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Abstract

This paper proposes an efficient numerical algorithm to compute the optimal input distribution that maximizes the
sum capacity of a Gaussian multiple access channel with vector inputs and a vector output. The numerical algorithm
has an iterative water-filling interpretation. The algorithm converges from any starting point, and it reaches within
1/2 nats per user per output dimension from the sum capacity after just one iteration. The characterization of sum
capacity also allows an upper bound and a lower bound for the entire capacity region to be derived.

Keywords

channel capacity; convex optimization; Gaussian channels; multiuser channels; multiple-access channels; multiple-
access communications; multiple-antenna systems; optimization methods; power control; water-filling

I. Introduction

A communication situation where multiple uncoordinated transmitters send independent infor-

mation to a common receiver is referred to as a multiple access channel. Fig. 1 illustrates a two-user

multiple access channel, where X1 and X2 are uncoordinated transmitters encoding independent

messages W1 and W2, respectively, and the receiver is responsible for decoding both messages at

the same time. A (n, 2nR1, 2nR2) codebook for a multiple access channel consists of encoding func-

tions Xn
1 (W1), Xn

2 (W2), where W1 ∈ {1, · · · , 2nR1} and W2 ∈ {1, · · · , 2nR2}, and decoding functions

Ŵ1(Y
n), Ŵ2(Y

n). An error occurs when W1 6= Ŵ1 or W2 6= Ŵ2. A rate pair (R1, R2) is achievable if

there exists a sequence of (n, 2nR1, 2nR2) codebooks for which the average probability of error P n
e → 0

as n → ∞. The capacity region of a multiple access channel is the set of all achievable rate pairs.

The capacity region for the multiple access channel has the following well-known single-letter

characterization [1] [2]. Consider a discrete-time memoryless multiple access channel with a chan-

nel transition probability p(y|x1, x2). For each fixed input distribution p1(x1)p2(x2), the following

pentagon rate region is achievable:

R1 ≤ I(X1; Y |X2)

R2 ≤ I(X2; Y |X1) (1)

R1 + R2 ≤ I(X1, X2; Y )
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Fig. 1. Multiple access channel

where the mutual information expressions are computed with respect to the joint distribution

p(y|x1, x2)p1(x1)p2(x2). When the input distribution is not fixed, but constrained in some ways,

the capacity region is the convex hull of the union of all capacity pentagons whose corresponding

input distributions satisfy the input constraint after the convex hull operation [3] [4]. Since the in-

put signals in a multiple access channel are independent, the input distribution must take a product

form p1(x1)p2(x2). This product constraint is not a convex constraint, so the problem of finding the

optimal input distribution for a multiple access channel is in general non-trivial [5]. The aim of this

paper is to provide a numerical solution to this input optimization problem for a particular type of

multiple access channel: the Gaussian vector multiple access channel.

A Gaussian multiple access channel refers to a multiple access channel in which the law of the

channel transition probability p(y|x1, x2) is Gaussian. When a Gaussian multiple access channel is

memoryless and when X1 and X2 are scalars, the input optimization problem has a simple solution.

Let the power constraints on X1 and X2 be P1 and P2, respectively. Gaussian independent distribu-

tions X1 ∼ N (0, P1) and X2 ∼ N (0, P2) are optimal for every boundary point of the capacity region.

In fact, for scalar Gaussian channels, the union and the convex hull operations are superfluous, and

the capacity region is just a simple pentagon [6]. However, the input optimization problem becomes

more difficult when the Gaussian multiple access channel has vector inputs. In this case, different

points in the capacity region may correspond to different input distributions, and a characterization

of the capacity region involves an optimization over vector random variables.

The input optimization problem for the vector Gaussian multiple access channel has been studied

in the literature for the special cases of intersymbol interference (ISI) channels and scalar fading

channels. The capacity region of the Gaussian multiple access channel with ISI was characterized by

Cheng and Verdú [7]. For the scalar ISI multiple access channel, the input optimization problem can

be formulated as a problem of optimal power allocation over frequencies. An analogous problem of

finding the ergodic capacity of the scalar i.i.d. fading channels was studied by Knopp and Humblet

[8] and Tse and Hanly [9], where the optimal power allocation over fading states was characterized.

Both the scalar ISI channel and the scalar i.i.d. fading channel are special cases of the vector

multiple access channel considered in this paper. In both cases, individual channels in the multiple

access channel can be simultaneously decomposed into parallel independent scalar sub-channels.

For the ISI channel, a cyclic prefix can be appended to the input sequence so that the channel

can be diagonalized in the frequency domain by a discrete Fourier transform. For the i.i.d. fading

channel, the independence among the sub-channels in time is explicitly assumed. In both cases, the

optimal signaling direction is just the direction of the simultaneous diagonalization, and the input

optimization problem is reduced to the power allocation problem among the scalar sub-channels.

The situation is more complicated if simultaneous diagonalization is not possible. This more gen-
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eral setting corresponds to a multiple access situation where both the transmitters and the receiver

are equipped with multiple antennas. In the spatial domain, the channel gain between a transmit

antenna and a receive antenna can be arbitrary, so the channel matrix can have an arbitrary struc-

ture. In general, it is not possible to simultaneously decompose an arbitrary set of matrix channels

into parallel independent scalar sub-channels. Unlike the ISI channels where the time-invariance

property leads to a Toeplitz structure for the channel matrix, a multi-antenna channel does not fol-

low spatial-invariance. Consequently, the equivalence of a cyclic prefix does not exist in the spatial

domain, and the transmitter optimization problem becomes a combination of choosing the optimal

signaling directions for each user and allocating a correct amount of power in each signaling direc-

tion. Such a joint optimization strikes a compromise between maximizing each user’s data rate and

minimizing its interference to other users. Fortunately, it can be shown that the input optimization

problem for Gaussian vector multiple access channels is a convex optimization problem [10]. So, the

optimization problem is tractable in theory, and general-purpose convex programming routines such

as the interior-point method [11] is applicable. However, for a large dimensional problem, the opti-

mization may still be computationally intensive, because the optimization is performed in the space

of positive semi-definite matrices, and the number of scalar variables grows quadratically with the

number of input dimensions. In the literature, the input optimization problem for a multi-antenna

multiple access fading channel is considered in [12] where asymptotic results in the limit of infinite

number of users and infinite number of antennas have been reported. A similar problem exists for

the CDMA systems, where the matrix channel is determined by the spreading sequences. Recent

results in this area have been obtained in [13] [14] [15].

The main contribution of this paper is a numerical algorithm that can be used to efficiently

compute the sum capacity achieving input distribution for a Gaussian vector multiple access channel.

It is shown that the joint optimization of signaling power and signaling directions for a vector multiple

access channel can be performed by a generalization of the single-user input optimization. In a single-

user vector channel, the optimal signaling directions are the eigenmodes of the channel matrix, and

the optimal power allocation is the so-called water-filling allocation [6]. For a vector multiple access

channel, although each user has a different channel and experiences a different interference structure,

it is possible to apply single-user water-filling iteratively to reach a compromise among the signaling

strategies for different users. This iterative water-filling procedure always converges, and it converges

to the sum capacity of a vector multiple access channel.

The rest of this paper is organized as follows. In section II, the input optimization problem for

the Gaussian vector multiple access channel is formulated in a convex programming framework. In

section III, an optimization condition for the sum rate maximization problem is presented. In section

IV, the iterative water-filling algorithm is derived, and its convergence property is studied. Section

V provides capacity region bounds based on the sum rate points. Section VI contains concluding

remarks.

After this paper was initially submitted for review, the authors learned that a similar alternate

input optimization procedure was suggested by Médard in the context of single-antenna multi-path

fading channels [16]. The algorithm presented in this paper is based on the same principle. The

treatment here includes a more complete proof and a novel convergence analysis of the algorithm.
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Fig. 2. Gaussian vector multiple access channel

II. Problem Formulation

A memoryless K-user Gaussian vector multiple access channel can be represented as follows (see

Fig. 2):

Y =

K∑

i=i

HiXi + Z, (2)

where Xi is the input vector signal, Y is the output vector signal, Z is the additive Gaussian noise

vector with a covariance matrix denoted as Sz, and Hi is the time-invariant channel matrix. The

channels are assumed to be known to both the transmitters and the receiver. Further, no feedback

channel is available between the receiver and the transmitters, thus transmitter cooperation (beyond

time synchronization) is not possible. The input signals are assumed to be independent, with a joint

distribution ΠK
i=1pi(xi) that satisfy the power constraints tr(E[XiX

T
i ]) ≤ Pi. Let Si be the covariance

matrices of Xi, i.e. Si = E[XiX
T
i ]. Then, the power constraint becomes tr(Si) ≤ Pi.

The capacity region for a K-user multiple access channel is the convex hull of the union of capacity

pentagons defined in (2). For Gaussian vector multiple access channels, the convex hull operation is

not needed, and the capacity region can be characterized by maximizing
∑K

i=1 µiRi, with µi ≥ 0. The

input distribution that maximizes this weighted rate sum is known to be a Gaussian distribution.

Without loss of generality, let µ1 ≤ · · · ≤ µK. The optimal covariance matrices S1, · · · , SK can be

found by solving the following optimization problem (see e.g. [7] [10]):

maximize µ1 ·
1

2
log

∣∣∣∣∣
K∑

i=1

HiSiH
T
i + Sz

∣∣∣∣∣− µK · 1

2
log |Sz|+

K∑

j=2

(µj − µj−1) ·
1

2
log

∣∣∣∣∣
K∑

i=j

HiSiH
T
i + Sz

∣∣∣∣∣
subject to tr(Si) ≤ Pi, i = 1, · · · , K

Si ≥ 0, i = 1, · · · , K

(3)

where Si ≥ 0 denotes that Si is positive semi-definite. When the goal is to maximize the sum rate,

the problem can be simplified by setting µ1 = · · · = µK = 1 as below:

maximize
1

2
log

∣∣∣∣∣
K∑

i=1

HiSiH
T
i + Sz

∣∣∣∣∣−
1

2
log |Sz|

subject to tr(Si) ≤ Pi, i = 1, . . . , K

Si ≥ 0. i = 1, . . . , K

(4)
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The objective function is concave because log | · | is concave (see e.g. [17, p.466], [18, p.48] or

[19]). The constraints are convex in the space of positive semi-definite matrices [11]. Thus, the

above optimization problem belongs to a class of convex programming problems for which efficient

numerical optimization is possible [12] [11].

III. Sum Capacity

This section focuses on the sum capacity and derives a sufficient and necessary condition for

the optimal input distribution that achieves the sum capacity. Toward this end, the single-user

transmitter optimization problem is first cast into a convex optimization framework. The single-

user optimization problem has a well-known water-filling solution. The water-filling algorithm takes

advantage of the problem structure by decomposing the channel into orthogonal modes, which greatly

reduces the optimization complexity. It turns out that this idea may be extended to the multiuser

case under the sum-rate objective.

A. Single-user Water-filling

For a single-user Gaussian vector channel, the mutual information maximization problem is:

maximize
1

2
log |HSHT + Sz| −

1

2
log |Sz|

subject to tr(S) ≤ P, (5)

S ≥ 0.

The solution to this problem involves two steps. First, since Sz is a symmetric positive definite

matrix, its eigenvalue decomposition is of the form Sz = Q∆QT , where Q is an orthogonal matrix

QQT = I, and ∆ is a diagonal matrix of eigenvalues {δ1, · · · , δm}. Define Ĥ = ∆− 1
2 QT H. The

objective can then be re-written as

maximize
1

2
log |ĤSĤT + I|. (6)

Next, let Ĥ = FΣMT be a singular-value decomposition of Ĥ, where F and M are orthogonal

matrices, and Σ is a diagonal matrix of singular values {h1, h2, · · ·hr}, where r is the rank of Ĥ.

Consider Ŝ = MT SM as the new optimization variable. Since tr(S) = tr(Ŝ), the problem is then

transformed into

maximize
1

2
log |ΣŜΣT + I|

subject to tr(Ŝ) ≤ P, (7)

Ŝ ≥ 0.

Using Hadamard’s inequality [6], it is easy to show that the solution can be obtained by the well-

known water-filling algorithm. The optimal Ŝ is a diagonal matrix, diag{p1, p2, · · · pr}, such that

pi + 1/h2
i = Kl, if 1/h2

i < Kl, (8)

pi = 0, if 1/h2
i ≥ Kl, (9)
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where Kl is known as the water-filling level, and it is a constant chosen so that
∑r

i=1 pi = P . Finally,

the optimal S is MŜMT .

It can be seen that the optimal input distribution for a single-user Gaussian vector channel is

a Gaussian distribution with a covariance matrix that satisfies two conditions. First, the transmit

directions must align with the right eigenvectors of the effective channel. This decomposes the vector

channel into a set of parallel independent scalar sub-channels. Second, the power allocation among

the sub-channels must be a water-filling power allocation based on the noise-to-channel-gain ratio in

each sub-channel. Solving the single-user input optimization via water-filling is more efficient than

using general-purpose convex programming algorithms, because water-filling takes advantage of the

problem structure by decomposing the equivalent channel into its eigenmodes.

Note that although eigenvalues and singular values are unique up to ordering, the matrix decom-

positions themselves (i.e. matrices M and Q in the above derivation) are not necessarily unique. The

non-uniqueness occurs when multiple eigenvalues (or singular values) have the same value. However,

the optimal covariance matrix for the optimization problem (5) is unique. A short proof of this fact

is provided in the following.

Suppose that S1 and S2 are both water-filling covariance matrices. Pick any orthogonal matrix Q in

the eigenvalue decomposition of Sz and any orthogonal matrix M in the singular value decomposition

of Ĥ. Define Ŝ1 = MT S1M and Ŝ2 = MT S2M . Clearly, both Ŝ1 and Ŝ2 must be diagonal, and they

both have to satisfy the water-filling condition pi = (Kl − 1/h2
i )+. Thus, Ŝ1 and Ŝ2 must be the

same. This implies that S1 = MŜ1M
T = MŜ2M

T = S2.

B. Multiuser Water-filling

The idea of water-filling can be generalized to multiple-access channels if the objective is to

maximize the sum data rate. The first result toward this direction is a multiuser water-filling

condition for the optimal transmit covariance matrices that achieve the sum capacity of a multiple-

access channel.

Theorem 1: In a K-user multiple access channel, {Si} is an optimal solution to the rate-sum

maximization problem

maximize
1

2
log

∣∣∣∣∣
K∑

i=1

HiSiH
T
i + Sz

∣∣∣∣∣−
1

2
log |Sz|

subject to tr(Si) ≤ Pi, i = 1, . . . , K

Si ≥ 0, i = 1, . . . , K

(10)

if and only if Si is the single-user water-filling covariance matrix of the channel Hi with Sz +∑K
j=1,j 6=i HjSjH

T
j as noise, for all i = 1, 2, · · ·K.

Proof: The only if part is easy. Suppose that at the rate-sum optimum, there is an Si that does

not satisfy the single-user water-filling condition. Fix all other covariance matrices, set Si to be

the water-filling covariance matrix with Sz +
∑K

j=1,j 6=i HjSjH
T
j as noise. With all other covariance

matrices fixed, the single-user optimization problem for Si differs from the sum rate optimization

problem by a constant. Thus, setting Si to be the water-filling covariance matrix strictly increases

the sum rate objective. This contradicts the optimality of {Si}. Thus, at the optimum, all Si’s must

satisfy the single-user water-filling condition.
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The if part also holds. The proof relies on standard convex analysis. The constraints of the

optimization problem are such that Slater’s condition is satisfied. So, the Karush-Kuhn-Tucker

(KKT) condition of the optimization problem is sufficient and necessary for optimality. To derive

the KKT conditions, form the Lagrangian:

L(Si, λi, Ψi) = log

∣∣∣∣∣
K∑

i=1

HiSiH
T
i + Sz

∣∣∣∣∣−
K∑

i=1

λi(tr(Si) − Pi) +

K∑

i=1

tr(SiΨi). (11)

The coefficient 1/2 and the constant log |Sz| are omitted for simplicity. Here, {λi} are the scalar

dual variables associated with the power constraints, {Ψi} are the matrix dual variables associated

with the positive definiteness constraints. The inner product in the space of semi-definite matrices

is the trace of matrix product.

The KKT condition of the optimization problem consists of the condition ∂L/∂Si = 0, the com-

plementary slackness conditions, and the primal and dual constraints:

λiI = HT
i

(
K∑

j=1

HjSjH
T
j + Sz

)−1

Hi + Ψi,

tr(Si) = Pi,

tr(ΨiSi) = 0, (12)

Ψi, Si, λi ≥ 0,

for all i = 1, . . . , K. Note that the gradient of log |X| is X−1.

Now, the above KKT condition is also valid for the single-user water-filling problem when K is

set to 1. In this case, it is easy to verify that the single-user solution (8) - (9) satisfies the condition

exactly. But, for each user i, the multiuser KKT condition and the single-user KKT condition differ

only by the additional noise term
∑K

j=1,j 6=i HjSjH
T
j . So, if each Si satisfies the single-user condition

while regarding other users’ signals as additional noise, then collectively, the set of {Si} must also

satisfy the multiuser KKT condition. By the sufficiency of the KKT condition, {Si} must then be

the optimal covariance for the multiuser problem. This proves the if part of the theorem. 2

IV. Iterative Water-filling

A. Algorithm

At the rate-sum optimum, each user’s covariance matrix is a water-filling covariance against the

combined noise and all other users’ interference. This suggests that the set of rate-sum optimal

covariance matrices can be found using an iterative procedure.

Algorithm 1: Iterative water-filling

initialize Si = 0, i = 1, . . .K.

repeat

for i=1 to K

S ′
z =

K∑

j=1,j 6=i

HjSjH
T
j + Sz;

Si = arg max
S

1

2
log |HiSHT

i + S ′
z|;
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end

until the sum rate converges.

Theorem 2: In the iterative water-filling algorithm, the sum rate converges to the sum capacity,

and (S1, · · · , SK) converges to an optimal set of input covariance matrices for the Gaussian vector

multiple access channel.

Proof: At each step, the iterative water-filling algorithm finds the single-user water-filling covari-

ance matrix for each user while regarding all other users’ signals as additional noise. Since the

single-user rate objective differs from the multiuser rate-sum objective by only a constant, the rate-

sum objective is non-decreasing with each water-filling step. The rate-sum objective is bounded

above, so the sum rate converges to a limit.

The convergence of the rate-sum also implies the convergence of the covariance matrices. Let

S
(0)
1 , S

(0)
2 , · · · , S

(0)
K , S

(1)
1 , S

(1)
2 , · · ·S(1)

K · · · be the sequence of water-filling covariance matrices from the

iteration. The convergence of the sum rate implies that

1

2
log

∣∣∣∣∣
K∑

i=1

HiS
(n+1)
i HT

i + Sz

∣∣∣∣∣−
1

2
log

∣∣∣∣∣
K∑

i=2

HiS
(n)
i HT

i + H1S
(n+1)
1 HT

1 + Sz

∣∣∣∣∣→ 0 (13)

as n → ∞. By the uniqueness of single-user water-filling, this implies that S
(n)
1 converges to a limit

as n goes to infinity. Similarly, each of S
(n)
2 · · ·S(n)

K also converges to a limit.

At the limit, all Si’s are simultaneously the single-user water-filling covariance matrices of user

i with all other users’ signals regarded as additional noise. Then, by Theorem 1, this set of

(S1, · · · , SK) must achieve the sum capacity of the Gaussian vector multiple access channel. 2

Note that the proof does not depend on the initial starting point. Thus, the algorithm converges

to the sum capacity from any starting values of (S1, · · · , SK). However, although the sum capacity

is unique, the optimal covariance matrices themselves may not be. It is possible for the iterative

algorithm to converge to two different sets of covariance matrices both giving the same optimal sum

rate. The following example illustrates this point. Let H1 = H2 = Sz = I2×2, and P1 = P2 = 2.

Then, S1 = S2 = I2×2, and S ′
1 =

[
2 0

0 0

]
, S ′

2 =

[
0 0

0 2

]
both achieve the same sum capacity.

Fig. 3 gives a graphical interpretation of the algorithm. The capacity region of a two-user vector

multiple access channel is shown in Fig. 3(a). The sum rate R1 + R2 reaches the maximum on the

line segment between C and D. Initially, the covariance matrices for the two users, S
(0)
1 and S

(0)
2 , are

zero matrices.

1. The first iteration is shown in Fig. 3(b). After a single-user water-filling for S
(1)
1 , the rate pair

(R1, R2) is at point ‘F’. Then, treating S
(1)
1 as noise, a single-user water-filling for S

(1)
2 moves the

rate pair to point ‘E’.

2. The second iteration is shown in Fig. 3(c). First, note that with fixed covariance matrices S
(1)
1

and S
(1)
2 , the capacity region is the pentagon ‘abEFO’. So, by changing the decoding order of user

1 and 2, the rate pair can be moved to point ‘b’ without affecting the rate sum. Once at point ‘b’,

water-filling for S
(1)
1 while treating S

(1)
2 as noise gives S

(2)
1 . This increases I(X1; Y ), while keeping

I(X2; Y |X1) fixed, thus moving the rate pair to point ‘c’.

3. The capacity pentagon with (S
(2)
1 , S

(1)
2 ) is now represented by ‘acdeO’. So, the decoding order can
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Fig. 3. First two iterations of iterative water-filling algorithm

again be interchanged to get to the point ‘d’. Performing another single-user water-filling treating

S
(2)
1 as additional noise gives S

(2)
2 and the corresponding rate-pair point ‘f’ in Fig. 3(d). The process

continues until it converges to points ‘C’ and ‘D’.

Note that in every step, each user negotiates for itself the best signaling direction as well as the

optimal power allocation while regarding the interference generated by all other users as noise. The

iterative water-filling algorithm is more efficient than general-purpose convex programming routines,

because the algorithm decomposes the multiuser problem into a sequence of single-user problems,

each of which is much easier to solve. Further, in each step, the single-user water-filling algorithm

takes advantage of the problem structure by performing an eigenmode decomposition. In fact, the

convergence is very fast.
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B. Convergence Behavior

The iterative procedure arrives at a corner point of some rate region pentagon after the first

iteration. The following theorem shows that this corner point is only 1/2 nats per user per output

dimension away from the sum capacity.

Theorem 3: After one iteration of the iterative water-filling algorithm, {Si} achieves a total data

rate
∑K

i=1 Ri that is at most (K − 1)m/2 nats away from the sum capacity.

Proof: The idea is to form the Lagrangian dual of the original optimization problem, and use the

fact that the difference between the primal and dual objectives, the so-called duality gap, is a bound

on the difference between the primal objective and the optimum.

The first step in deriving the dual problem is to reformulate the optimization problem (10) in the

following equivalent form:

minimize − log |T |

subject to T ≤
K∑

i=1

HiSiH
T
i + Sz

tr(Si) ≤ Pi, i = 1, . . . , K

Si ≥ 0, i = 1, . . . , K

(14)

where again the coefficient 1/2 and the constant log |Sz| are dropped. The Lagrangian of the new

optimization problem is:

L({Si}, T, Γ, {λi}, {Ψi})

= − log |T | + tr

[
Γ

(
T −

K∑

i=1

HiSiH
T
i − Sz

)]
+

K∑

i=1

λi(tr(Si) − Pi) −
K∑

i=1

tr(ΨiSi)

= − log |T | + tr(ΓT ) − tr(ΓSz) −
K∑

i=1

λiPi +

K∑

i=1

tr[(λiI − HT
i ΓHi − Ψi)Si] (15)

where the fact tr(AB) = tr(BA) is used. The objective of the dual program is

g(Γ, {λi}, {Ψi}) = inf
{Si},T

L({Si}, T, Γ, {λi}, {Ψi}). (16)

At the optimum, ∂L/∂Si = 0. Thus,

λiI = HT
i ΓHi + Ψi, i = 1, 2, · · · , K. (17)

Further, at the optimum, ∂L/∂T = 0. Thus,

∂

∂T
(− log |T | + tr(ΓT )) = 0. (18)

This implies that

T−1 = Γ. (19)
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Therefore, g(Γ, {λi}, {Ψi}) = log |Γ| + m − tr(ΓSz) −
∑K

i=1 λiPi, where m is the number of output

dimensions. The dual problem of (14) is then,

maximize log |Γ| + m − tr(ΓSz) −
K∑

i=1

λiPi

subject to λiI ≥ HT
i ΓHi, i = 1, . . . , K

Γ ≥ 0.

(20)

Note that the only constraints on {Ψi} are positive semi-definite constraints, so (17) is equivalent to

the inequality in (20). Because the primal program is convex, the dual problem achieves a maximum

at the minimum value of the primal objective.

The duality gap, denoted as γ, is the difference between the objective of the primal problem (14)

and the dual problem (20):

γ = tr



(

K∑

i=1

HiSiH
T
i + Sz

)−1

Sz


+

K∑

i=1

λiPi − m. (21)

Now, consider the duality gap after one iteration of the algorithm. Starting with Si = 0, the first

iteration consists of K water-fillings: S1 is the single-user water-filling covariance of noise Sz alone,

S2 is the water-filling of noise plus interference from S1, and so on. SK is the water-filling of noise

plus interference from all other users. The duality gap bound holds for all dual feasible λi’s. The gap

is the tightest when λi is chosen to be the smallest non-negative value satisfying the dual constraints

in (20):

λi = max eig


HT

i

(
K∑

j=1

HjSjH
T
j + Sz

)−1

Hi


 , i = 1, · · · , K. (22)

In fact, the duality gap reduces to zero if the primal feasible Si is the optimal S∗
i , and the dual

feasible λi’s are chosen in the above fashion.

Now, since S1 is a single-user water-filling, the duality gap for this single-user water-filling must

be zero. Thus,

tr[(H1S1H
T
1 + Sz)

−1Sz] + λ′
1P1 − m = 0, (23)

where,

λ′
1 = max eig[HT

1 (H1S1H
T
1 + Sz)

−1H1]. (24)

More generally, Si is the single-user water-filling regarding
∑i−1

j=1 HjSjH
T
j + Sz as noise. Thus,

tr



(

i∑

j=1

HjSjH
T
j + Sz

)−1( i−1∑

j=1

HjSjH
T
j + Sz

)
+ λ′

iPi − m = 0, (25)

where

λ′
i = max eig


HT

i

(
i∑

j=1

HjSjH
T
j + Sz

)−1

Hi


 . (26)
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Now, the following three inequalities are needed. First, since A ≥ B implies tr(A) ≥ tr(B), the

following must be true:

tr

(
K∑

j=1

HjSjH
T
j + I

)−1

≤ tr(H1S1H
T
1 + I)−1 (27)

Second, since

HT
i

(
K∑

j=1

HjSjH
T
j + Sz

)−1

Hi ≤ HT
i

(
i∑

j=1

HjSjH
T
j + Sz

)−1

Hi, (28)

from (22) and (26):

λi ≤ λ′
i. (29)

Third, since the trace of a positive definite matrix is positive, from (25):

λ′
iPi ≤ m. (30)

Now, putting everything together,

γ = tr



(

K∑

i=1

HiSiH
T
i + Sz

)−1

Sz


+

K∑

i=1

λiPi − m (31)

≤ tr



(

K∑

i=1

HiSiH
T
i + Sz

)−1

Sz


+

K∑

i=1

λ′
iPi − m (32)

= tr



(

K∑

i=1

HiSiH
T
i + Sz

)−1

Sz


+ λ′

1P1 − m +

K∑

i=2

λ′
iPi (33)

≤
K∑

i=2

λ′
iPi (34)

≤ (K − 1)m, (35)

where the first inequalities follows from (29), the second inequality follows from (27) and (23), and

the last inequality follows from (30). Recall that a factor of 1/2 was omitted in the statement of

the primal and dual problems, (14) and (20). Therefore the duality gap bound is (K−1)m/2 nats. 2

The capacity region of a K-user multiple access channel with fixed input covariance matrices is a

polytope. Depending on the order of water-filling, after the first iteration, the iterative water-filling

algorithm reaches one of the K! corner points of the capacity polytope. The above theorem asserts

that none of these corner points is more than (K − 1)m/2 nats away from the sum capacity, where

m is the number of output dimensions. This result roughly states that the capacity loss per user

per output dimension is at most 1
2

nats after just one iteration. This bound is rather general. It

works for arbitrary channel matrices, arbitrary power constraints, and arbitrary input dimensions.
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Fig. 4. Convergence of the iterative water-filling algorithm.

Numerical simulation on realistic channels suggests that in most cases the actual difference from the

capacity is even smaller.

A numerical example with K = 10 users is presented below. Each user is equipped with 10

antennas, and the receiver is also equipped with 10 antennas. A fading channel with 10 i.i.d. fading

states is considered. Thus, the transmitters and the receiver have effectively 100 dimensions each.

The channel matrix is block-diagonal, where each block is of size 10 × 10. The block matrix entries

are randomly generated from an i.i.d. zero-mean Gaussian distribution with unit variance. The

channel matrix is assumed to be known at both the transmitters and the receiver. The total power

constraint for each user is set to 100, and noise variance is set to 1. The ergodic sum capacity is

computed using the iterative water-filling algorithm. Fig. 4 shows the convergence behavior. The

sum capacity of this channel is about 44.5 bits per transmission. Both the duality gap and the

difference between the capacity and the achievable rate after each iteration are plotted. Observe

that for practical purposes, the algorithm converges after only a few iterations. The convergence

appears to be exponentially fast.

V. Capacity Region

The iterative water-filling algorithm can be used to find the set of optimal covariance matrices

that achieve the sum capacity of a Gaussian vector multiple access channel. This set of K covariance

matrices gives K! corner points of a capacity pentagon, each corresponding to a different decoding

order. Upper and lower bounds on the entire capacity region can be derived from these corner points.

The following 2-user multiple access channel is used as an example. The transmitters and the
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receiver are equipped with 7 antennas each. The power constraint for each user is set to 10. The

noise variance is set to 1. The entries of the channel matrices are generated according to an i.i.d.

Gaussian random variable with zero mean and unit variance.

In Fig. 5, the points B and E can be found after one iteration of water-filling. Let their respective

input covariance matrices be SB = (SB,1, SB,2) and SE = (SE,1, SE,2). Also, the sum capacity points

C and D are found using iterative water-filling. Denote the sum-capacity achieving covariance

matrix as SCD = (SCD,1, SCD,2). Note that the line segment between C and D defines a portion of

the capacity boundary. If the optimal sum-capacity covariance matrices happen to be orthogonal,

points C and D collapse to the same point.

A lower bound for the region between B and C (or D and E) can be found based on the linear

combination of covariance matrices SB and SCD (or SE and SCD respectively). Consider the data

rates associated with the covariance matrices αSB + (1 − α)SCD with user 1 decoded first (or

βSE + (1 − β)SCD with user 2 decoded first), where α (or β) ranges from 0 to 1. These rates are

achievable, so they are lower bounds. Because the objective is a concave function of the covariance

matrices, this lower bound is better than the time-sharing of data rates associated with B and C

(or D and E). Since the corner points after one iteration (i.e. B and E) are at most (K − 1)m/2

nats away from the sum-capacity, the lower bound is a close approximation of the capacity region.

A typical example is shown in Fig. 5. Extensive numerical simulations show that the lower bound

is fairly tight. An upper bound is also plotted by extending the line segments AB, CD, and EF .

This is an upper bound because the capacity region is convex.
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VI. Conclusion

This paper addresses the problem of finding the optimal transmitter covariance matrices that

achieve the sum capacity in a Gaussian vector multiple access channel. The computation of the

sum capacity is formulated in a convex optimization framework. A multiuser water-filling condition

for achieving the sum capacity is found. It is shown that the sum-rate maximization problem can

be solved efficiently using an iterative water-filling algorithm, where each step of the iteration is

equivalent to a local maximization of one user’s data rate with multi-user interference treated as

noise. The iterative water-filling algorithm is shown to converge to the sum capacity from any

starting point. The convergence is fast. In particular, it reaches within 1/2 nats per user per

output dimension from the sum capacity after just a single iteration. As mentioned before, the

vector channel model discussed in this paper includes ISI channels and fading channels as special

cases. Thus, the iterative water-filling algorithm can also be used to efficiently compute the power

allocation across the frequency spectrum for an ISI channel or over time for a fading channel.

Finally, although the iterative water-filling algorithm solves the sum capacity problem efficiently,

it does not directly apply to other points in the capacity region. The computations of other capacity

points are also convex programming problems. However, how to best exploit the problem structure

in these cases is still not clear.
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