization model, which makes it both possible and
easy  to  express  priors  and  enforce  constraints  on  the  model
output.

2)  We  show  how  to  fit  convex  optimization  models  using
recently  developed  methods  for  differentiating  through  the
solution map of convex programs.

3)  We  give  several  examples  of  convex  optimization
models, grouping the examples by application area, i.e., MAP
inference,  utility-maximizing  processes,  and  agent  models.
We include numerical experiments showing how to use open-
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source software to fit these models.
Outline: Our learning method is presented in Section II for

the general  case.  In the following three sections,  we describe
special  cases  of  convex  optimization  models  with  particular
forms  or  interpretations.  In  Section  III,  we  interpret  convex
optimization  models  as  solving  a  maximum  a  posteriori
(MAP)  inference  task,  and  we  give  examples  of  these  MAP
models  in  regression,  classification,  and graphical  models.  In
Section IV, we show how convex optimization models can be
used to model utility-maximizing processes, and in Section V,
we give examples of modeling agents using the framework of
stochastic  control.  In  Section  VI,  we  present  numerical
experiments  of  learning  convex  optimization  problems  for  a
number of prediction tasks.  

B.  Related Work
Structured  Prediction: Structured  prediction  refers  to

supervised  learning  problems  where  the  output  has  known
structure  [6].  A common approach to  structured prediction is
energy-based models, which associate a scalar energy to each
output,  and  select  a  value  of  the  output  that  minimizes  the
energy, subject to constraints on the output [7]. Most energy-
based learning methods are learned by reducing the energy for
input-output pairs in the training set and increasing it for other
pairs  [8]–[11].  More  recently,  the  authors  of  [12],  [13]
proposed a method for end-to-end learning of energy networks
by  unrolled  optimization.  Indeed,  a  convex  optimization
model  can  be  viewed  as  a  form  of  energy-based  learning
where  the  energy  function  is  convex  in  the  output.  For
example,  input-convex  neural  networks  (ICNNs)  [14]  can  be
viewed  as  a  convex  optimization  model  where  the  energy
function  is  an  ICNN.  We also  note  that  several  authors  have
proposed  using  structured  prediction  methods  as  the  final
layer of a deep neural network [15]–[17]; of particular note is
[18],  in which the authors used a second-order cone program
(SOCP) as their final layer.

Inverse  Optimization: Inverse  optimization  refers  to  the
problem  of  recovering  the  structure  or  parameters  of  an
optimization  problem,  given  solutions  to  it  [19],  [20].  In
general,  inverse  optimization  is  very  difficult.  One  special
case where it is tractable is when the optimization problem is
a  linear  program  and  the  loss  function  is  convex  in  the
parameters  [19],  and  another  is  when  the  optimization
problem is  convex and the  parameters  enter  in  a  certain  way
[21], [22]. This paper can be viewed as a heuristic method for
inverse  optimization  for  general  convex  optimization
problems.

Differentiable  Optimization: There  has  been  significant
recent  interest  in  differentiating  the  solution  maps  of
optimization problems;  these differentiable solution maps are
sometimes called optimization layers.  Reference [23] showed
how  quadratic  programs  can  be  embedded  as  optimization
layers  in  machine  learning  pipelines,  by  implicitly
differentiating the KKT conditions (as in the early works [24],
[25]).  Recently,  [2],  [3]  showed  how  to  efficiently
differentiate  through  convex  cone  programs  by  applying  the
implicit function theorem to a residual map introduced in [4],
and  [1]  showed  how  to  differentiate  through  convex
optimization problems by an automatable reduction to convex

cone programs;  our  method for  learning convex optimization
models  builds  on  this  recent  work.  Optimization  layers  have
been  used  in  many  applications,  including  control  [26]–[29],
game-playing  [30],  [31],  computer  graphics  [18],  combina-
torial  tasks  [32],  automatic  repair  of  optimization  problems
[33],  and  data  fitting  more  generally  [14],  [34]–[36].
Differentiable  optimization  for  nonconvex  problems  is  often
performed numerically by differentiating each individual step
of a numerical solver [37]–[40], although sometimes it is done
implicitly; see, e.g., [26], [41], [42].  

II.  Learning Convex Optimization Models

θ
(x1,y1), . . . , (xN ,yN) ∈ X×Y

ŷi = ϕ(xi;θ) yi xi

i = 1, . . . ,N θ

In this section we describe a general method for learning the
parameter  in a convex optimization model, given a data set
consisting  of  input-output  pairs .
We let  denote the prediction of  based on , for

.  These  predictions  depend  on ,  but  we  suppress
this dependency to lighten the notation.  

A.  Learning Problem

L :Y×Y→ R
L(ŷi,yi)

ŷi

θ

D
T ⊂ {1, . . . ,N}

V = {1, . . . ,N} \T

The fidelity of a convex optimization model’s predictions is
measured  by  a  loss  function .  The  value

 is the loss for the ith data point; the lower the loss, the
better  the  prediction.  Through ,  this  depends  on  the
parameter .  Our  ultimate  goal  is  to  construct  a  model  that
generalizes,  i.e.,  makes  accurate  predictions  for  input-output
pairs not present in . To this end, we first partition the data
pair  indices  into  two  sets,  a  training  set  and  a
validation  set .  We  define  the  average
training loss as
 

L(θ) =
1
|T |
∑
i∈T

L(ŷi,yi).

θ
R : Θ→ R∪{∞}

We  fit  the  model  by  choosing  to  minimize  the  average
training  loss  plus  a  regularizer ,  i.e.,  solving
the optimization problem
 

minimizeL(θ)+R(θ) (2)
θ θ

R(θ) =∞ θ < Θ
θ ∈ Θ

with variable . The regularizer measures how compatible  is
with prior knowledge, and we assume that  for ,
i.e., the regularizer encodes the constraint . We describe
below  a  gradient-based  method  to  (approximately)  solve  the
problem (2).

We  can  check  how  well  a  convex  optimization  model
generalizes by computing its average loss on the validation set
 

Lval(θ) =
1
|V|
∑
i∈V

L(ŷi,yi).

θ
In some cases, the model or learning procedure depends on

parameters  other  than ,  called  hyper-parameters.  It  is
common  to  learn  multiple  models  over  a  grid  of  hyper-
parameter values and use the model with the lowest validation
loss.  

B.  A Gradient-Based Learning Method
LIn  general,  is  not  convex,  so  we  must  resort  to  an

approximate  or  heuristic  method  for  learning  the  parameters.
One  could  consider  zeroth-order  methods,  e.g.,  evolutionary
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θ

strategies [43],  Bayesian optimization [44], or random search
[45]. Instead, we use a first-order method, taking advantage of
the  fact  that  the  convex  optimization  model  is  often
differentiable in the parameter .

θ

θ

Differentiation: The  output  of  a  non-pathological  convex
optimization model  is  an implicit  function of  the  input x  and
the  parameter .  When  some  regularity  conditions  are
satisfied,  this  implicit  function  is  differentiable,  and  its
derivative with respect to  can often be computed in less time
than is  needed to  compute  the  solution [2].  One generic  way
of  differentiating  through  convex  optimization  problems
involves  a  reduction  to  an  equivalent  convex  cone  program,
and  implicit  differentiation  of  a  residual  map  of  the  cone
program  [2];  this  is  the  method  we  use  in  this  paper.  For
readers  interested  in  more  details  on  the  derivative
computation,  we suggest  [1],  [2],  [4].  In  our  experience,  it  is
unnecessary  to  check  regularity  conditions,  since  we  and
others  have  empirically  observed  that  the  derivative
computation  in  [2]  usually  provides  useful  first-order
information  in  the  rare  cases  when  the  solution  map  is  not
differentiable  at  the  current  iterate  [1],  [29].  In  this  sense,
convex  optimization  models  are  similar  to  other  kinds  of
machine learning models, such as neural networks, which can
be  trained  using  gradient  descent  despite  only  being
differentiable almost everywhere.

θ1

Bk ⊂ T

Learning  Method: We  propose  a  proximal  stochastic
gradient  method.  The  method  is  iterative,  starting  with  an
initial parameter . The first step in iteration k is to choose a
batch of (training) data denoted . There are many ways
to  do  this,  e.g.,  by  cycling  through  the  training  set  or  by
selecting at random. The next step is to compute the gradient
of the loss averaged over the batch
 

gk =
1
|Bk |
∑
i∈Bk

∇θL(ŷi,yi).

|Bk |

θ

This step requires applying the chain rule for differentiation
to  compositions  of  the  convex  optimization  model
(discussed  above)  and  the  loss  function.  The  final  step  is  to
update  by  first  taking  a  step  in  the  negative  gradient
direction, and then applying the proximal operator of R
 

θk+1 = proxtkR(θk − tk∇gk)

= argminθ∈ΘR(θ)+
1

2tk ∥θ− θ
k + tk∇gk∥22

tk > 0
R(θ)

{0,∞} Θ

where  is  a  step  size.  We  assume  that  the  proximal
operator of R is single-valued and easy to evaluate. When 
is  the  indicator  function  of ,  this  method  reduces  to
the standard projected stochastic gradient method
 

θk+1 = ΠΘ(θk − tk∇gk)

ΠΘ Θ

tk
where  is the Euclidean projection operator onto .  There
are many ways to select the step sizes ; see, e.g., [46]–[48].  

III.  MAP Models

x ∈ X y ∈ Y

θ

Let  the  inputs  and  outputs  be  random vectors,
and suppose that the conditional distribution of y given x has a
log-concave density p, parametrized by . The energy function 

E(x,y;θ) = − log p(y | x;θ)
ŷ = ϕ(x;θ)yields a maximum a posteriori (MAP) model:  is the

MAP  estimate  of  the  random  vector y ,  given x  [49 ,  §1.2.5].
Conversely, any convex optimization model can be interpreted
as a MAP model, by identifying the density of y given x with
an exponential transformation of the negative energy
 

p(y | x;θ) =
1

Z(x;θ)
exp(−E(x,y;θ))

where Z is the normalizing constant or partition function
 

Z(x;θ) =
w

y∈Y
exp(−E(x,y;θ)).

Z(x;θ)
Crucially,  evaluating  a  MAP  model  does  not  require

computing  since  it  does  not  depend  on y ;  i.e.,  MAP
models  can  be  used  even  when  the  partition  function  is
computationally intractable, as is often the case [50, §18].  

A.  Regression
Several  basic  regression  models  can  be  described  as  MAP

models, with
 

p(y | x;θ) ∝ exp(− f (θT x− y))

x ∈ X = Rn y ∈ Y = Rm θ ∈ Rn×m

f : Rm→ R θT x

θ

ϕ(x;θ) = θT x
L(ŷ,y) = ∥ŷ− y∥22

ℓ1 ℓ1

where , ,  is the parameter and
 is a convex penalty function (The expression 

can  be  replaced  with  a  more  complex  function,  such  as  a
neural network, since convex optimization models can depend
arbitrarily  on x  and  ;  we  focus  on  the  linear  case  for
simplicity).  If  the  penalty f  is  minimized at  0,  then the  MAP
model is the linear predictor . In this case, fitting
the MAP model with a mean-squared loss  is
equivalent  to  fitting  a  linear  regression  model;  fitting  it  with
an  loss is equivalent to  regression; and fitting it with the
Huber loss [5, §6.1] yields robust Huber regression.

Y
These very basic examples can be made more interesting by

constraining  the  outputs y  to  lie  in  a  convex  subset C  of  ,
using a density of the form
 

p(y|x) ∝
{

exp(− f (θT x− y)) y ∈C
0 otherwise.

f (u) = ∥u∥22
ŷ = ϕ(x;θ)

θT x ℓ1
f (u) = ∥u∥1

Because  the  output  is  constrained,  different  choices  of  the
penalty  function f  yield  different  MAP  models.  When  the
penalty function f is the squared Euclidean norm, ,
the  MAP  estimate  is  the  Euclidean  projection  of

 onto  C .  Other  penalty  functions,  like  the  norm
 or  the  Huber  function  [5,  §6.1]  yield  interesting

non-trivial  regression  models.  We  present  some  examples  of
the constraint set C below.

C = Rm
+Nonnegative  Regression: Taking   (the  set  of

nonnegative m-vectors)  yields a MAP model for nonnegative
regression,  i.e.,  the  MAP  estimates  in  this  model  are
guaranteed to be nonnegative.

Monotonic  Output  Regression: When  C  is  the  monotone
cone, i.e., the set of ordered vectors
 

C = {y ∈ Rm | y1 ≤ y2 ≤ · · · ≤ ym}

θT x

the MAP estimates in the regression model are guaranteed to
be  sorted  in  ascending  order.  When f  is  the  Euclidean  norm,
the MAP estimate is the projection of  onto the monotone
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θT x
O(mn)

O(m)

cone,  and  evaluating  it  requires  solving  a  convex  quadratic
program  (QP);  in  this  special  case,  once  has  been
computed  (which  takes  time),  evaluating  the  convex
optimization  model  is  equivalent  to  monotonic  or  isotonic
regression  [51],  which  takes  time  [52],  meaning  it  has
the same complexity as the standard linear regression model.

x ∈ X ŷ

We  note  the  distinction  between  traditional  isotonic
regression  [51]  and  a  convex  optimization  model  with
monotone constraint.  In  isotonic  regression,  we seek a  single
vector  with  nondecreasing  components.  In  a  convex
optimization  model  with  a  monotone  constraint,  we  seek  a
model  that  maps  to  a  prediction  that  always  has
nondecreasing components.  

B.  Classification
In (probabilistic) classification tasks, the outputs are vectors

in the probability simplex, i.e.,
 

Y = ∆m−1 = {y ∈ Rm | 1T y = 1, y ≥ 0}.

{1, . . . ,m} x ∈ X = Rn

ŷ = ϕ(x;θ)
p(y | x;θ)

{1, . . . ,m}
yk = 1 yi = 0

i , k

The output y can be interpreted as a probability distribution
over  associated with an input . The MAP
estimate  is  therefore  the  most  likely  distribution
associated  with x ,  under  a  particular  density .  This
includes  as  a  special  case  the  familiar  setting  in  which  each
output is a label, e.g., a number in , since the label k
can be represented by a vector y such that  and  for

.
As  a  simple  first  example,  consider  the  MAP  model  with

density
 

p(y|x;θ) ∝
{

exp(xT θy+H(y)) y ∈ ∆m−1

0 otherwise

θ ∈ Rn×m H(y) = −∑m
i=1 yi logyi

θT x ϕ(x;θ) = exp(θT x)/1T exp(θT x)

where  and   is  the  entropy
function. The resulting convex optimization model is  just  the
softmax of , i.e., , where the
exponentiation  and  the  division  are  meant  elementwise  (This
fact  is  readily verified via the KKT conditions of  the convex
optimization model [3, §2.4.4]).

ŷ = ϕ(x;θ)

Since the outputs are probability distributions, a natural loss
function  is  the  KL-divergence  from  the  true  output y  to  the
prediction , i.e.,
 

L(ŷ,y) =
m∑

i=1

yi log(yi/ŷi) =
m∑

i=1

yi logyi− yi log ŷi.

yi logyiDiscarding  the  constant  terms ,  which  do  not  affect
learning, recovers the commonly used cross-entropy loss [53,
§2.6].  Using  this  loss  function  with  the  softmax  model
recovers  multinomial  logistic  regression  [53,  §4.4].  This
model can be made more interesting by simple extensions.

ŷ
Constrained  Logistic  Regression: We  can  readily  add

constraints on the distribution . As a simple example, a box-
constrained logistic regression model has the form
 

ϕ(x;θ) = argminy − xT θy−H(y)

s.t. y ∈C
∆m−1where C  is  a  convex  subset  of .  There  are  many

interesting constraints we can impose on the distribution y. As

a simple example, the constraint set
 

C = {y ∈ ∆m−1 | α ≤ y ≤ β}
α,β ∈ Rm

ŷ
α

β

{1, . . . ,m} ŷ
ŷ

ŷ

where  are vectors and the the inequalities are meant
elementwise can be used to require that  have heavy tails, by
making the leading and trailing components of  large, or thin
tails,  by  making  the  leading  and  trailing  components  of 
small.  Another  simple  example  is  to  specify  the  expected
value of an arbitrary function on  under , which is a
simple  linear  equality  constraint  on .  More  generally,  any
affine  equality  constraints  and  convex  inequality  constraints
on  may  be  imposed;  these  include  constraints  on  the
quantiles  of  the  random  variable  associated  with y ,  lower
bounds  on  its  variance,  and  inequality  constraints  on
conditional probability distributions.

Piecewise-Constant  Logistic  Regression: A  piecewise-
constant logistic regression model has the form
 

ϕ(x;θ) = argminy − xT θy−H(y)+ r(y)

s.t. y ∈ Y
θwhere the parameter is ,

 

r(y) = λ
m−1∑
i=1

|yi+1− yi|

λ > 0

yi , yi+1 i = 1, . . . ,m−1
λ

and  is a (hyper-) parameter. To the standard energy we
add  a  total  variation  term  that  encourages y  to  have  few
“jumps”,  i.e.,  few  indices i  such  that , 
[54,  §7.4].  The  larger  the  hyper-parameter  is,  the  fewer
jumps it will have.  

C.  Graphical Models
A  Markov  random  field  (MRF)  is  an  undirected  graphical

model  that  describes the joint  distribution of  a  set  of  random
variables, which are represented by the nodes in the graph. An
MRF associates parametrized potential functions to cliques of
nodes, and the joint distribution it describes is proportional to
the product of these potential functions. MRFs are commonly
used for structured prediction, but learning their parameters is
in  general  difficult  [49,  §8.3].  When  the  potential  functions
are log-concave, however, we can fit the parameters using the
methods described in this paper.

z = (x,y) ∈ Rn+m c1 c2 cp
zck

ck ck = (1,4,5) zck = (z1,z4,z5)

Suppose  we  are  given  an  MRF  describing  the  joint
distribution  of  the  random  vectors x  and  y .  Let

, and let , , …,  denote the indices of the
graph  cliques;  we  write  to  denote  the  components  of z  in
clique .  For  example,  if ,  then .
Suppose the MRF has a Boltzmann distribution, meaning
 

p(y | x;θ) ∝ exp(−(E1(zc1 )+E2(zc2 )+ · · ·+Ep(zcp ))).

exp(−Ek(zck )) Ek
θ

E1, . . . ,Ep

Here,  are the potential  functions,  and  is  a
local energy function, parametrized by , for the clique k .  As
long as the functions  are convex, the corresponding
MAP model
 

ϕ(x;θ) = argmax
y∈Y

log p(y | x;θ)

(x,y) θ
is a convex optimization model. In this case, given a dataset of
input-output  pairs ,  we  can  fit  the  parameter  without
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evaluating or differentiating through the partition function.

Rn Rm(
n+m

2

)
+n+m

{zi,z j} 1 ≤ i ≤ j ≤ n+m

Quadratic MRFs: Consider an MRF in which the variables
x and y  lie in convex sets (such as slabs, or all of  or ).
Suppose  the  MRF  has  pairwise  cliques  of  the
form  ( ),  and  a  Boltzmann  distribution
with local energy functions
 

E(i, j)(zi,z j) = θi jziz j, 1 ≤ i ≤ j ≤ n+m

θ ∈ Θ = Sn+m
+ Sn+m

+where  is  the  parameter  (  is  the  set  of
positive  semidefinite  matrices).  The  MAP  inference  task  for
this MRF is a convex optimization model, of the form
 

ϕ(x;θ) = argmax
y∈Y

−zT θz = argmin
y∈Y

zT θz.

MRFs  with  a  similar  clique  structure  have  been  proposed
for  various  signal  and  image  denoising  tasks.  We  give  a
numerical  example  of  fitting  a  quadratic  MAP  model  of  an
MRF in Section VI.

We  emphasize  that  the  dependence  on x  can  be  arbitrary;
e.g., if the energy function were
 

E(x,y;θ) = ( f (x),y)T θ( f (x),y))
where f were a neural network, the MAP model would remain
convex.  

IV.  Utility Maximization Models

We now consider the case where the output y is a decision,
and  the  input x  is  a  context  or  feature  vector  that  affects  the
decision. We assume that the decision y is chosen to maximize
some given parametrized utility function
 

U : X×Y→ R∪{−∞}
U(x,y;θ)

θ

where  is  the  utility  of  choosing  a  decision y  given
the  context x  and  the  parameters ,  and  is  concave  in y
(Infinite values of U are used to constrain the decision y). The
energy function in a utility maximization model is simply the
negative utility
 

E(x,y;θ) = −U(x,y;θ).
ϕ(x;θ)The  resulting  convex  optimization  model  gives  a

maximum  utility  decision  in  the  context x .  The  same  losses
used for regression (see Section III-A) and classification (see
Section  III-B)  can  be  used  for  utility  maximization.  The
context x  might  include,  for  example,  a  total  budget  on  the
decision y, prices that affect the decision, or availabilities that
affect the decision.

y ∈ Rm
+

yi
1T y ≤ B

B ∈ R+

Resource  Allocation: A  standard  example  of  utility
maximization is resource allocation. In the simplest case, this
involves allocating a single, finite resource across m agents or
tasks.  The  decision  gives  the  allocation  across  those
tasks, where  is the resource allocated to task i; because the
resource  is  finite,  the  allocation  must  satisfy ,  where

 is  a  nonnegative  budget.  The  context x  contains  the
budget B ,  and  possibly  other  important  parameters  such  as
limits on allocations to the tasks. When the input x is just the
budget, the utility has the form
 

U(x,y;θ) =
{

U(y;θ) y ≥ 0, 1T y ≤ B
−∞ otherwise

U(y;θ)

ϕ(x;θ)

where  is  some  parametrized  concave  utility  function,
describing  the  utility  of  an  allocation.  In  this  simple  case,

 gives  the  maximum utility  allocation  that  satisfies  the
budget constraint.

p ∈ Rm
++

yi yi/pi

The  input x  is  not  limited  to  just  the  budget;  it  can  also
contain  additional  context  that  affects  or  constrain  the
decision.  One  important  case  is  when  the  resource  to  be
allocated  is  dollars,  and x  contains  the  prices  of  the  resource
for  each  of  the  agents,  denoted .  When  there  are
prices, an allocation of  dollars provides  units of some
good to agent i. The utility in this case has form
 

U(x,y;θ) =
{

U(y/p;θ) y ≥ 0, 1T y ≤ B
−∞ otherwise

U(z;θ)
zi

i = 1, . . . ,m ϕ(x;θ)

where the division is meant elementwise, and  gives the
utility  of  the  agents  receiving  units  of  the  resource,

.  The  resulting  convex  optimization  model 
gives the maximum utility allocation that  satisfies the budget
constraints, given the current prices.

m′

y ∈ Rm
+ m = km′

We  can  just  as  well  model  the  allocation  of  multiple
resources,  each  with  its  own  budget,  across  agents  or  tasks;
e.g.,  we  might  model  the  allocation  of  computational
resources,  such  as  cpu  cores,  memory,  and  disk  space,  to  a
pool of tasks. If there are k  resources and  agents, then the
output  would  be  the k  allocation  vectors  for  each  resource,
stacked together to form a vector , where .

Utility  Functions: A  simple  family  of  utility  functions  are
the separable functions
 

U(y;θ) =
m∑

i=1

Ui(yi;θ)

Ui(yi;θ) yi

Ui(yi;θ) = −exp(θiyi)/θi

where  is the utility of allocating  of the resource to
the ith agent or task. In this case the entries of the decision y
are  coupled  by  budget  constraints.  A  simple  example  for
separable utility is exponential utility .

However, U  need  not  be  separable.  A common example  is
when y  represents  an  allocation  of  dollars  in  a  portfolio  of
stocks; the Markowitz utility or risk-adjusted return is
 

U(y;θ) = µT y−γyTΣy
µ ∈ Rm

Σ ∈ Sm
++ γ > 0

θ = (µ,Σ,γ)

where  is  the  expected  return  of  each  investment,
 is  the  covariance  of  the  returns  and  is  a  risk

aversion  parameter.  We  can  take ,  in  which  case
we are observing portfolios  and attempting to infer  the mean
covariance,  and  risk  aversion  parameter  that  best  model  the
observed portfolio allocations.  

V.  Stochastic Control Agent Models

x ∈ X = Rn

y ∈ Y = Rm
In this section, we consider a setting in which  is

the  context  or  state  of  a  dynamical  system,  and 
represents the actions taken in that state. Our goal is to model
the policy, i.e., the mapping from state to action, that the agent
is using. In this section, we describe generic ways to model an
agent’s policy with a convex optimization model. The convex
optimization  models  we  present  are  all  instances  of  convex
optimization  policies  commonly  used  for  stochastic  control
[29]. When learning these models, one can use the same losses
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proposed for regression (see Section III-A).

xt yt

Stochastic  Control: To  motivate  the  models  presented  in
this  section,  here,  we  describe  a  general  stochastic  control
problem.  Let  and   denote  the  state  and  action  at  time t.
Suppose the state evolves according to the dynamics
 

xt+1 = f (xt,yt,wt) (3)
wt ∈W

f : Rn×Rm×W→ Rn
where  is  a  random  variable,  and  the  function

 gives the (stochastic) dynamics of the
dynamical system. Suppose also that the agent selects actions
according to
 

yt = ϕ(xt), t = 0,1, . . . (4)
ϕ : Rn→ Rm

g : Rn×Rm→ R∪
{+∞}

where  is  the policy,  and that  the agent’s  goal  is
to minimize a discounted sum of stage costs 

 over time
 

∞∑
t=0

γtg(xt,yt)

γ ∈ (0,1]where  is  a  discount  factor,  subject  to  the  dynamics
(3) and the policy (4). It is well known (see, e.g., [55]) that an
optimal policy is given by
 

ϕ⋆(x) = argmin
u

g(x,y)+EV( f (x,y))

V : Rn→ Rwhere  is  the  cost-to-go  function,  which  satisfies
Bellman’s equation
 

V(x) = inf
u

g(x,y)+EV( f (x,y)), x ∈ Rn. (5)

In general, given a dataset describing an agent’s actions, we
have  no  reason  to  believe  that  the  agent  chooses  actions  by
solving a stochastic control problem. Nonetheless, choosing a
model  that  corresponds  to  a  policy  for  stochastic  control  can
work  well  in  practice.  As  we  will  see,  our  models  involve
learning  the  parameters  in  three  functions  that  can  be
interpreted as dynamics, stage costs, and an approximate value
function.

Approximate  Dynamic  Programming  (ADP): One  possible
model of agent behavior is the ADP model [55, §6], which has
the form
 

ϕ(x;θ) = argminy g(x,y;θ)+ V̂(x+;θ)

s.t. x+ = f (x,y;θ)

x+ ∈ Rn y ∈ Rm

f : Rn×Rm→ Rn

g : Rn×Rm→ R∪{+∞}
V̂

θ ŷ = ϕ(x;θ)

where  and   are  the  variables.  The  function
,  which  must  be  affine  in  its  second

argument,  can  be  interpreted  as  the  dynamics;  the  function
 is the stage cost (which is convex in

its  second  argument);  and  the  convex  function  can  be
interpreted  as  an  approximation  of  the  cost-to-go  or  value
function. All three of these functions are parametrized by the
vector .  The  value  is  the  optimal  value  of  the
variable y ,  i.e.,  the  ADP  model  chooses  the  action  that
minimizes the current stage cost plus an estimate of the cost-
to-go of the next state.

h1, . . . ,hp : Rn×Rm→
R∪{+∞}

One  reasonable  parametrized  stage  cost g  is  the  weighted
sum  of  a  number  of  convex  functions 
 

g(x,y;θ) =
p∑

i=1

θihi(x,y).

Θ = Rp
+In  this  case  we  would  have .  For  example,  if  the

dynamical system were a car, the state was the physical state
of the car, and the action was the steering wheel angle and the
acceleration,  there  would  be  many  reasonable  costs:  e.g.,
tracking,  fuel  use,  and  comfort.  Such  a  stage  cost  could  be
used to trade off these costs, or to derive them from data.

V̂1, . . . , V̂p : Rn→ R∪{∞}
Similarly, the cost-to-go function might be a weighted sum

of functions 
 

V̂(x;θ) =
p∑

i=1

θiV̂i(x)

e.g., taking
 

V̂i+ jn(x) = xix j, i = 1, . . . ,n, j = 1, . . . ,n

yields a quadratic cost-to-go function.
Model  Predictive  Control  (MPC): An  MPC  policy  is  an

instance of the ADP policy [55, §6.4.3]
 

ϕ(x;θ) = argmin
T−1∑
t=0

gt(xt,yt;θ)

s.t. xt+1 = ft(xt,yt;θ)
x0 = x

x0, . . . , xT y0, . . . ,yT−1
ft : Rn×Rm→ Rn

gt : Rn×Rm→ R∪{+∞}
yt

θ
∑T−1

t=1 gt(xt,yt;θ)

gt

y0, . . . ,yT−1
ŷ = ϕ(x;θ) y0

with  variables  and  ,  where T  is  the  time
horizon.  Here  is  the  (affine)  dynamics
function  at  time t ,  and  is  the  stage
cost  function at  time t ,  which is  convex in ;  both  functions
are parametrized by  (The expression  can be
interpreted  as  the  approximate  value  function  of  an  ADP
policy). The objective is the sum of the stage costs  through
time, and the constraints enforce the dynamics and the initial
state. The MPC model chooses the action as the first action in
a  planned  sequence  of  future  actions ,  i.e.,

 is the optimal value for the variable .  

VI.  Numerical Experiments

In  this  section  we  present  four  numerical  experiments  that
mirror the examples from Sections III–V. The code for all of
these examples can be found online1.

n = 20
m = 10 θtrue ∈ Rn×m

Monotonic  Output  Regression: We consider  the  monotonic
output  regression  model  (see  Section  III-A).  We  take 
and .  We  generate  a  true  parameter  with
entries  sampled  independently  from  a  standard  normal
distribution,  and  sample  100  training  data  pairs  and  50
validation data pairs according to
 

x ∼ N(0, I), y = ϕ(x+ z;θtrue), z ∼ N(0, I).
We  compare  the  convex  optimization  model  to  linear

regression,  using  the  standard  sum  of  squares  loss  and  no
regularizer.  The  results  for  both  of  these  methods  are
displayed  in Fig. 1 .  On  the  left,  we  show  the  validation  loss
versus  training  iteration.  The  final  validation  loss  for  linear
regression  is  3.375,  for  the  convex  optimization  model  is
  
1 redacted
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0.562, and for the true model is 0.264. We also calculated the
validation loss of a convex optimization model with the linear
regression  parameters;  this  resulted  in  a  validation  loss  of
1.511.  While  better  than  3.375,  this  shows  that  here  our
learning  method  is  superior  to  learning  the  parameters  using
linear  regression  and  then  projecting  the  outputs  onto  the
monotone  cone.  On  the  right,  we  show  both  model’s
predictions for a validation input.

x ∈ Rn

y ∈ Rm n = m

Signal Denoising: Here, we fit the parameters in a quadratic
MRF (see  Section  III-C)  for  a  signal  denoising problem.  We
consider a denoising problem in which each input  is a
noise-corrupted observation of an output , where .
The  goal  is  to  reconstruct  the  original  signal y ,  given  the
noise-corrupted  observation.  We  model  the  conditional
density of y given x as
 

p(y | x;θ) ∝ exp
(
−
(
∥M(x− y)∥22+λ∥Dy∥22

))
θ = (M ∈ Rn×n,λ ∈ R++)

ϕ(x;θ) = argmaxy log p(y | x;θ)

where  is  the  parameter  and D  is  the
first-order  difference matrix.  The MAP estimate  of y  given x
is ,  and  the  corresponding
convex optimization model has the energy function
 

E(x,y;θ) = ∥M(x− y)∥22+λ∥Dy∥22.
The first term says that x should be close to y, as measured

by the squared quadratic M-norm, while the second term says
that  the  entries  of y  should vary smoothly.  When M  =  I ,  this
model is equivalent to least-squares denoising with Laplacian
regularization.  We  note  that  this  convex  optimization  model
has the analytical solution
 

ϕ(x;θ) = (MT M+λDT D)−1MT Mx.

n = 100 m = 100 N = 500We use , , and  training pairs. Each
output y  is  generated  by  sampling  a  different  scale  factor a

[1,3]

[0,2πa]

Σ

from  a  uniform  distribution  over  the  interval ,  and  then
evaluating the cosine function at 100 linearly spaced points in
the  interval .  The  outputs  are  corrupted  by  Gaussian
noise to produce the inputs. We generate a covariance matrix

 according to
 

Σ = PT P, P ∼ N(0,0.01I)
and then generate the components of each input x
 

v ∼ N(0,Σ), x = y+ v.

λ

We  generate  100  validation  points  in  the  same  way.  As  a
baseline,  we  use  least-squares  denoising  with  Laplacian
regularization, sweeping  to find the value which minimizes
the  error  on the  training set.  The least-squares  reconstruction
achieves a validation loss of 0.090; after learning, the convex
optimization model achieves a validation loss of 0.014. Fig. 2
compares a prediction of the convex optimization model with
least  squares  and  the  true  output,  for  a  held-out  input-output
pair.

B ∈ R+
p ∈ Rm

+ y ∈ Rm
+

Resource  Allocation: We  consider  an  instance  of  the
resource  allocation  problem  with  prices,  as  described  in
Section IV, and use the separable exponential utility function.
The  input x  consists  of  the  budget  and  the  prices

,  and the output  is  the resource allocation.  Our
convex optimization model has the form
 

ϕ(x;θ) = argminy

m∑
i=1

exp(−θiyi/pi)/θi

s.t. y ≥ 0, 1T y ≤ B.

Θ = Rm
+ m = 10Here the feasible parameter set is . We take ,

and sample 100 training and 50 validation inputs and the true
parameter according to 
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Fig. 1.     Monotonic output regression: linear regression (LR), convex optimization model (COM), true model (true). Left: validation loss. Right: predictions for
a held-out input.
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Fig. 2.     Signal denoising. Predictions for a held-out input; least squares (LS), convex optimization model (COM), and true output (true).
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B ∼ U[0,1], pi ∼ U[0,1], θtrue
i ∼ U[0,1]

U[a,b]
[a,b]

where  denotes  the  uniform  distribution  over  the
interval . The outputs were generated according to
 

y = B
ϕ(B, p;θtrue)◦ z

1T (ϕ(B, p;θtrue)◦ z)
, zi ∼ U[0.5,1.5]

◦where  denotes  elementwise  multiplication.  In  other  words,
we  evaluate  the  true  convex  optimization  model,  multiply
each output by a random number between 0.5 and 1.5, and re-
scale  the  allocation  so  it  sums  to  the  budget B .  We  compare
the convex optimization to logistic regression using the prices
as  features  and  the  (normalized)  allocation  as  the  output.  In
Fig. 3 we show results for these two methods. On the left, we
show  the  validation  loss  versus  iteration  for  the  convex
optimization  model,  with  horizontal  lines  for  the  validation
loss of the logistic regression baseline and the true model. On
the  right,  we  show  the  learned  and  true  utility  function
parameters, and observe that the learned parameters are quite
close to the true parameters.

n = 10 m = 4 Y = {y ∈ Rm | ∥y∥∞ ≤ 0.5}
T = 5

Constrained MPC: We fit a convex optimization model for
an instance of the MPC problem described in Section V, with

 states,   controls  with ,
and  a  horizon  of .  Our  convex  optimization  model  has
the form
 

ϕ(x;θ) = argmin
T−1∑
t=0

θT x2
t + ∥yt∥22

s.t. xt+1 = Axt +Byt

∥yt∥∞ ≤ 0.5
x0 = x (6)

x0, . . . , xT ∈ Rn

y0, . . . ,yT−1 ∈ Rm (xt)2

ϕ(x;θ) y0
θ ∈ Rn

+

where  the  variables  are  the  states  and  the
controls ,  the  square  is  meant
elementwise,  and  is  the  optimal  value  of .  The
parameter  parametrizes  the  stage  cost,  and  the
dynamics matrices A and B are known numerical constants.

θtrue ∈ Rn
+

ϕtrue

θtrue

x0 ∼ N(0, I)

We generate a true weight  with entries set  to the
absolute value of samples from a standard normal distribution.
The dataset is generated by rolling out an MPC policy  of
the  form  (6),  with  parameter .  The  policy  is  simulated
from  an  initial  state .  The  outputs  are  noise-
corrupted controls, generated according to
 

ui = ϕtrue(xi), zi ∼ N(0,0.1I), yi = ΠY(ui+ zi)
 

νi−1 ∼ N(0, I), xi = Axi−1+Bui−1+ νi−1

i = 1, . . . ,1000for .  We generate 1000 validation points  in  the
same way.

We use  the  mean-squared  loss  for  the  loss  function L ,  and
train  for  20  iterations.  As  a  baseline,  we  compare  against  a
two-layer  feedforward  ReLU  network  with  hidden  layer
dimension n, and with output clamped to have absolute value
no  greater  than  0.5.  The  results  are  displayed  in Fig. 4 .  The
ReLU network achieves a validation loss of 0.071. The trained
convex  optimization  model  achieves  a  validation  loss  of
0.066,  which is  close  to  the  validation loss  of  the  underlying
model.  Additionally,  the  convex  optimization  model  nearly
recovers the true weights.
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