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Abstract: The inverse design of a three-dimensional nanophotonic
resonator is presented. The design methodology is computationally fast (10
minutes on a standard desktop workstation) and utilizes a 2.5-dimensional
approximation of the full three-dimensional structure. As an example, we
employ the proposed method to design a resonator which exhibits a mode
volume of 0.32(1 /n)® and a quality factor of 7063.
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1. Motivation

To date, the design of nanophotonic devices has generally involved a lengthy (days, weeks)
process in which one perturbs, by trial-and-error, canonical structures such as photonic crystals
or waveguide-coupled rings to achieve the desired performance for the device.

Instead, an inverse design method in which the user only specifies the desired electromag-
netic field, or characteristics thereof, and then leaves the computer to find a dielectric structure
satisfying these requirements, would be a much more intuitive and computationally efficient
design strategy. Furthermore, such a method may even be the only feasible option available
for the design of more complex multi-wavelength and multi-functional nanophotonic devices
needed for on-chip integration [1].
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2. 2.5-dimensional approximation

Previously, we demonstrated the inverse design of various nanophotonic devices in two dimen-
sions [2]. Unfortunately, to directly extend our previous method to full three-dimensional space
requires solving for a very large (~ 107 x 107) and ill-conditioned matrix, namely that given by
the time-harmonic Maxwell’s equation in three dimensions, which for the electric (E) field is

VxVxE—puw?cE =0, where 1)
E=E(XVY.2). )

Therefore, to make our problem more tractable, we formulate a 2.5-dimensional approxi-
mation of the electromagnetic fields of a planar three-dimensional nanophotonic device. As
shown in Fig. 1(a), this involves treating a planar three-dimensional nanophotonic device as a
truncated holey fiber with identical dielectric structure. We take advantage of the planar nature
of most nanophotonic devices in this way to produce a tractable, computationally-fast method.
The E-field inside such a holey fiber is expressed as

E=E(xye #? ©))

where f is the wave-vector along the fiber axis. Solving for Eq. (1) now requires solving for a
much smaller (~ 10° x 10°) matrix, which can be accomplished using standard linear algebra
packages. This simulation technique is thus very similar to a two-dimensional finite-difference
frequency-domain solver.

As an example, in Fig. 1(b), we compare the 2.5-dimensional electric field against the three-
dimensional simulated electric field (at the central plane of the slab), given by a standard finite-
difference time-domain (FDTD) software package, for an L3 photonic crystal resonator. We
see that with the appropriate choice of §, which we obtain by fitting a sinusoid to the out-of-
plane decay in the three-dimensional FDTD solution, our approximation captures most of the
characteristics of the three-dimensional field at the center plane of the slab.
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Fig. 1. () For computational feasibility, the resonant fields of a planar nanophotonic device
are approximated as those of a truncated holey fiber with identical dielectric structure. (b)
An example of our approximation using an L3 photonic crystal resonator. Most of the
characteristics of the full three-dimensional field at the center of the slab appear in the
approximate solution.

In this approximation, converting from a 2.5-dimensional structure to a full three-
dimensional structure only requires the correct choice of slab thickness, t, since the in-plane
values of € remain the same. To estimate t for the full three-dimensional device, we treat the
resonant mode as a guided mode in a slab waveguide surrounded by a cladding of n= 1. The ex-
pression fort is then the thickness of the slab for the lowest-order TE mode of a slab waveguide
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with effective refractive index neg [3]:

t= 5 tan~! %, where 4)
W\ 2

o= k)%—(z), and ®)
Neff O\ 2

o=/ (702" 2. ®)

Here, o is the wave-vector which determines the evanescent decay of the slab waveguide mode
into air, while ky is an approximated in-plane k-vector. To determine neg, the effective refractive
index, we use the following approximation,

l€E?|
Neff = . 7

In the above formulation and for the remainder of the manuscript, the norm (|| - ||) refers to the
2-norm over the entire grid and is equivalent to the spatial integral (|- [>dr)/2.

3. Inversedesign method
3.1. Original formulation

In our inverse design method, one proceeds by specifying either the resulting field or its charac-
teristics and then computing a structure which will produce such a field. In this work, we chose
to specify the desired field characteristics, namely, small mode-volume and large quality factor.
The inverse design problem can then be formulated as,

N eE?
minimize max{sl!z} 8)
subjectto VxV xE— puw’cE=0 9)
V-eE=0 (10)
FTIightcone{E} =0, (11)
€ = { &air, Esilicon } (12)

where € and E are the permittivity and electric vector field respectively, defined within the
2.5-dimensional approximation and discretized along a standard Yee grid [4] with periodic
boundary conditions. € was constrained to be isotropic by only varying &; in each cell, and then
determining &x and &y via spatial interpolation. FT is the two-dimensional Fourier transform.

In this formulation, the minimization objective (Eqg. (8)) is the mode volume, which we desire
to be as small as possible. Similarily, Eq. (11) is a constraint on the electric field to produce
a large quality factor by forbidding the existence of any Fourier components within the light
cone. Egs. (9) and (10) are physical constraints that € and E must satisfy, that is, the wave
equation for the 2.5-dimensional fiber mode and the transversality condition. Lastly, Eq. (12) is
a binary constraint on epsilon, denoting that we only want the structure to be composed of air
or silicon.

Although our 2.5-dimensional approximation has reduced the size and complexity of the
matrices found in the above formulation, the form of the problem in Eq. (8)—(12) is actually
incredibly difficult to solve, if for no other reason that Eq. (8), (9), and (12) are non-convex [5]
for joint minimization on both € and E. To make matters worse, the binary constraint in Eq. (12)
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generally results in a problem which is NP-hard [5]. For these reasons, our strategy is to employ
an alternating directions scheme [6], in which we break Eq. (8)—(12) into two separate, tractable
sub-problems which we then solve iteratively.

3.2. Alternating directions: field optimization sub-problem

The first sub-problem in the alternating directions scheme involves optimizing E while holding
€ constant,

mmphe|WxVfoyw%EW+MM§H (13)
V-eE=0 (15)
FTIightcone{E} =0, (16)

which is a quadratic problem with linear equality constraints, and is easily solved using a stan-
dard factor-solve method for sparse matrices [7].

In this sub-problem, the most significant modification to the original formulation in Eq. (8)—
(12) is that the constraint in Eq. (9) has been relaxed and moved into the minimization objective
(Eq. (13)). We will denote this term (||V x V x E — uw?€E|) as the physics residual.

At the same time, the term for the mode volume from Eg. (8) has also been modified in
Eq. (13). We denote this term (||eE?||) as the design objective. Note that although the denom-
inator in the original formulation has been removed in order to make the term convex, the
present formulation is still equivalent because we fix the E-field in the center of the structure
(Eq. (14)), where we want the maximum to occur. Also note that the constraint in Eq. (14) is
crucial in order to avoid the trivial solution E = 0.

Lastly, the n coefficient in Eq. (13) allows us to trade-off between the physics residual and
the design objective. Thus, in order to achieve a small mode volume, the initial value of n
is large and is subsequently exponentially reduced once per iteration at all points in the grid
in order to bring the physics residual to 0. Furthermore, 1 can also be given a non-constant
spatial weighting in order to reduce in-plane losses; this strategy was implemented in the results
presented here.

3.3. Alternating directions: structure optimization sub-problem

The second sub-problem in the alternating directions scheme involves optimizing € while hold-
ing E constant,

minimize ||V x V x E — po?¢E|| (17)
€
subjectto  &;jr < € < &silicon, (18)

which is a quadratic problem with linear inequality constraints and is solved using CVX [8], a
convex optimization package for Matlab.

As in the field optimization sub-problem, the physics residual has been relaxed and placed
in the minimization objective (Eq. (17)). However, we have chosen not to include the design
objective term (mode volume). This modification was implemented as a heurestic that seemed
to improve the aesthetic quality of the resulting structure.

The second major modification from the original formulation is found in the constraint in
Eqg. (18). Since the combinatorial problem given by the original constraint in Eq. (11) proved
to be intractable, the constraint on the values of € is relaxed to allow for any value in the range
from &r 10 &silicon- The sub-problem is now relatively straightforward to solve, although it is
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very unlikely that one obtains a completely binary structure. In practice various digitization
schemes can be implemented [9]; however, such schemes were not needed here since a nearly
binary structure was produced fortuitously.

4, Result

Using the formulations for the field optimization and structure optimization sub-problems pre-
sented above, along with our 2.5-dimensional approximation, the inverse design of a planar
three-dimensional nanophotonic device is performed.

In order to do so, the frequency, @ = 0.16c/Ax, and the out-of-plane wave vector, =
0.24(Ax)~1, are chosen by the user. Here, Ax is the grid spacing and c is the speed of light
in vacuum. Lastly, an initial dielectric structure consisting entirely of silion, € = &sjjicon €Very-
where on a 160 x 160 grid, is used as a starting point—although other initial structures (e. g. air
everywhere or random ¢€) yield nearly identical structures in this case.

Having already determined the desired characteristics of our resonator (small mode-volume
and large quality factor) in the formulation of the two sub-problems, the inverse design proceeds
by alternately solving the field optimization and then the structure optimization sub-problems.
That is to say, in every iteration of the algorithm, E is updated to be the solution of Eq. (13)-(16)
and is then plugged into Eq. (17)—(18), the solution of which becomes the updated value of €.
The subsequent iteration then uses the updated € variable to re-optimize E once again. And the
algorithm continues to proceed in this way until the physics residual (||V x V x E — uw?cE||)
is reduced to an acceptable value.

|

12.25 -

relative permittivity
(‘n -e) opnyruSew pRy

: y
1 4 <LZ—X target 2.5D Ey field 1

Fig. 2. The (a) dielectric structure, €, and (b) target field, E (Ey shown only), produced after
75 iterations (10 minutes) on a 160 x 160 grid. The resulting € is almost completely binary,
and relatively smooth (Media 1).

Figures 2(a) and 2(b) are the resulting values of € and E (Ey shown only), respectively, after
75 iterations of our inverse design method. The entire inverse design process takes only 10
minutes on a standard desktop computer for the 160 x 160 grid. An animation of the values of
€ and Ey at each iteration of the algorithm is included in the supplementary material.

The values of the physics residual and the design objective (mode volume) at each iteration
are shown in Fig. 3. Most importantly, we see that the physics residual seems to converge
linearly, indicating that the algorithm is reasonably efficient. The primary factor in determining
this rate of convergence is the exponential decrease in 1 (Eq. (13)), since as 1 decreases,
increasing emphasis is placed on minimizing the physics residual in the field sub-problem.
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Fig. 3. Value of the physics residual (blue) and design objective, or mode volume, (red) at
each iteration. The physics residual seems to exhibit linear convergence, while the mode
volume quickly saturates after roughly 25 iterations.

5. Verification

5.1. Accuracy

To evaluate the accuracy of the inverse design method, we compared the field resulting from
the iterations (target field) with the actual field of the resulting structure solved by the 2.5-
dimensional approximation (2.5D fiber mode) as well as the field of a full three-dimensional
FDTD simulation of the resulting structure (full 3D field), as shown in Figs. 4 and 5.

As detailed above, the thickness of the corresponding three-dimensional structure is deter-
mined by Eqg. (4), which yielded a value of 8.16Ax. However, a small sampling of thicknesses
in that vicinity resulted in a more accurate thickness of 8.5Ax, which matched the resonant
frequency of the target field and 2.5-dimensional fiber mode.
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Fig. 4. Comparison (Ey) of (a) the target field from the inverse design method (from Fig. 2),
(b) the actual 2.5-dimensional fiber mode, and (c) the field from the full three-dimensional
FDTD simulation. The target field matches well with the full three-dimensional field.

Figure 4 plots the E, component of the target field, 2.5-dimensional fiber mode and the full
three-dimensional FDTD field side-by-side. Figure 5 plots the horizontal cross sections of the
magnitudes of the fields on a logarithmic scale. We see that the target field and fiber mode
match very well, while there is significantly more discrepancy between the target field and the
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Fig. 5. Comparison of the cross sections of the Ey field along the x-axis from the target
field (blue), the actual 2.5-dimensional fiber mode (green), and the field from the full three-
dimensional FDTD simulation (red). There is some discrepancy between the target field
and the full three-dimensional field, but even that is confined to the edges and is only on
the order of ~ 1% of the maximum field amplitude.

full three-dimensional field. This is expected with the use of our approximation; however, the
error is still relatively small (below 1% of the maximum field strength) and confined mostly to
the edges of the structure.

5.2. Performance

The fields from the full three-dimensional FDTD simulation were used to evaluate the perfor-
mance of the device. The resulting mode volume was 0.32(A/n)* and the total quality factor
was 7063. The radiative (out-of-plane) quality factor was 8808 and the in-plane quality factor
was 35648.

Figure 6 shows the Fourier transforms of the target, fiber and three-dimensional E, fields
taken at the center of the slab. Although there are virtually no field components in the light
cone in the case of the target and fiber fields, additional components are present in the full
three-dimensional case. This explains why even when leaky radiative components were strictly
disallowed in the field optimization sub-problem, the error in the 2.5-dimensional approxima-
tion unavoidably introduces some leaky components in the case of the actual three-dimensional

structure.
light
cone
2—x  target 2.5D Ey field * Actual 2.5D fiber mode © full 3D simulated field

Fig. 6. Comparison of the Fourier transforms of the Ey fields of the (a) the target field from
the inverse design method, (b) the actual 2.5-dimensional fiber mode, and (c) the field from
the full three-dimensional FDTD simulation. The error in our approximation introduces
some small additional Fourier components into the light cone.
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Finally, note that the only the Ey field is shown because it is the dominant field component
and contributes most heavily to the out-of-plane leakage [10]. Specifically, the E, component
dominates because the symmetry of the structure dictates that it will contain a non-zero DC
component (central component in the light cone), unlike the Ex and E; components.

6. Conclusion

In summary, by using a 2.5-dimension approximation, we demonstrate the inverse design of
a three-dimensional nanophotonic resonator. Further development of our method includes ap-
plying our inverse method to design three-dimensional devices which support multiple fields at
different frequencies. This includes resonant devices such as a multi-wavelength cavity, as well
as waveguiding devices such as N-port couplers, multiplexers, and grating couplers.
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