Advances in Convex Optimization: Theory, Algorithms, and Applications

Stephen Boyd

Electrical Engineering Department Stanford University

(joint work with Lieven Vandenberghe, UCLA)

ISIT 02

ISIT 02 Lausanne 7/3/02

Two problems

polytope \mathcal{P} described by linear inequalities, $a_i^T x \leq b_i$, $i = 1, \ldots, L$

Problem 1a: find minimum volume ellipsoid $\supseteq \mathcal{P}$

Problem 1b: find maximum volume ellipsoid $\subseteq \mathcal{P}$

are these (computationally) difficult? or easy?

ISIT 02 Lausanne 7/3/02

problem 1a is very difficult

- in practice
- in theory (NP-hard)

problem 1b is very easy

- in practice (readily solved on small computer)
- in theory (polynomial complexity)

Two more problems

find capacity of discrete memoryless channel, subject to constraints on input distribution

Problem 2a: find channel capacity, subject to: no more than 30% of the probability is concentrated on any 10% of the input symbols

Problem 2b: find channel capacity, subject to: at least 30% of the probability is concentrated on 10% of the input symbols

are problems 2a and 2b (computationally) difficult? or easy?

problem 2a is very easy in practice & theory

problem 2b is **very difficult**¹

¹I'm almost sure

Moral

very difficult and very easy problems can look quite similar

. . . unless you're trained to recognize the difference

Outline

- what's new in convex optimization
- some new standard problem classes
- generalized inequalities and semidefinite programming
- interior-point algorithms and complexity analysis

Convex optimization problems

minimize $f_0(x)$ subject to $f_1(x) \le 0, \dots, f_L(x) \le 0, \quad Ax = b$

- $x \in \mathbf{R}^n$ is optimization variable
- $f_i : \mathbf{R}^n \to \mathbf{R}$ are **convex**, *i.e.*, for all $x, y, 0 \le \lambda \le 1$,

$$f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y)$$

examples:

- linear & (convex) quadratic programs
- problem 1b & 2a (if formulated properly)

Convex analysis & optimization

nice properties of convex optimization problems known since 1960s

- local solutions are global
- duality theory, optimality conditions
- simple solution methods like alternating projections

convex analysis well developed by 1970s (Rockafellar)

- separating & supporting hyperplanes
- subgradient calculus

What's new (since 1990 or so)

- powerful primal-dual interior-point methods extremely efficient, handle nonlinear large scale problems
- polynomial-time complexity results for interior-point methods based on self-concordance analysis of Newton's method
- extension to generalized inequalities semidefinite & maxdet programming
- new standard problem classes generalizations of LP, with theory, algorithms, software
- lots of applications control, combinatorial optimization, signal processing, circuit design, . . .

Recent history

- (1984–97) interior-point methods for LP
 - (1984) Karmarkar's interior-point LP method
 - theory (Ye, Renegar, Kojima, Todd, Monteiro, Roos, . . .)
 - practice (Wright, Mehrotra, Vanderbei, Shanno, Lustig, . . .)
- (1988) Nesterov & Nemirovsky's self-concordance analysis
- (1989–) semidefinite programming in control (Boyd, El Ghaoui, Balakrishnan, Feron, Scherer, ...)
- (1990–) semidefinite programming in combinatorial optimization (Alizadeh, Goemans, Williamson, Lovasz & Schrijver, Parrilo, ...)
- (1994) interior-point methods for nonlinear convex problems (Nesterov & Nemirovsky, Overton, Todd, Ye, Sturm, . . .)
- (1997–) robust optimization (Ben Tal, Nemirovsky, El Ghaoui, . . .)

Some new standard (convex) problem classes

- second-order cone programming (SOCP)
- semidefinite programming (SDP), maxdet programming
- (convex form) geometric programming (GP)

for these new problem classes we have

- complete duality theory, similar to LP
- good algorithms, and robust, reliable software
- wide variety of new applications

Second-order cone programming

second-order cone program (SOCP) has form

minimize
$$c_0^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, \dots, m$
 $Fx = g$

• variable is $x \in \mathbf{R}^n$

- includes LP as special case $(A_i = 0, b_i = 0)$, QP $(c_i = 0)$
- nondifferentiable when $A_i x + b_i = 0$
- new IP methods can solve (almost) as fast as LPs

Robust linear programming

robust linear program:

minimize $c^T x$ subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i$

- ellipsoid $\mathcal{E}_i = \{ \overline{a}_i + F_i p \mid ||p||_2 \le 1 \}$ describes uncertainty in constraint vectors a_i
- x must satisfy constraints for all possible values of a_i
- can extend to uncertain $c \& b_i$, correlated uncertainties . . .

Robust LP as SOCP

robust LP is

minimize
$$c^T x$$

subject to $\overline{a}_i^T x + \sup\{(F_i p)^T x \mid ||p||_2 \le 1\} \le b_i$

which is the same as

minimize $c^T x$ subject to $\overline{a}_i^T x + \|F_i^T x\|_2 \le b_i$

- an SOCP (hence, readily solved)
- term $||F_i^T x||_2$ is extra margin required to accommodate uncertainty in a_i

Stochastic robust linear programming

minimize
$$c^T x$$

subject to $\mathbf{Prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$

where $a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$, $\eta \geq 1/2$ (c and b_i are fixed) *i.e.*, each constraint must hold with probability at least η

equivalent to SOCP

minimize $c^T x$ subject to $\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le 1, \quad i = 1, \dots, m$

where Φ is CDF of $\mathcal{N}(0,1)$ random variable

Geometric programming

log-sum-exp function:

$$\mathbf{lse}(x) = \log\left(e^{x_1} + \dots + e^{x_n}\right)$$

... a smooth **convex** approximation of the max function

geometric program (GP), with variable $x \in \mathbf{R}^n$:

minimize
$$\mathbf{lse}(A_0x + b_0)$$

subject to $\mathbf{lse}(A_ix + b_i) \le 0, \quad i = 1, \dots, m$

where $A_i \in \mathbf{R}^{m_i \times n}$, $b_i \in \mathbf{R}^{m_i}$

new IP methods can solve large scale GPs (almost) as fast as LPs

Dual geometric program

dual of geometric program is an unnormalized entropy problem

maximize
$$\sum_{i=0}^{m} \left(b_i^T \nu_i + \operatorname{entr}(\nu_i) \right)$$

subject to
$$\nu_i \succeq 0, \quad i = 0, \dots, m, \quad \mathbf{1}^T \nu_0 = 1,$$

$$\sum_{i=0}^{m} A_i^T \nu_i = 0$$

- dual variables are $\nu_i \in \mathbf{R}^{m_i}$, $i = 0, \dots, m$
- (unnormalized) entropy is

$$\mathbf{entr}(\nu) = -\sum_{i=1}^{n} \nu_i \log \frac{\nu_i}{\mathbf{1}^T \nu}$$

• GP is closely related to problems involving entropy, KL divergence

Example: DMC capacity problem

 $x \in \mathbf{R}^n$ is distribution of input; $y \in \mathbf{R}^m$ is distribution of output $P \in \mathbf{R}^{m \times n}$ gives conditional probabilities: y = Px

primal channel capacity problem:

maximize
$$-c^T x + \operatorname{entr}(y)$$

subject to $x \succeq 0$, $\mathbf{1}^T x = 1$, $y = Px$

where $c_j = -\sum_{i=1}^m p_{ij} \log p_{ij}$

dual channel capacity problem is a simple GP:

 $\begin{array}{ll} \text{minimize} & \mathbf{lse}(u)\\ \text{subject to} & c + P^T u \succeq 0 \end{array}$

Generalized inequalities

with proper convex cone $K \subseteq \mathbf{R}^k$ we associate **generalized inequality**

$$x \preceq_K y \iff y - x \in K$$

convex optimization problem with generalized inequalities:

minimize
$$f_0(x)$$

subject to $f_1(x) \preceq_{K_1} 0, \ldots, f_L(x) \preceq_{K_L} 0, \quad Ax = b$

 $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ are K_i -convex: for all $x, y, 0 \le \lambda \le 1$,

$$f_i(\lambda x + (1-\lambda)y) \preceq_{K_i} \lambda f_i(x) + (1-\lambda)f_i(y)$$

Semidefinite program

semidefinite program (SDP):

minimize $c^T x$ subject to $A_0 + x_1 A_1 + \dots + x_n A_n \leq 0$, Cx = d

- $A_i = A_i^T \in \mathbf{R}^{m \times m}$
- inequality is matrix inequality, i.e., K is positive semidefinite cone
- single constraint, which is affine (hence, matrix convex)

Maxdet problem

extension of SDP: maxdet problem

minimize
$$c^T x - \log \det_+(G_0 + x_1G_1 + \dots + x_mG_m)$$

subject to $A_0 + x_1A_1 + \dots + x_nA_n \leq 0$, $Cx = d$

- $x \in \mathbf{R}^n$ is variable
- $A_i = A_i^T \in \mathbf{R}^{m \times m}$, $G_i = G_i^T \in \mathbf{R}^{p \times p}$

•
$$det_+(Z) = \begin{cases} det Z & \text{if } Z \succ 0 \\ 0 & \text{otherwise} \end{cases}$$

Semidefinite & maxdet programming

- nearly complete duality theory, similar to LP
- interior-point algorithms that are efficient in theory & practice
- applications in many areas:
 - control theory
 - combinatorial optimization & graph theory
 - structural optimization
 - statistics
 - signal processing
 - circuit design
 - geometrical problems
 - algebraic geometry

Chebyshev bounds

generalized Chebyshev inequalities: lower bounds on

 $\operatorname{Prob}(X \in C)$

- $X \in \mathbf{R}^n$ is a random variable with $\mathbf{E} X = a$, $\mathbf{E} X X^T = S$
- C is an open polyhedron $C = \{x \mid a_i^T x < b_i, i = 1, ..., m\}$

cf. classical Chebyshev inequality on ${\boldsymbol{\mathsf{R}}}$

$$\operatorname{Prob}(X < 1) \ge \frac{1}{1 + \sigma^2}$$

if $\mathbf{E} X = 0$, $\mathbf{E} X^2 = \sigma^2$

Chebyshev bounds via SDP

 $\begin{array}{ll} \text{minimize} & 1 - \sum_{i=1}^{m} \lambda_i \\ \text{subject to} & a_i^T z_i \ge b_i \lambda_i, \quad i = 1, \dots, m \\ & \sum_{i=1}^{m} \begin{bmatrix} Z_i & z_i \\ z_i^T & \lambda_i \end{bmatrix} \preceq \begin{bmatrix} S & a \\ a^T & 1 \end{bmatrix} \\ & \begin{bmatrix} Z_i & z_i \\ z_i^T & \lambda_i \end{bmatrix} \succeq 0, \quad i = 1, \dots, m \end{array}$

- an SDP with variables $Z_i = Z_i^T \in \mathbf{R}^{n \times n}$, $z_i \in \mathbf{R}^n$, and $\lambda_i \in \mathbf{R}$
- optimal value is a (sharp) lower bound on $\mathbf{Prob}(X \in C)$
- can construct a distribution with $\mathbf{E} X = a$, $\mathbf{E} X X^T = S$ that attains the lower bound

Detection example

x = s + v

- $x \in \mathbf{R}^n$: received signal
- s: transmitted signal $s \in \{s_1, s_2, \ldots, s_N\}$ (one of N possible symbols)
- v: noise with $\mathbf{E} v = 0$, $\mathbf{E} v v^T = I$ (but otherwise unknown distribution)

detection problem: given observed value of x, estimate s

- detector selects symbol s_k closest to received signal x
- correct detection if $s_k + v$ lies in the Voronoi region around s_k

example: bound on probability of correct detection of s_1 is 0.205

solid circles: distribution with probability of correct detection 0.205

Boolean least-squares

 $x \in \{-1,1\}^n$ is transmitted; we receive y = Ax + v, $v \sim \mathcal{N}(0,I)$

ML estimate of x found by solving **boolean least-squares problem**

minimize
$$||Ax - y||^2$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$

- could check all 2^n possible values of $x \ldots$
- an NP-hard problem
- many heuristics for approximate solution

Boolean least-squares as matrix problem

$$||Ax - y||^2 = x^T A^T A x - 2y^T A^T x + y^T y$$

= $\mathbf{Tr} A^T A X - 2y^T A^T x + y^T y$

where $X = xx^T$

hence can express BLS as

minimize
$$\operatorname{Tr} A^T A X - 2y^T A^T x + y^T y$$

subject to $X_{ii} = 1, \quad X \succeq x x^T, \quad \operatorname{rank}(X) = 1$

... still a very hard problem

SDP relaxation for **BLS**

ignore rank one constraint, and use

$$X \succeq x x^T \iff \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$$

to obtain **SDP relaxation** (with variables X, x)

minimize
$$\operatorname{Tr} A^T A X - 2y^T A^T x + y^T y$$

subject to $X_{ii} = 1, \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$

- optimal value of SDP gives lower bound for BLS
- if optimal matrix is rank one, we're done

Stochastic interpretation and heuristic

- $\bullet\,$ suppose $X,\,x$ are optimal for SDP relaxation
- generate z from normal distribution $\mathcal{N}(x, X xx^T)$
- take $x = \mathbf{sgn}(z)$ as approximate solution of BLS (can repeat many times and take best one)

Interior-point methods

- handle linear and **nonlinear** convex problems (Nesterov & Nemirovsky)
- based on Newton's method applied to 'barrier' functions that trap x in interior of feasible region (hence the name IP)
- worst-case complexity theory: # Newton steps $\sim \sqrt{\text{problem size}}$
- in practice: # Newton steps between 5 & 50 (!)
- 1000s variables, 10000s constraints feasible on PC; far larger if structure is exploited

Log barrier

for convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$

we define logarithmic barrier as

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$$

- ϕ is convex, smooth on interior of feasible set
- $\phi \to \infty$ as x approaches boundary of feasible set

Central path

central path is curve

$$x^{\star}(t) = \operatorname*{argmin}_{x} \left(tf_0(x) + \phi(x) \right), \qquad t \ge 0$$

- $x^{\star}(t)$ is strictly feasible, *i.e.*, $f_i(x) < 0$
- $x^{\star}(t)$ can be computed by, *e.g.*, Newton's method
- intuition suggests $x^{\star}(t)$ converges to optimal as $t \to \infty$
- using duality can prove $x^{\star}(t)$ is m/t-suboptimal

Example: central path for LP

$$x^{\star}(t) = \operatorname{argmin}_{x} \left(tc^{T}x - \sum_{i=1}^{6} \log(b_{i} - a_{i}^{T}x) \right)$$

Barrier method

a.k.a. path-following method

```
given strictly feasible x, t > 0, \mu > 1

repeat

1. compute x := x^*(t)

(using Newton's method, starting from x)

2. exit if m/t < tol

3. t := \mu t
```

duality gap reduced by μ each outer iteration

Trade-off in choice of $\boldsymbol{\mu}$

large μ means

- fast duality gap reduction (fewer outer iterations), but
- many Newton steps to compute $x^*(t^+)$ (more Newton steps per outer iteration)

total effort measured by total number of Newton steps

Typical example

GP with n = 50 variables, m = 100 constraints, $m_i = 5$

- wide range of μ works well
- very typical behavior (even for large *m*, *n*)

barrier method works well for μ in large range

Typical effort versus problem dimensions

- LPs with n = 2m vbles, m constraints
- 100 instances for each of 20 problem sizes
- avg & std dev shown

Other interior-point methods

more sophisticated IP algorithms

- primal-dual, incomplete centering, infeasible start
- use same ideas, *e.g.*, central path, log barrier
- readily available (commercial and noncommercial packages)

typical performance: 10 - 50 Newton steps (!)

- over wide range of problem dimensions, problem type, and problem data

Complexity analysis of Newton's method

- classical result: if |f'''| small, Newton's method converges fast
- classical analysis is local, and coordinate dependent
- need analysis that is global, and, like Newton's method, coordinate invariant

Self-concordance

self-concordant function f (Nesterov & Nemirovsky, 1988): when restricted to any line,

 $|f'''(t)| \le 2f''(t)^{3/2}$

- $f \ SC \iff \tilde{f}(z) = f(Tz) \ SC$, for T nonsingular (*i.e.*, SC is coordinate invariant)
- a large number of common convex functions are SC

$$x \log x - \log x$$
, $\log \det X^{-1}$, $-\log(y^2 - x^T x)$, ...

Complexity analysis of Newton's method for self-concordant functions

for self-concordant function f, with minimum value f^* ,

• **theorem:** #Newton steps to minimize f, starting from x:

$$\#\mathsf{steps} \le 11(f(x) - f^\star) + 5$$

• empirically: #steps $\approx 0.6(f(x) - f^{\star}) + 5$

note absence of unknown constants, problem dimension, etc.

Complexity of path-following algorithm

• to compute $x^*(\mu t)$ starting from $x^*(t)$,

$$\#\mathsf{steps} \le 11m(\mu - 1 - \log \mu) + 5$$

using N&N's self-concordance theory, duality to bound f^{\star}

- number of outer steps to reduce duality gap by factor α : $\lceil \log \alpha / \log \mu \rceil$
- total number of Newton steps bounded by product,

$$\left\lceil \frac{\log \alpha}{\log \mu} \right\rceil \left(11m(\mu - 1 - \log \mu) + 5 \right)$$

. . . captures trade-off in choice of μ

Complexity analysis conclusions

- for any choice of μ , #steps is $O(m \log 1/\epsilon)$, where ϵ is final accuracy
- to optimize complexity bound, can take $\mu=1+1/\sqrt{m},$ which yields #steps $O(\sqrt{m}\log 1/\epsilon)$
- in any case, IP methods work extremely well in practice

Conclusions

since 1985, lots of advances in theory & practice of convex optimization

- complexity analysis
- semidefinite programming, other new problem classes
- efficient interior-point methods & software
- lots of applications

Some references

- Semidefinite Programming, SIAM Review 1996
- Determinant Maximization with Linear Matrix Inequality Constraints, SIMAX 1998
- Applications of Second-order Cone Programming, LAA 1999
- Linear Matrix Inequalities in System and Control Theory, SIAM 1994
- Interior-point Polynomial Algorithms in Convex Programming, SIAM 1994, Nesterov & Nemirovsky
- Lectures on Modern Convex Optimization, SIAM 2001, Ben Tal & Nemirovsky

Shameless promotion

Convex Optimization, Boyd & Vandenberghe

- to be published 2003
- pretty good draft available at Stanford EE364 (UCLA EE236B) class web site as course reader