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Abstract

The technique of semidefinite programming (SDP) relaxation can be used to obtain
a nontrivial bound on the optimal value of a nonconvex quadratically constrained
quadratic program (QCQP). We explore concave quadratic inequalities that hold for
any vector in the integer lattice Z™, and show that adding these inequalities to a
mixed-integer nonconvex QCQP can improve the SDP-based bound on the optimal
value. This scheme is tested using several numerical problem instances of the max-cut
problem and the integer least squares problem.

1 Introduction

We consider mixed-integer indefinite quadratic optimization problems of the form

minimize  fo(z) = 2T Pyx + ¢l + 1o

subject to  fi(x) =2 Pax+q¢lx+r, <0, i=1,....m (1)
r €S,
with variable + € R", where S = {2 |z1,...,2, € Z} is the mized-integer set, i.e., the set

of real-valued vectors whose first p components are integer-valued. The problem data are
P, e S" ¢ € R", and r; € R. Here, S" denotes the set of n x n real-valued, symmetric,
possibly indefinite, matrices. Quadratic equality constraints of the form 27 Fx + ¢ a+h =0
can also be handled by expressing them as two inequalities,

tTFr+gte+h<0, —alFr—g¢'z—h<0.

The class of problems that can be written in the form of (1) is very broad; it includes
other problem classes such as mixed-integer linear programs (MILPs) and mixed-integer
quadratic programs (MIQPs). Discrete constraints such as Boolean variables can be easily
encoded as well, which makes many NP-hard combinatorial optimization problems special
cases of (1). For example, 7 = 1 encodes the Boolean constraint that z; is either +1 or
—1. The max-cut problem is a well-known NP-hard problem with Boolean constraints only,
which can be formulated as the following:

maximize —(1/4)a" Wz + (1/4)17TW1 = (1/2)3
subject to 2? =1, i=1,...,n.

i<j Wii(1 — i)

(2)
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Here, 1 represents a vector with all components equal to one. The matrix W &€ S" stores
the weights of the edges in the graph: W;; is the weight of the edge between node 7 and j.
Other combinatorial problems in the form of (1) include the maximum clique problem, graph
bisection problem, and satisfiability problem (SAT). In fact, any problem that is known to
be an instance of the quadratic assignment problem (QAP) fits into our framework [KB57].
Since (1) is an integer problem at its root, classical number theoretic problems such as
linear and quadratic Diophantine equations are also special cases of mixed-integer indefinite
QCQP [Naghl, §6]. The integer least squares problem is another simple example of an
integer quadratic problem:
minimize ||Ax — b3
subject to = € Z",

(3)

with variable x and data A € R™" and b € R". The integer least squares problem captures
the essence of the phase ambiguity estimation problem arising in the global positioning
systems (GPS) [HB9S].

There are other interesting constraints that can be encoded in problems of the form (1).
For example, the rank constraint Rank(X) < k can be handled by introducing auxiliary
matrix variables U and V' of appropriate dimensions, and adding a constraint X = UV.
Constraints involving the Euclidean distance between two points are encoded naturally as
well. The sphere packing problem [CS13] and its variants are examples of problems involving
(nonconvex) distance constraints.

Generic methods such as branch-and-bound [LD60] or branch-and-cut [PR91] can be used
to solve (1) globally, but they all have an exponential time complexity. A more practical
approach is to find an approximate solution, or to compute lower and upper bounds on the
optimal value. The focus of this paper is on attaining a lower bound on the optimal value
of (1) by forming a semidefinite relaxation that is solvable in polynomial time. Semidefi-
nite programming (SDP) is a generalization of linear programming to symmetric positive
semidefinite matrices. The idea of semidefinite relaxation can be traced back to [Lov79].
Semidefinite relaxation is a powerful tool that has been used not just within the domain of
combinatorial problems [LMS™10]; a notable example is sum-of-squares (SOS) optimization
in control theory [Nes00, Par00]. (For a thorough discussion of semidefinite programming
and applications, readers are directed to [VB96].) A well-known application of semidefinite
relaxation is to the max-cut problem; Goemans and Williamson constructed a randomized
algorithm for the max-cut problem that attains a data-independent approximation factor of
0.87856, using the solution of a semidefinite relaxation [GW95].

Our main idea resembles that of cutting-plane method [Kel60], and is closely related to
hierarchies of linear and semidefinite programs suggested by Lovasz and Schrijver [LS91],
Sherali and Adams [SA90], Gomory [Gomb8], Chvatal [Chv73], and Lasserre [LasOla]. How-
ever, to the best of our knowledge, tightening SDP relaxation using true indefinite quadratic
inequalities outside the domain of Boolean problems is a novel approach.



2 Semidefinite relaxation

A nontrivial lower bound on the optimal value of a (possibly nonconvex) QCQP can be
obtained by “lifting” it to a higher-dimensional space, and solving the resulting problem.
Consider a QCQP:

minimize  fo(x) = 2T Pox + ¢l x + 1o (1)
subject to  fi(x) = 2T Pax+q¢lz+r; <0, i=1,...,m,

with variable x € R". Let f* denote its optimal value (which can be —c0). By introducing
a new variable X = za”, we can reformulate (4) as:

minimize  Fy(X,z) = Tr(PoX) + ¢l v + o
subject to Fy(X,z) =Tr(BX)+q¢ x4+ <0, i=1,...,m
X = za”,

with variables X € S" and = € R".

Then, we relax the nonconvex constraint X = zz” into a convex constraint X > zz
(where the operator > is with respect to the positive semidefinite cone) and write it using a
Schur complement to obtain a convex relaxation:

T

minimize  Fy(X, z)
subject to  F;(X, x) §O, i1=1,...,m
X 5
-

This is now a convex problem in the “lifted” space, in fact an SDP since the objective
function is affine in X and x, and its optimal value is a lower bound on f*.

This SDP can be solved using an interior point method in polynomial time, and in
practice, the number of iterations required is constant and insensitive to the problem size,
despite its worst-case complexity [VB96]. A detailed analysis of the running time is beyond
the scope of this paper.

2.1 Lagrangian dual problem

Here, we derive the Lagrangian dual problem [BV04, §5] of the SDP (5). The Lagrangian
of (5) is

L(X,x,)\,Y,y,a):FO(X,a:)+§:)\Z-Fi(X,x)—Tr{ Y y} {X m}

T
— Yy o« zt 1
Let g(\,Y,y, @) be the corresponding dual function, defined by

g()\’ K y? a) = i)?lf L(X7 x’ A? Y? y7 a)'



The Lagrangian is affine in both X and z, and thus minimizing it over X and z gives —oo,
unless the coefficients of X and z are both zero. Therefore,

ro+ Y Airi—a Y =P+ 0 NP, y=(1/2)(q + 2000, Niai)

—00 otherwise.

gAY,y a) = {

The dual problem is then

maximize 1o+ Y . Niri — «
subject to Y = Py+ >0 NP
y = (1/2)(qo0 + D212, Nigi)
NS0, i=1,....m
Y y
—
{ y' o } -

with variables Y € S", y € R", A € R™, a € R. Alternatively, by eliminating Y and y, we
get an equivalent formulation

maximize 1o+ Y o ATy — &
subject to A\; >0, i=1,...,m (6)
[ By + Z:il A (1/2)((10 + 2211 Ai%’) 0
(1/2)(q0 + 323, Nigi)" a -

with variables A € R™, @ € R. Notice that the dual problem (6) is also a semidefinite
program. Under mild assumptions (e.g., feasibility of the primal problem), strong duality
holds and both (5) and (6) yield the same optimal value.

An advantage of considering this dual problem is that unlike (5), any feasible point of (6)
yields a lower bound on f*. This observation could be particularly useful if a dual feasible
solution with high objective value can be obtained relatively quickly.

3 Concave quadratic cuts for mixed-integer vectors

In this section, we present a simple method of relaxing the mixed-integrality constraint
r € § into a set of concave quadratic inequalities. Let a € Z" and b € Z such that
apy1 = -+ - = a, = 0. The concave quadratic inequality

(a"z = b)(a"z — (b+1)) > 0, (7)
or equivalently,
—z"(aa®)x + (20 + 1)a’z — b(b+ 1) <0,

holds if and only if a”’x—b < 0 or a’z—b > 1. In particular, (7) holds for every vector z € S,
since then a”x — b is integer-valued, which (trivially) satisfies a2 —b < 0 or a’x — b > 1.
Figure 1 shows an example of an inequality of the form (7). It follows from this observation



Figure 1: A concave quadratic inequality (z; + x2)(x1 + x2 — 1) > 0. Notice that the
shaded area, which does not satisfy the inequality, contains no lattice point.

that any number of such inequalities can be added to (1) without changing the optimal
solution. That is, the following problem is equivalent to (1):

minimize  fy(x)
subject to fi(z) <0, i=1,...,m

—at(a;al)x + (2b; + 1)alz —bi(b; +1) <0, i=1,...,r (8)
r €S,
with a; € Z", b; € Z, (a;)p+1 = -+ = (a;)p, = 0 for ¢ = 1,...,r. Then, simply dropping

the mixed-integrality constraint from (8) gives a nonconvex QCQP over R", and now the
semidefinite relaxation technique in §2 is readily applicable. The resulting SDP is:

minimize  Fy(X, x)
subject to F;(X,x) <0, i=1,...,m
—Tr(a;al X) + (2b; + V)alz — bi(b; + 1) <0, i=1,...,r 9)
X =z
B
where each Fj is defined as in §2. The optimal value f*% of (9) is a lower bound on
f*. Moreover, adding more true inequalities of the form (7) can only increase fI, hence
tightening the bound.
Inequalities of the form (7) are satisfied by every point in S, but additionally, the mixed-

integrality constraint x € S itself can be written as a set of countably many such inequalities,
i.e., the set

{z](a"s —b)(a"z — (b+ 1)) >0forallac Z",b€ Z,ay1 = -+ =a, =0}



is precisely §. Thus, adding concave quadratic cuts can also be interpreted as relaxing
the mixed-integrality constraint, not by removing it completely, but by replacing it with
infinitely many concave quadratic constraints, then dropping all but finitely many of them.

Although S can be written as a set of countably many concave quadratic inequalities,
when these inequalities are relaxed and rewritten in the lifted space as in (9), the resulting
set of feasible points has no relationship with S, in general. Consequently, the solution or
the optimal value of (9) do not have any relationship with z* or f*. To demonstrate this,
consider the following problem in Z?%:

minimize —||z||3
subject to ||z||3 < 1.2 (10)
z e 72,

which clearly has four optimal points (£1,0) and (0,+1) with objective value f* = —1. The
SDP relaxation of this nonconvex problem (without any additional concave quadratic cut)
is

minimize —Tr X
subject to Tr X < 1.2
X =z
|: fET 1 :| i 07
with optimal value f*%® = —1.2. Take X = 0.6 and # = 0, which attain this objective

value. Then, for all a € Z" and b € Z,
—Tr(aa” X) + (20 + 1)a’s — b(b+ 1) = —0.6|jal|? = b(b+ 1) <0

holds. The inequality follows from the fact that b is integer-valued. This shows that adding
any number of inequalities in the form of (7) to (10) will not increase f*.

The example above shows that adding all possible concave quadratic cuts to an integer
problem and subsequently solving the relaxation, in general, does not solve the original
integer problem. In the special case of the integer least squares problem, however, it is not
clear whether this relaxation is tight or not. When n = 1, i.e., when the problem reduces
to minimizing a convex quadratic function over the integers, it is easy to show that the
relaxation is indeed tight. On the other hand, even when n = 2, we have failed to either
prove the tightness of relaxation, or disprove it by producing any numerical instance whose
relaxation is not tight.

Finally, we discuss simple extensions of concave quadratic cuts. The structure of the
integer lattice, inherently, was not what made the construction of (7) possible. Rather, it was
the property that every feasible point of (1) satisfies exactly one of the two affine inequalities
(namely a”z —b < 0 and a’z — (b+ 1) > 0). In other words, it does not matter whether
the inequalities are on a’x — b or not; as long as there are two inequalities such that only
one of them holds for every feasible point, they can be multiplied together to produce a true
(and possibly nonconvex) inequality constraint. This construction resembles that of [Sho87,
Ans09] in that affine constraints are combined to quadratic constraints, and subsequently



lifted to a higher-dimensional space. However, the key difference is that (7) encodes exclusive
disjunction, i.e., the two inequalities that we combine do not hold individually. There are
other types of concave quadratic inequalities that utilize the structure of the integer lattice
more. Take, for example, the constraint

lz = (1/2)1])3 > n/4.

This constraint holds for every x € Z", but is not representable as exclusive disjunction of
any two affine inequalities. It is still a concave quadratic cut, and thus can be used in our
framework without any modification. It is an open question as to whether these extensions
result in a noticeable improvement of our SDP bound.

3.1 Choosing suitable cuts

Let (X, #) be a solution of (9), and consider adding an additional inequality
—Tr(aa’ X) + (2b+ 1)a’z —b(b+1) <0 (11)

to (9). Suppose that we want to choose integer-valued a and b so that adding (11) increases
the SDP-based lower bound f*¥. Then, we need (X, ) to violate this inequality, i.e.,

—Tr(aa” X) + (20 + 1)a’s — b(b+ 1) > 0. (12)

Note that if a is given, then choosing b is easy, as we can maximize the lefthand side with
respect to b, and round it to the nearest integer value. That is, we choose b = LaTﬂ.

Choosing a suitable vector a, unfortunately, is a difficult integer problem itself, and we
need to use a heuristic to find a. One very simple method is to try all possible a with at most
k nonzero elements that are either +1 or —1. For a given such vector a, it takes O(k?) time
to check whether (12) holds or not. Checking all possible such vectors then takes O(n*2*k?)
time. In particular, if k¥ = 2, then checking all possible vectors can be done in O(n?) time.

A more involved heuristic uses an eigendecomposition of a certain matrix. To derive the
heuristic, we first bound the lefthand side of (12) from below:

—Tr(aa” X) + (20 + 1)a’s —b(b+1) > inf —Tr(aa TX)+ (204 1)aT2 —b(b+1)
> inf — Tr(aa” X) 4+ (2b+ 1)a’ — b(b+ 1)

beR

A

Tr(aa {f)+2( )* — ((a'2)* — 1/4)

Tr(aa"X) + (a’)* +1/4
—aT(X —#2)a +1/4.

Our heuristic is to find @ € Z" that maximizes the last line. Recall that M = X — 237
is positive semidefinite, and thus a = 0 is a trivial maximizer of the expression. However,
choosing @ = 0 is not an option, since then (12) can never be satisfied, regardless of b.
Therefore, instead of choosing a = 0, we choose an integer vector a that is “close” to the
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eigenvector corresponding to the smallest eigenvalue v of M. At the same time, we want
|al|2 to be small (but nonzero), because scaling a by a factor of ¢ also scales a” Ma by a
factor of t2. Note that once a is chosen this way, b is set as LaTi’J (which is the minimizer
of the lefthand side of (12) over b € Z), instead of a2 — 1/2 (which is the minimizer of the
lefthand side of (12) over b € R). Therefore, (12) may not hold even when —a” Ma+1/4 > 0.
Conversely, if —a®” Ma + 1/4 <0, then (12) is guaranteed not to hold. In particular, if Ay,
the smallest eigenvalue of M, is larger than or equal to 1/4, then there exists no inequality
of the form (11) that can increase . It is not hard to justify this:
a’Ma > ||a|>Mmin > Amin-

There are a number of reasonable ways to find a “short” integer vector a that is (approxi-
mately) aligned with a given vector v. For example, one can take an arbitrary scaling factor
t > 0 and round each entry of tv to find a. Alternatively, we can fix some small k, take
k indices i1, ... ,%; that correspond to the entries of v with the largest magnitudes, and set
a;; = sign(v;,) for j = 1,... k, while leaving the other entries of a as zeros. In particular,
when k£ = 1, it means that a will be of the form a = +e; for some ¢. Without loss of gener-
ality, assume that a = e;. According to this heuristic, we choose b = LaTij = |#;], and thus
the inequality (11) we add in is

—Xii + (2 [&]) + Da; — [&:] ([2:] +1) <0.
The corresponding concave quadratic inequality of the form (7) is
(@i — &) (@i = ([2:] + 1)) 2 0.

Similarly, when k = 2, the corresponding inequalities would be on z; £ x; for some i # j.

Finally, we note that the heuristics described above can be applied in an iterative manner,
as in the well-known cutting-plane method [Kel60]. That is, once some number of additional
cuts are introduced, we can solve the resulting SDP and find more cuts using the new
solution.

3.2 Application to branch-and-cut

In this section, we restrict ourselves to pure integer problems only, i.e., p = n. Then, the
concave quadratic cuts (7) can be used in a general branch-and-cut scheme to obtain the
global solution. The branch-and-cut framework is depicted in Algorithm 3.1.

Algorithm 3.1 Branch-and-cut algorithm.

given an optimization problem P of the form (1) with p = n.
1. Initialize. Add P to T, the list of active problems. Let f* := oco.
while 7 is nonempty

2. Select an active problem. Remove P’ from T.



. Solve the SDP relaxation of P’ to get its solution (X ,2) with optimal value f5P.

if 9P > £* g0 back to 2.

Cif & € Z", set f* := %I and go back to 2.

. Cut. If any a € Z" and b € Z satisfying (12) is found, add (11) to P’ and go back to 3.
. Create two problem instances P; and Po, both identical to P’.

. Take some ¢ € Z", d € Z, then add constraint ¢!z < d to P1, and ¢!z > d+ 1 to Ps.

. Branch. Add Py and P> to T.

© 00 J O Ut = W

There are a number of technical conditions that need to be met in order for Algorithm 3.1
to even terminate. We omit these details, as most problems of practical interest meet these
conditions, such as a bounded domain, or the existence of the global solution (which would be
implied by the former condition). For example, any 0-1 program satisfies these requirements.

The two crucial steps that affect the overall performance of the branch-and-cut algorithm
are Steps 6 and 8. In §3.1, we have discussed a heuristic for finding a suitable cut that can be
used in Step 6. Step 8, which is called the branching step, is another important step in the
algorithm. Algorithm 3.1 may not even terminate if the branching step is not implemented
carefully; for example, if the algorithm takes the same ¢ and d at Step 7 every time, then it
produces redundant branches, making no progress as a result. A commonly used branching
strategy is to branch on a particular variable x;. That is, for some index ¢ such that z; is
not integer-valued, we add z; < |Z;] and x; > [#;] + 1 as the branching inequalities. This
would correspond to choosing ¢ = ¢; and d = LCTQAJJ in Step 8 of Algorithm 3.1.

While branching on a single variable is an intuitive and simple strategy that is commonly
used, we generalize this idea and find a “natural” branching inequality that can be easily
obtained from the solution of the SDP relaxation (5), with almost no additional computation.
The main idea comes from sensitivity analysis of convex problems; the optimal dual variables
of (5) gives information about the sensitivity of f* with respect to perturbations of the
corresponding constraints. Roughly speaking, if the magnitude of A\;,—the optimal dual
variable corresponding to the constraint F;(X,z) < 0 of (5)—is big, then the constraint is
“tight,” and further tightening the constraint would lead to a big increase in . To be
precise, let 5 (u) denote the optimal value of problem (5), when the inequality constraint
F;(X,z) < 0isreplaced with F;(X, z) < u. Let A; be the optimal dual variable corresponding
to the constraint of the unperturbed problem (9). Then, for all u, we have

f () = f(0) = Au.

In other words, tightening an inequality (i.e., u < 0) by |u| increases the SDP bound by at
least A;|u|. According to this interpretation, natural branching inequalities come from the
concave quadratic cut (in the lifted space) with the largest dual variable. That is, if the
constraint

—Tr(aa” X) + (2b+ 1)a’z —b(b+1) <0 (13)

has the largest value of the dual variable (i.e., is the tightest), then we add e’z < band a’z >
b+ 1 as branching inequalities. The intuition behind this choice is that these inequalities



are tighter versions of (13); recall that (13) is a relaxation of (7), which is satisfied exactly
when a”x < b or a’x > b+ 1. Therefore, we expect f5 to go up by adding any of these
inequalities. After a branching inequality is added, (13) can be removed, as it is implied by
the newly added branching inequality. When there is no concave quadratic cut with strictly
positive dual variable, then we may branch on a single variable.

We note that scaling a constraint by a factor of ¢ > 0 scales the corresponding optimal
dual variable by a factor of 1/t. Therefore, to correctly compare the dual variables and add
branching inequalities, we have to apply a proper scaling to each constraint of the form (11).
It is difficult to determine the scaling factor directly from perturbation and sensitivity anal-
ysis, as the branching inequalities we add, despite being tighter than (13), are not direct
perturbations of it. However, experiments suggest that (11) is already properly scaled, and
thus directly comparing the optimal dual variables gives good branching inequalities.

4 Examples

In this section, we consider numerical instances of the integer least squares problem and max-
cut problem to show the effectiveness of the quadratic concave cuts in terms of the SDP-based
lower bound. We emphasize that these problems were chosen because they are simple to
describe, and showed qualitatively different results. They are by no means representative
problems of the entire class of problems that can be written as (1).

4.1 Computational details

The SDP (5) was solved using CVX [GB14, GB08] with the MOSEK 7.1 solver [MOS], on
a 3.40 GHz Intel Xeon machine. In order to obtain the solution in a reasonable amount of
time, we only considered small-sized problems of n ~ 100.

4.2 Integer least squares

Problem formulation. We consider the following problem formulation that is equivalent
to (3):
minimize || A(z — x%)||3

subject to x € Z". (14)

Here, 2¢® € R" is a given point at which the objective value becomes zero, which is a simple
lower bound on the optimal value f*.

Problem instances. We use random problem instances of the integer least squares prob-
lem (14), generated in the same way as in [PB15]: entries of A € R™" are sampled inde-
pendently from A(0, 1), with the number of rows r set as r = 2n. The point = was drawn
from the uniform distribution on the box [0, 1]™.
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’ n H SDP1 ‘ SDP2 ‘ # of cuts ‘

40 || 0.378 | 1.984 516.2
50 || 0.338 | 3.542 749.3
60 || 0.374 | 6.584 1033
70 || 0.443 | 11.82 1380
80 | 0.543 | 19.12 1732
100 || 0.830 | 47.51 2579

Table 1: Running time of SDPs by number of variables, and the average number of
additional cuts added to the second SDP.

Method. We compare three lower bounds and one upper bound on the optimal value f*.
The first lower bound is the simple lower bound of the continuous relaxation: f = 0.
The second lower bound, which we denote by flsdp, is the SDP-based lower bound explored
in [PB15]. This was obtained by relaxing the integer constraint to a set of n quadratic
concave inequalities z;(x; — 1) > 0 for all 4, followed by solving the SDP relaxation. The
third lower bound, f;dp, was obtained by generalizing this approach, as described in §3;
in addition to the inequalities x;(x; — 1) > 0, we considered O(n?) additional cuts with
lall2 = v/2, and added only those satisfied (12). Adding more inequalities (with ||a|/; > v/3)
gave little improvement, and thus they were not considered for our experiments. The upper
bound, f , was found by running the randomized algorithm constructed from the solution of
the SDP (see [GW95, PB15]). In [PB15], it was shown empirically that this upper bound is
very close to the optimal value for problems of small enough size (n < 60) that the optimal
value was obtainable.

Results. For each problem size, we generated 100 problem instances and collected the
lower and upper bounds from the SDP relaxation. In Table 1, we show the average running
time of the two SDPs used to obtain ff%° and f5% respectively, and the average number of
additional cuts added to the second SDP. The trade-off between the number of cuts (which
was roughly n?/4) and the running time of the SDP is clear from the table.
In Table 2, we compare the two lower bounds fi%° and 5%, along with an upper bound
f. The simple lower bound f¢* = 0 was omitted from the table. Note that fi > f5
holds not only on average, but for every problem instance, because the second SDP is more
constrained than the first. The ratio between the two optimality gaps, namely
R sdp
o= j:_—%
1
is also shown in the same table. We obtained a significant reduction for all problem sizes
(v = 0.61 for n = 100), though we expect a to be higher for larger problems. Note, however,
that f is not the optimal value, and thus the true reduction in the optimality gap is larger
than what is reported. This is a notable improvement, because [PB15], to the best of our
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n [ AP A ] F [ o]
40 || 88.21 | 131.9 | 165.6 | 0.43
50 || 135.0 | 198.8 | 259.4 | 0.48
60 || 186.0 | 272.2 | 369.2 | 0.53
70 || 245.1 | 356.7 | 493.4 | 0.55
80 | 310.3 | 451.1 | 646.0 | 0.58
100 || 469.9 | 675.7 | 1001 | 0.61

Table 2: Average lower and upper bounds by number of variables, along with the average
ratio between the optimality gaps.

knowledge, is a state of the art method for obtaining a lower bound on the integer least
squares problem (in polynomial time).

4.3 Max-cut problem

Problem formulation. We reformulate (2) in terms of 0-1 variables z; = (1/2)(x; + 1),
so that the cuts introduced in §3 are tighter:

maximize (W1)Tz —2TWz

subject to z;(z;,—1)=0, i=1,...,n. (15)

Note that (15) is a maximization problem, and hence we get an upper bound on the optimal
value by solving its relaxation.

Problem instances. We used the set of 10 small-sized problems (n = 125) with +1 edge
weights, which was used in [FPRR02]. Note that due to the integral edge weights, the
optimal value also is integer-valued. It follows that if f’ is an upper bound on the optimal
value f*, then | f’| is also an upper bound on f*. In particular, if we have some feasible
point z and some relaxation of the max-cut problem has an optimal value f* such that
fo(z) < 5% < fy(2) + 1, then the optimal solution to the SDP provides a certificate of
optimality of the point z, i.e., fo(z) = f*.

Method. In this application, we compare two upper bounds, and the best known lower
bound to each of the 10 problem instances. The first upper bound f#" is the classical SDP
bound explored in [GW95]. This bound was obtained by relaxing (15) according to §2,
without adding any concave quadratic cut. The second lower bound, which we denote by
f5% was found by adding concave quadratic cuts satisfying (12), just as in the integer least
squares problem. However, for the max-cut problem, we found effectively no improvement
in the SDP bound by adding inequalities with ||a||s = v/2, even when all such inequalities
were added. Instead, we generated 10,000 random vectors a with ||alls = v/3 (i.e., having
exactly three nonzero entries that are £1), and added the corresponding cuts to the SDP
relaxation only when (12) was satisfied.
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’ Instance H GW ‘ SDP ‘ # of cuts ‘

G54100 || 1.92 | 17.9 1072
G54200 || 1.07 | 16.4 997
G54300 || 1.07 | 13.1 875
G54400 | 0.86 | 18.1 1117
G54500 || 0.86 | 16.4 987
G54600 || 1.17 | 14.1 915
G54700 || 0.82 | 20.1 1115
G5H4800 || 1.07 | 15.8 969
G54900 || 0.91 | 23.0 1325
G541000 || 0.89 | 22.9 1343

Table 3: Running time of two SDP relaxations, and the number of additional cuts added
to the second SDP.

Results. In Table 3, we show the solve time of the two SDPs used to obtain f&% and f5,
respectively, and the number of additional cuts added to the second SDP. As seen in the
previous application, the trade-off between the number of cuts and the running time is clear.

In Table 4, we compare the two upper bounds f&" and f*, along with the best known
lower bound f . The upper bounds were rounded down to the nearest integer, using the
observation made above. The ratio between the optimality gaps

o f

feo = f
is also shown in the same table. The value of o ranged from 0.73 to 0.88, which is larger
than what we obtained in the case of integer least squares.

It should be noted that the objective of this experiment is not to compete with state
of the art methods for solving the max-cut problem such as [MDL09] (which are shown to
find near-optimal solutions very efficiently), but to demonstrate that our method generates
a nontrivial upper bound for Boolean problems that is better than the Goemans-Williamson
bound. Whether this method has any direct relationship with the (3rd) Lasserre hierarchy
is an outstanding question.
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