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Two problems

polytope P described by linear inequalities, aT
i x ≤ bi, i = 1, . . . , L

a1

P

Problem 1a: find minimum volume ellipsoid ⊇ P

Problem 1b: find maximum volume ellipsoid ⊆ P

are these (computationally) difficult? or easy?
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problem 1a is very difficult

• in practice

• in theory (NP-hard)

problem 1b is very easy

• in practice (readily solved on small computer)

• in theory (polynomial complexity)
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Two more problems

find capacity of discrete memoryless channel, subject to constraints on
input distribution

Problem 2a: find channel capacity, subject to:
no more than 30% of the probability is concentrated on any 10% of the
input symbols

Problem 2b: find channel capacity, subject to:
at least 30% of the probability is concentrated on 10% of the input symbols

are problems 2a and 2b (computationally) difficult? or easy?
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problem 2a is very easy in practice & theory

problem 2b is very difficult1

1I’m almost sure
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Moral

very difficult and very easy problems can look quite similar

. . . unless you’re trained to recognize the difference
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Outline

• what’s new in convex optimization

• some new standard problem classes

• generalized inequalities and semidefinite programming

• interior-point algorithms and complexity analysis
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Convex optimization problems

minimize f0(x)

subject to f1(x) ≤ 0, . . . , fL(x) ≤ 0, Ax = b

• x ∈ Rn is optimization variable

• fi : Rn → R are convex, i.e., for all x, y, 0 ≤ λ ≤ 1,

fi(λx + (1 − λ)y) ≤ λfi(x) + (1 − λ)fi(y)

examples:

• linear & (convex) quadratic programs

• problem 1b & 2a (if formulated properly)
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Convex analysis & optimization

nice properties of convex optimization problems known since 1960s

• local solutions are global

• duality theory, optimality conditions

• simple solution methods like alternating projections

convex analysis well developed by 1970s (Rockafellar)

• separating & supporting hyperplanes

• subgradient calculus
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What’s new (since 1990 or so)

• powerful primal-dual interior-point methods
extremely efficient, handle nonlinear large scale problems

• polynomial-time complexity results for interior-point methods
based on self-concordance analysis of Newton’s method

• extension to generalized inequalities
semidefinite & maxdet programming

• new standard problem classes
generalizations of LP, with theory, algorithms, software

• lots of applications
control, combinatorial optimization, signal processing,
circuit design, . . .
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Recent history

• (1984–97) interior-point methods for LP

– (1984) Karmarkar’s interior-point LP method
– theory (Ye, Renegar, Kojima, Todd, Monteiro, Roos, . . . )
– practice (Wright, Mehrotra, Vanderbei, Shanno, Lustig, . . . )

• (1988) Nesterov & Nemirovsky’s self-concordance analysis

• (1989–) semidefinite programming in control
(Boyd, El Ghaoui, Balakrishnan, Feron, Scherer, . . . )

• (1990–) semidefinite programming in combinatorial optimization
(Alizadeh, Goemans, Williamson, Lovasz & Schrijver, Parrilo, . . . )

• (1994) interior-point methods for nonlinear convex problems
(Nesterov & Nemirovsky, Overton, Todd, Ye, Sturm, . . . )

• (1997–) robust optimization (Ben Tal, Nemirovsky, El Ghaoui, . . . )
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Some new standard (convex) problem classes

• second-order cone programming (SOCP)

• semidefinite programming (SDP), maxdet programming

• (convex form) geometric programming (GP)

for these new problem classes we have

• complete duality theory, similar to LP

• good algorithms, and robust, reliable software

• wide variety of new applications
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Second-order cone programming

second-order cone program (SOCP) has form

minimize cT
0 x

subject to ‖Aix + bi‖2 ≤ cT
i x + di, i = 1, . . . , m

Fx = g

• variable is x ∈ Rn

• includes LP as special case (Ai = 0, bi = 0), QP (ci = 0)

• nondifferentiable when Aix + bi = 0

• new IP methods can solve (almost) as fast as LPs
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Robust linear programming

robust linear program:

minimize cTx

subject to aT
i x ≤ bi for all ai ∈ Ei

• ellipsoid Ei = { ai + Fip | ‖p‖2 ≤ 1 } describes uncertainty in
constraint vectors ai

• x must satisfy constraints for all possible values of ai

• can extend to uncertain c & bi, correlated uncertainties . . .
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Robust LP as SOCP

robust LP is

minimize cTx

subject to aT
i x + sup{(Fip)Tx | ‖p‖2 ≤ 1} ≤ bi

which is the same as

minimize cTx

subject to aT
i x + ‖FT

i x‖2 ≤ bi

• an SOCP (hence, readily solved)

• term ‖FT
i x‖2 is extra margin required to accommodate uncertainty in ai
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Stochastic robust linear programming

minimize cTx

subject to Prob(aT
i x ≤ bi) ≥ η, i = 1, . . . ,m

where ai ∼ N (āi,Σi), η ≥ 1/2 (c and bi are fixed)
i.e., each constraint must hold with probability at least η

equivalent to SOCP

minimize cTx

subject to āT
i x + Φ−1(η)‖Σ1/2

i x‖2 ≤ 1, i = 1, . . . ,m

where Φ is CDF of N (0, 1) random variable
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Geometric programming

log-sum-exp function:

lse(x) = log (ex1 + · · · + exn)

. . . a smooth convex approximation of the max function

geometric program (GP), with variable x ∈ Rn:

minimize lse(A0x + b0)
subject to lse(Aix + bi) ≤ 0, i = 1, . . . ,m

where Ai ∈ Rmi×n, bi ∈ Rmi

new IP methods can solve large scale GPs (almost) as fast as LPs
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Dual geometric program

dual of geometric program is an unnormalized entropy problem

maximize
∑m

i=0

(
bT
i νi + entr(νi)

)
subject to νi � 0, i = 0, . . . ,m, 1Tν0 = 1,∑m

i=0 AT
i νi = 0

• dual variables are νi ∈ Rmi, i = 0, . . . , m

• (unnormalized) entropy is

entr(ν) = −
n∑

i=1

νi log
νi

1Tν

• GP is closely related to problems involving entropy, KL divergence
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Example: DMC capacity problem

x ∈ Rn is distribution of input; y ∈ Rm is distribution of output
P ∈ Rm×n gives conditional probabilities: y = Px

primal channel capacity problem:

maximize −cTx + entr(y)

subject to x � 0, 1Tx = 1, y = Px

where cj = −∑m
i=1 pij log pij

dual channel capacity problem is a simple GP:

minimize lse(u)

subject to c + P Tu � 0
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Generalized inequalities

with proper convex cone K ⊆ Rk we associate generalized inequality

x �K y ⇐⇒ y − x ∈ K

convex optimization problem with generalized inequalities:

minimize f0(x)

subject to f1(x) �K1 0, . . . , fL(x) �KL
0, Ax = b

fi : Rn → Rki are Ki-convex: for all x, y, 0 ≤ λ ≤ 1,

fi(λx + (1 − λ)y) �Ki
λfi(x) + (1 − λ)fi(y)
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Semidefinite program

semidefinite program (SDP):

minimize cTx

subject to A0 + x1A1 + · · · + xnAn � 0, Cx = d

• Ai = AT
i ∈ Rm×m

• inequality is matrix inequality, i.e., K is positive semidefinite cone

• single constraint, which is affine (hence, matrix convex)
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Maxdet problem

extension of SDP: maxdet problem

minimize cTx − log det+(G0 + x1G1 + · · · + xmGm)
subject to A0 + x1A1 + · · · + xnAn � 0, Cx = d

• x ∈ Rn is variable

• Ai = AT
i ∈ Rm×m, Gi = GT

i ∈ Rp×p

• det+(Z) =
{

detZ if Z � 0
0 otherwise
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Semidefinite & maxdet programming

• nearly complete duality theory, similar to LP

• interior-point algorithms that are efficient in theory & practice

• applications in many areas:

– control theory
– combinatorial optimization & graph theory
– structural optimization
– statistics
– signal processing
– circuit design
– geometrical problems
– algebraic geometry
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Chebyshev bounds

generalized Chebyshev inequalities: lower bounds on

Prob(X ∈ C)

• X ∈ Rn is a random variable with EX = a, EXXT = S

• C is an open polyhedron C = {x | aT
i x < bi, i = 1, . . . ,m}

cf. classical Chebyshev inequality on R

Prob(X < 1) ≥ 1
1 + σ2

if EX = 0, EX2 = σ2
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Chebyshev bounds via SDP

minimize 1 − ∑m
i=1 λi

subject to aT
i zi ≥ biλi, i = 1, . . . ,m

∑m
i=1

[
Zi zi

zT
i λi

]
�

[
S a
aT 1

]
[

Zi zi

zT
i λi

]
� 0, i = 1, . . . , m

• an SDP with variables Zi = ZT
i ∈ Rn×n, zi ∈ Rn, and λi ∈ R

• optimal value is a (sharp) lower bound on Prob(X ∈ C)

• can construct a distribution with EX = a, EXXT = S that attains
the lower bound
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Detection example

x = s + v

• x ∈ Rn: received signal

• s: transmitted signal s ∈ {s1, s2, . . . , sN} (one of N possible symbols)

• v: noise with E v = 0, E vvT = I (but otherwise unknown distribution)

detection problem: given observed value of x, estimate s
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example (n = 2, N = 7)

s1

s2

s3

s4

s5
s6

s7

• detector selects symbol sk closest to received signal x

• correct detection if sk + v lies in the Voronoi region around sk
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example: bound on probability of correct detection of s1 is 0.205

s1

s2

s3

s4

s5
s6

s7

solid circles: distribution with probability of correct detection 0.205
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Boolean least-squares

x ∈ {−1, 1}n is transmitted; we receive y = Ax + v, v ∼ N (0, I)

ML estimate of x found by solving boolean least-squares problem

minimize ‖Ax − y‖2

subject to x2
i = 1, i = 1, . . . , n

• could check all 2n possible values of x . . .

• an NP-hard problem

• many heuristics for approximate solution
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Boolean least-squares as matrix problem

‖Ax − y‖2 = xTATAx − 2yTATx + yTy

= TrATAX − 2yTATx + yTy

where X = xxT

hence can express BLS as

minimize TrATAX − 2yTATx + yTy
subject to Xii = 1, X � xxT , rank(X) = 1

. . . still a very hard problem
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SDP relaxation for BLS

ignore rank one constraint, and use

X � xxT ⇐⇒
[

X x
xT 1

]
� 0

to obtain SDP relaxation (with variables X , x)

minimize TrATAX − 2yTATx + yTy

subject to Xii = 1,
[

X x
xT 1

]
� 0

• optimal value of SDP gives lower bound for BLS

• if optimal matrix is rank one, we’re done
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Stochastic interpretation and heuristic

• suppose X , x are optimal for SDP relaxation

• generate z from normal distribution N (x, X − xxT )

• take x = sgn(z) as approximate solution of BLS
(can repeat many times and take best one)
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Interior-point methods

• handle linear and nonlinear convex problems (Nesterov & Nemirovsky)

• based on Newton’s method applied to ‘barrier’ functions that trap x in
interior of feasible region (hence the name IP)

• worst-case complexity theory: # Newton steps ∼ √
problem size

• in practice: # Newton steps between 5 & 50 (!)

• 1000s variables, 10000s constraints feasible on PC; far larger if structure
is exploited
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Log barrier

for convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

we define logarithmic barrier as

φ(x) = −
m∑

i=1

log(−fi(x))

• φ is convex, smooth on interior of feasible set

• φ → ∞ as x approaches boundary of feasible set
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Central path

central path is curve

x?(t) = argmin
x

(tf0(x) + φ(x)) , t ≥ 0

• x?(t) is strictly feasible, i.e., fi(x) < 0

• x?(t) can be computed by, e.g., Newton’s method

• intuition suggests x?(t) converges to optimal as t → ∞
• using duality can prove x?(t) is m/t-suboptimal
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Example: central path for LP

x?(t) = argminx

(
tcTx − ∑6

i=1 log(bi − aT
i x)

)

c

x?(0)

xopt x?(10)
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Barrier method

a.k.a. path-following method

given strictly feasible x, t > 0, µ > 1

repeat

1. compute x := x?(t)

(using Newton’s method, starting from x)

2. exit if m/t < tol

3. t := µt

duality gap reduced by µ each outer iteration
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Trade-off in choice of µ

large µ means

• fast duality gap reduction (fewer outer iterations), but

• many Newton steps to compute x?(t+)
(more Newton steps per outer iteration)

total effort measured by total number of Newton steps
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Typical example

GP with n = 50 variables,
m = 100 constraints, mi = 5

• wide range of µ works well

• very typical behavior
(even for large m, n)
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Effect of µ
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barrier method works well for µ in large range
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Typical effort versus problem dimensions

• LPs with n = 2m vbles, m
constraints

• 100 instances for each of
20 problem sizes

• avg & std dev shown
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Other interior-point methods

more sophisticated IP algorithms

• primal-dual, incomplete centering, infeasible start

• use same ideas, e.g., central path, log barrier

• readily available (commercial and noncommercial packages)

typical performance: 10 – 50 Newton steps (!)
— over wide range of problem dimensions, problem type, and problem data
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Complexity analysis of Newton’s method

• classical result: if |f ′′′| small, Newton’s method converges fast

• classical analysis is local, and coordinate dependent

• need analysis that is global, and, like Newton’s method, coordinate
invariant
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Self-concordance

self-concordant function f (Nesterov & Nemirovsky, 1988): when
restricted to any line,

|f ′′′(t)| ≤ 2f ′′(t)3/2

• f SC ⇐⇒ f̃(z) = f(Tz) SC, for T nonsingular
(i.e., SC is coordinate invariant)

• a large number of common convex functions are SC

x log x − log x, log detX−1, − log(y2 − xTx), . . .
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Complexity analysis of Newton’s method for

self-concordant functions

for self-concordant function f , with minimum value f?,

• theorem: #Newton steps to minimize f , starting from x:

#steps ≤ 11(f(x) − f?) + 5

• empirically: #steps ≈ 0.6(f(x) − f?) + 5

note absence of unknown constants, problem dimension, etc.
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Complexity of path-following algorithm

• to compute x?(µt) starting from x?(t),

#steps ≤ 11m(µ − 1 − log µ) + 5

using N&N’s self-concordance theory, duality to bound f?

• number of outer steps to reduce duality gap by factor α: dlog α/ log µe

• total number of Newton steps bounded by product,

⌈
log α

log µ

⌉
(11m(µ − 1 − log µ) + 5)

. . . captures trade-off in choice of µ

ISIT 02 Lausanne 7/3/02 46



Complexity analysis conclusions

• for any choice of µ, #steps is O(m log 1/ε), where ε is final accuracy

• to optimize complexity bound, can take µ = 1 + 1/
√

m, which yields
#steps O(

√
m log 1/ε)

• in any case, IP methods work extremely well in practice
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Conclusions

since 1985, lots of advances in theory & practice of convex optimization

• complexity analysis

• semidefinite programming, other new problem classes

• efficient interior-point methods & software

• lots of applications
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Shameless promotion

Convex Optimization, Boyd & Vandenberghe

• to be published 2003

• pretty good draft available at Stanford EE364 (UCLA EE236B) class
web site as course reader
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