Advances in Convex Optimization: Theory, Algorithms, and Applications

Stephen Boyd
Electrical Engineering Department
Stanford University
(joint work with Lieven Vandenberghe, UCLA)

ISIT 02

Two problems

polytope \mathcal{P} described by linear inequalities, $a_{i}^{T} x \leq b_{i}, i=1, \ldots, L$

Problem 1a: find minimum volume ellipsoid $\supseteq \mathcal{P}$

Problem 1b: find maximum volume ellipsoid $\subseteq \mathcal{P}$
are these (computationally) difficult? or easy?
problem 1a is very difficult

- in practice
- in theory (NP-hard)

problem 1b is very easy

- in practice (readily solved on small computer)
- in theory (polynomial complexity)

Two more problems

find capacity of discrete memoryless channel, subject to constraints on input distribution

Problem 2a: find channel capacity, subject to:
no more than 30% of the probability is concentrated on any 10% of the input symbols

Problem 2b: find channel capacity, subject to: at least 30% of the probability is concentrated on 10% of the input symbols
are problems 2a and 2 b (computationally) difficult? or easy?
problem 2a is very easy in practice \& theory
problem $2 b$ is very difficult ${ }^{1}$

[^0]
Moral

very difficult and very easy problems can look quite similar
. . . unless you're trained to recognize the difference

Outline

- what's new in convex optimization
- some new standard problem classes
- generalized inequalities and semidefinite programming
- interior-point algorithms and complexity analysis

Convex optimization problems

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{1}(x) \leq 0, \ldots, f_{L}(x) \leq 0, \quad A x=b
\end{array}
$$

- $x \in \mathbf{R}^{n}$ is optimization variable
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are convex, i.e., for all $x, y, 0 \leq \lambda \leq 1$,

$$
f_{i}(\lambda x+(1-\lambda) y) \leq \lambda f_{i}(x)+(1-\lambda) f_{i}(y)
$$

examples:

- linear \& (convex) quadratic programs
- problem 1b \& 2a (if formulated properly)

Convex analysis \& optimization

nice properties of convex optimization problems known since 1960s

- local solutions are global
- duality theory, optimality conditions
- simple solution methods like alternating projections
convex analysis well developed by 1970s (Rockafellar)
- separating \& supporting hyperplanes
- subgradient calculus

What's new (since 1990 or so)

- powerful primal-dual interior-point methods extremely efficient, handle nonlinear large scale problems
- polynomial-time complexity results for interior-point methods based on self-concordance analysis of Newton's method
- extension to generalized inequalities
semidefinite \& maxdet programming
- new standard problem classes
generalizations of LP, with theory, algorithms, software
- lots of applications
control, combinatorial optimization, signal processing, circuit design, . . .

Recent history

- (1984-97) interior-point methods for LP
- (1984) Karmarkar's interior-point LP method
- theory (Ye, Renegar, Kojima, Todd, Monteiro, Roos, . . .)
- practice (Wright, Mehrotra, Vanderbei, Shanno, Lustig, . . .)
- (1988) Nesterov \& Nemirovsky's self-concordance analysis
- (1989-) semidefinite programming in control (Boyd, El Ghaoui, Balakrishnan, Feron, Scherer, . . .)
- (1990-) semidefinite programming in combinatorial optimization (Alizadeh, Goemans, Williamson, Lovasz \& Schrijver, Parrilo, . . .)
- (1994) interior-point methods for nonlinear convex problems (Nesterov \& Nemirovsky, Overton, Todd, Ye, Sturm, . . .)
- (1997-) robust optimization (Ben Tal, Nemirovsky, El Ghaoui, . . .)

Some new standard (convex) problem classes

- second-order cone programming (SOCP)
- semidefinite programming (SDP), maxdet programming
- (convex form) geometric programming (GP)
for these new problem classes we have
- complete duality theory, similar to LP
- good algorithms, and robust, reliable software
- wide variety of new applications

Second-order cone programming

second-order cone program (SOCP) has form

$$
\begin{array}{ll}
\operatorname{minimize} & c_{0}^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m \\
& F x=g
\end{array}
$$

- variable is $x \in \mathbf{R}^{n}$
- includes LP as special case $\left(A_{i}=0, b_{i}=0\right)$, QP $\left(c_{i}=0\right)$
- nondifferentiable when $A_{i} x+b_{i}=0$
- new IP methods can solve (almost) as fast as LPs

Robust linear programming

robust linear program:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i} \text { for all } a_{i} \in \mathcal{E}_{i}
\end{array}
$$

- ellipsoid $\mathcal{E}_{i}=\left\{\bar{a}_{i}+F_{i} p \mid\|p\|_{2} \leq 1\right\}$ describes uncertainty in constraint vectors a_{i}
- x must satisfy constraints for all possible values of a_{i}
- can extend to uncertain $c \& b_{i}$, correlated uncertainties ...

Robust LP as SOCP

robust LP is

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \bar{a}_{i}^{T} x+\sup \left\{\left(F_{i} p\right)^{T} x \mid\|p\|_{2} \leq 1\right\} \leq b_{i}
\end{array}
$$

which is the same as

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \bar{a}_{i}^{T} x+\left\|F_{i}^{T} x\right\|_{2} \leq b_{i}
\end{array}
$$

- an SOCP (hence, readily solved)
- term $\left\|F_{i}^{T} x\right\|_{2}$ is extra margin required to accommodate uncertainty in a_{i}

Stochastic robust linear programming

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \operatorname{Prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, m
\end{array}
$$

where $a_{i} \sim \mathcal{N}\left(\bar{a}_{i}, \Sigma_{i}\right), \eta \geq 1 / 2\left(c\right.$ and b_{i} are fixed $)$
i.e., each constraint must hold with probability at least η
equivalent to SOCP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \bar{a}_{i}^{T} x+\Phi^{-1}(\eta)\left\|\Sigma_{i}^{1 / 2} x\right\|_{2} \leq 1, \quad i=1, \ldots, m
\end{array}
$$

where Φ is CDF of $\mathcal{N}(0,1)$ random variable

Geometric programming

log-sum-exp function:

$$
\mathbf{l s e}(x)=\log \left(e^{x_{1}}+\cdots+e^{x_{n}}\right)
$$

. . . a smooth convex approximation of the max function
geometric program (GP), with variable $x \in \mathbf{R}^{n}$:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{lse}\left(A_{0} x+b_{0}\right) \\
\text { subject to } & \operatorname{lse}\left(A_{i} x+b_{i}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

where $A_{i} \in \mathbf{R}^{m_{i} \times n}, b_{i} \in \mathbf{R}^{m_{i}}$
new IP methods can solve large scale GPs (almost) as fast as LPs

Dual geometric program

dual of geometric program is an unnormalized entropy problem

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{i=0}^{m}\left(b_{i}^{T} \nu_{i}+\operatorname{entr}\left(\nu_{i}\right)\right) \\
\text { subject to } & \nu_{i} \succeq 0, \quad i=0, \ldots, m, \quad \mathbf{1}^{T} \nu_{0}=1, \\
& \sum_{i=0}^{m} A_{i}^{T} \nu_{i}=0
\end{array}
$$

- dual variables are $\nu_{i} \in \mathbf{R}^{m_{i}}, i=0, \ldots, m$
- (unnormalized) entropy is

$$
\operatorname{entr}(\nu)=-\sum_{i=1}^{n} \nu_{i} \log \frac{\nu_{i}}{\mathbf{1}^{T_{\nu}}}
$$

- GP is closely related to problems involving entropy, KL divergence

Example: DMC capacity problem

$x \in \mathbf{R}^{n}$ is distribution of input; $y \in \mathbf{R}^{m}$ is distribution of output $P \in \mathbf{R}^{m \times n}$ gives conditional probabilities: $y=P x$
primal channel capacity problem:

$$
\begin{array}{ll}
\operatorname{maximize} & -c^{T} x+\operatorname{entr}(y) \\
\text { subject to } & x \succeq 0, \quad \mathbf{1}^{T} x=1, \quad y=P x
\end{array}
$$

where $c_{j}=-\sum_{i=1}^{m} p_{i j} \log p_{i j}$
dual channel capacity problem is a simple GP:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{lse}(u) \\
\text { subject to } & c+P^{T} u \succeq 0
\end{array}
$$

Generalized inequalities

with proper convex cone $K \subseteq \mathbf{R}^{k}$ we associate generalized inequality

$$
x \preceq_{K} y \Longleftrightarrow y-x \in K
$$

convex optimization problem with generalized inequalities:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{1}(x) \preceq_{K_{1}} 0, \ldots, f_{L}(x) \preceq_{K_{L}} 0, \quad A x=b
\end{array}
$$

$f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k_{i}}$ are K_{i}-convex: for all $x, y, 0 \leq \lambda \leq 1$,

$$
f_{i}(\lambda x+(1-\lambda) y) \preceq_{K_{i}} \lambda f_{i}(x)+(1-\lambda) f_{i}(y)
$$

Semidefinite program

semidefinite program (SDP):

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \preceq 0, \quad C x=d
\end{array}
$$

- $A_{i}=A_{i}^{T} \in \mathbf{R}^{m \times m}$
- inequality is matrix inequality, i.e., K is positive semidefinite cone
- single constraint, which is affine (hence, matrix convex)

Maxdet problem

extension of SDP: maxdet problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x-\log \operatorname{det}_{+}\left(G_{0}+x_{1} G_{1}+\cdots+x_{m} G_{m}\right) \\
\text { subject to } & A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \preceq 0, \quad C x=d
\end{array}
$$

- $x \in \mathbf{R}^{n}$ is variable
- $A_{i}=A_{i}^{T} \in \mathbf{R}^{m \times m}, G_{i}=G_{i}^{T} \in \mathbf{R}^{p \times p}$
- $\operatorname{det}_{+}(Z)= \begin{cases}\operatorname{det} Z & \text { if } Z \succ 0 \\ 0 & \text { otherwise }\end{cases}$

Semidefinite \& maxdet programming

- nearly complete duality theory, similar to LP
- interior-point algorithms that are efficient in theory \& practice
- applications in many areas:
- control theory
- combinatorial optimization \& graph theory
- structural optimization
- statistics
- signal processing
- circuit design
- geometrical problems
- algebraic geometry

Chebyshev bounds

generalized Chebyshev inequalities: lower bounds on

$$
\operatorname{Prob}(X \in C)
$$

- $X \in \mathbf{R}^{n}$ is a random variable with $\mathbf{E} X=a, \mathbf{E} X X^{T}=S$
- C is an open polyhedron $C=\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}$
cf. classical Chebyshev inequality on \mathbf{R}

$$
\operatorname{Prob}(X<1) \geq \frac{1}{1+\sigma^{2}}
$$

if $\mathbf{E} X=0, \mathbf{E} X^{2}=\sigma^{2}$

Chebyshev bounds via SDP

$$
\begin{array}{ll}
\operatorname{minimize} & 1-\sum_{i=1}^{m} \lambda_{i} \\
\text { subject to } & a_{i}^{T} z_{i} \geq b_{i} \lambda_{i}, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m}\left[\begin{array}{cc}
Z_{i} & z_{i} \\
z_{i}^{T} & \lambda_{i}
\end{array}\right] \preceq\left[\begin{array}{cc}
S & a \\
a^{T} & 1
\end{array}\right] \\
& {\left[\begin{array}{cc}
Z_{i} & z_{i} \\
z_{i}^{T} & \lambda_{i}
\end{array}\right] \succeq 0, \quad i=1, \ldots, m}
\end{array}
$$

- an SDP with variables $Z_{i}=Z_{i}^{T} \in \mathbf{R}^{n \times n}, z_{i} \in \mathbf{R}^{n}$, and $\lambda_{i} \in \mathbf{R}$
- optimal value is a (sharp) lower bound on $\operatorname{Prob}(X \in C)$
- can construct a distribution with $\mathbf{E} X=a, \mathbf{E} X X^{T}=S$ that attains the lower bound

Detection example

$$
x=s+v
$$

- $x \in \mathbf{R}^{n}$: received signal
- s : transmitted signal $s \in\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$ (one of N possible symbols)
- v : noise with $\mathbf{E} v=0, \mathbf{E} v v^{T}=I$ (but otherwise unknown distribution)
detection problem: given observed value of x, estimate s
example $(n=2, N=7)$

- detector selects symbol s_{k} closest to received signal x
- correct detection if $s_{k}+v$ lies in the Voronoi region around s_{k}
example: bound on probability of correct detection of s_{1} is 0.205

solid circles: distribution with probability of correct detection 0.205

Boolean least-squares

$x \in\{-1,1\}^{n}$ is transmitted; we receive $y=A x+v, v \sim \mathcal{N}(0, I)$
ML estimate of x found by solving boolean least-squares problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-y\|^{2} \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

- could check all 2^{n} possible values of $x \ldots$
- an NP-hard problem
- many heuristics for approximate solution

Boolean least-squares as matrix problem

$$
\begin{aligned}
\|A x-y\|^{2} & =x^{T} A^{T} A x-2 y^{T} A^{T} x+y^{T} y \\
& =\operatorname{Tr} A^{T} A X-2 y^{T} A^{T} x+y^{T} y
\end{aligned}
$$

where $X=x x^{T}$
hence can express BLS as

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr} A^{T} A X-2 y^{T} A^{T} x+y^{T} y \\
\text { subject to } & X_{i i}=1, \quad X \succeq x x^{T}, \quad \operatorname{rank}(X)=1
\end{array}
$$

.. still a very hard problem

SDP relaxation for BLS

ignore rank one constraint, and use

$$
X \succeq x x^{T} \Longleftrightarrow\left[\begin{array}{cc}
X & x \\
x^{T} & 1
\end{array}\right] \succeq 0
$$

to obtain SDP relaxation (with variables X, x)

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr} A^{T} A X-2 y^{T} A^{T} x+y^{T} y \\
\text { subject to } & X_{i i}=1, \quad\left[\begin{array}{cc}
X & x \\
x^{T} & 1
\end{array}\right] \succeq 0
\end{array}
$$

- optimal value of SDP gives lower bound for BLS
- if optimal matrix is rank one, we're done

Stochastic interpretation and heuristic

- suppose X, x are optimal for SDP relaxation
- generate z from normal distribution $\mathcal{N}\left(x, X-x x^{T}\right)$
- take $x=\operatorname{sgn}(z)$ as approximate solution of BLS (can repeat many times and take best one)

Interior-point methods

- handle linear and nonlinear convex problems (Nesterov \& Nemirovsky)
- based on Newton's method applied to 'barrier' functions that trap x in interior of feasible region (hence the name IP)
- worst-case complexity theory: \# Newton steps $\sim \sqrt{\text { problem size }}$
- in practice: \# Newton steps between 5 \& 50 (!)
- 1000s variables, 10000 s constraints feasible on PC; far larger if structure is exploited

Log barrier

for convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

we define logarithmic barrier as

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right)
$$

- ϕ is convex, smooth on interior of feasible set
- $\phi \rightarrow \infty$ as x approaches boundary of feasible set

Central path

central path is curve

$$
x^{\star}(t)=\underset{x}{\operatorname{argmin}}\left(t f_{0}(x)+\phi(x)\right), \quad t \geq 0
$$

- $x^{\star}(t)$ is strictly feasible, i.e., $f_{i}(x)<0$
- $x^{\star}(t)$ can be computed by, e.g., Newton's method
- intuition suggests $x^{\star}(t)$ converges to optimal as $t \rightarrow \infty$
- using duality can prove $x^{\star}(t)$ is m / t-suboptimal

Example: central path for LP

$$
x^{\star}(t)=\operatorname{argmin}_{x}\left(t c^{T} x-\sum_{i=1}^{6} \log \left(b_{i}-a_{i}^{T} x\right)\right)
$$

Barrier method

a.k.a. path-following method

$$
\begin{aligned}
& \text { given strictly feasible } x, t>0, \mu>1 \\
& \text { repeat } \\
& \text { 1. compute } x:=x^{\star}(t) \\
& \quad \text { (using Newton's method, starting from } x \text {) } \\
& \text { 2. exit if } m / t<\text { tol } \\
& \text { 3. } t:=\mu t
\end{aligned}
$$

duality gap reduced by μ each outer iteration

Trade-off in choice of μ

large μ means

- fast duality gap reduction (fewer outer iterations), but
- many Newton steps to compute $x^{\star}\left(t^{+}\right)$ (more Newton steps per outer iteration)
total effort measured by total number of Newton steps

Typical example

GP with $n=50$ variables, $m=100$ constraints, $m_{i}=5$

- wide range of μ works well
- very typical behavior (even for large m, n)

Effect of μ

barrier method works well for μ in large range

Typical effort versus problem dimensions

- LPs with $n=2 m$ vbles, m constraints
- 100 instances for each of 20 problem sizes
- avg \& std dev shown

Other interior-point methods

more sophisticated IP algorithms

- primal-dual, incomplete centering, infeasible start
- use same ideas, e.g., central path, log barrier
- readily available (commercial and noncommercial packages)
typical performance: $10-50$ Newton steps (!)
- over wide range of problem dimensions, problem type, and problem data

Complexity analysis of Newton's method

- classical result: if $\left|f^{\prime \prime \prime}\right|$ small, Newton's method converges fast
- classical analysis is local, and coordinate dependent
- need analysis that is global, and, like Newton's method, coordinate invariant

Self-concordance

self-concordant function f (Nesterov \& Nemirovsky, 1988): when restricted to any line,

$$
\left|f^{\prime \prime \prime}(t)\right| \leq 2 f^{\prime \prime}(t)^{3 / 2}
$$

- $f \mathrm{SC} \Longleftrightarrow \tilde{f}(z)=f(T z) \mathrm{SC}$, for T nonsingular (i.e., SC is coordinate invariant)
- a large number of common convex functions are SC

$$
x \log x-\log x, \quad \log \operatorname{det} X^{-1}, \quad-\log \left(y^{2}-x^{T} x\right), \quad \ldots
$$

Complexity analysis of Newton's method for self-concordant functions

for self-concordant function f, with minimum value f^{\star},

- theorem: \#Newton steps to minimize f, starting from x :

$$
\# \text { steps } \leq 11\left(f(x)-f^{\star}\right)+5
$$

- empirically: $\#$ steps $\approx 0.6\left(f(x)-f^{\star}\right)+5$
note absence of unknown constants, problem dimension, etc.

Complexity of path-following algorithm

- to compute $x^{\star}(\mu t)$ starting from $x^{\star}(t)$,

$$
\# \text { steps } \leq 11 m(\mu-1-\log \mu)+5
$$

using N\&N's self-concordance theory, duality to bound f^{\star}

- number of outer steps to reduce duality gap by factor α : $\lceil\log \alpha / \log \mu\rceil$
- total number of Newton steps bounded by product,

$$
\left\lceil\frac{\log \alpha}{\log \mu}\right\rceil(11 m(\mu-1-\log \mu)+5)
$$

... captures trade-off in choice of μ

Complexity analysis conclusions

- for any choice of μ, \#steps is $O(m \log 1 / \epsilon)$, where ϵ is final accuracy
- to optimize complexity bound, can take $\mu=1+1 / \sqrt{m}$, which yields \#steps $O(\sqrt{m} \log 1 / \epsilon)$
- in any case, IP methods work extremely well in practice

Conclusions

since 1985 , lots of advances in theory \& practice of convex optimization

- complexity analysis
- semidefinite programming, other new problem classes
- efficient interior-point methods \& software
- lots of applications

Some references

- Semidefinite Programming, SIAM Review 1996
- Determinant Maximization with Linear Matrix Inequality Constraints, SIMAX 1998
- Applications of Second-order Cone Programming, LAA 1999
- Linear Matrix Inequalities in System and Control Theory, SIAM 1994
- Interior-point Polynomial Algorithms in Convex Programming, SIAM 1994, Nesterov \& Nemirovsky
- Lectures on Modern Convex Optimization, SIAM 2001, Ben Tal \& Nemirovsky

Shameless promotion

Convex Optimization, Boyd \& Vandenberghe

- to be published 2003
- pretty good draft available at Stanford EE364 (UCLA EE236B) class web site as course reader

[^0]: ${ }^{1}$ I'm almost sure

