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Abstract

We present an efficient method for optimal design and synthe-
sis of CMOS inductors for use in RF circuits. This method uses
the the physical dimensions of the inductor as the design pa-
rameters and handles a variety of specifications including fixed
value of inductance, minimum self-resonant frequency, mini-
mum quality factor, etc. Geometric constraints that can be han-
dled include maximum and minimum values for every design
parameter and a limit on total area.

Our method is based on formulating the design problem
as a special type of optimization problem calledjeometric pro-
gramming for which powerful efficient interior-point methods
have recently been developed. This allows us to solve the induc-
tor synthesis problemglobally and extremely efficientlyAlso, we
can rapidly compute globally optimal trade-off curves between
competing objectives such as quality factor and total inductor
area.

We have fabricated a number of inductors designed by the
method, and found good agreement between the experimental
data and the specifications predicted by our method.

1 Introduction

The rising demand for low-cost radio-frequency integrated circuits
(RF-ICs) has generated tremendous interest in on-chip spiral in-
ductors. The parasitic resistances and capacitances associated with

designing on-chip spiral inductors for use in a variety of RF cir-
cuits. The tool is based on geometric programmig),(a special
type of optimization problem for which very efficient global opti-
mization methods have been developed. It uses a simple and well
accepted inductor model [1], whose elements are given by special
expressions that are compatible with geometric programngilg (
In §4, we show how the design specifications of inductor circuits
can be formulated in a way suitable for geometric programming.
In §5-§8, we give some examples of our approach. Experimental
verification and a summary of our results are givefdn

The method iglobal, meaning that it finds the absolute best de-
sign possible, when the specifications are feasible, and unambigu-
ously determines infeasibility when the specifications are infeasi-
ble. The method is also very fast and provides valuable information
on the sensitivity of the objective to the constraints, permitting the
RF CMOS designer to spend more time exploring the fundamental
design tradeoffs instead of ad-hoc parameter tuning.

2 Geometric programming (GP)

Let f be areal-valued function efreal, positive variables,, . . .
Itis called aposynomiafunction if it has the form
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these spiral inductors result in several engineering tradeoffs. Un- wherec; > 0 anda;; € R. Whent = 1, f is called anonomial

fortunately, no inductor optimization tools exist to aid in circuit

function. Thus, for example).7 + 221 /23 + 23> is posynomial

design. Currently, most designers are limited to using a library of and2.3(z, /x2)!"° is a monomial. Posynomials are closed under
previously fabricated inductors or generating a large database of in-syms, products, and nonnegative scaling.

ductors using a 3-D field solver. While the former option severely

A geometric progran{GP) ) has the form

constrains the available design space, the latter one requires a so-

phisticated search engine, a large computational effort, and the gen-
eration of a new library when process parameters change. More-
over, any inductor optimization based on these approaches requires
a good starting point and numerous iterations to arrive at an accept-
able design. This iterative process is time consuming and incon-

venient for obtaining globally optimal designs, determining infea-

minimize  fo(z)

subjectto fi(z) <1, i=1,2,...,m, )
gl(x):]" i:1’27"'7p7
z; >0, i=1,2...,n,

wheref; are posynomial functions angd are monomial functions.

sibility and exploring trade offs. Another drawback is that neither If fis aposynomial andis a monomial, then the constrajfitz) <
approach is amenable to the application dependent nature of induc-y(x) can be expressed g§x)/g(z) < 1 (since f/g is posyno-
tor design. For example, while a resonator may require an inductor mial). From closure under non-negativity, constraints of the form

with high parallel impedance, a shunt-peaked amplifier would re-
quire one with low capacitance. The optimal layout of these induc-

f(x) < a, wherea > 0 can also be used. Similarly, ¢ andg-
are both monomial functions, the constragnfx) = g2(z) can be

tors is determined by related, but somewhat different design goals. expressed agi (z)/g2(z) = 1 (sinceg: /g= is monomial).

In this paper, we propose a simple and efficient CAD tool for

For our purposes, the most important feature of geometric pro-
grams is that they can kggobally solved with great efficiency. GP
solution algorithms also determine whether the problem is infea-
sible. Also, the starting point for the optimization algorithm does
not have any effect on the final solution; indeed, a starting point or
initial design is completely unnecessary.

To carry out the designs described in this paper we used a very
simple (primal barrier) method for solving the convex form of a



GP. Despite the simplicity of the method, and our inefficientimple- with inductance in nH and dimensions jim and where the coef-
mentation, all the design problems in this paper were solved in well ficients 3 anda; are only layout dependent and do not depend on

under one second, on a simple personal computer. the technology. With coefficient$ = 1.66 - 1073, a; = —1.33,
az = —0.125, az = 2.50, ay = 1.83, as = —0.022, this expres-
3 Planar spiral inductors sion gives an accurate fit of the inductance as calculated from field

1 . S solver computations and experimental data with a typical error of a
3.1 Layout variables for optimization few percent over a very broad design space.

Figure 1 shows the layout of a square planar inductor. The induc- Series resistancés. The series resistance is given by the mono-
tor can be implemented with or without a patterned ground shield mijal expression

(PGS) [3] (a grounded polysilicon shield broken regularly in the

direction perpendicular to the current flow of the inductor). Re =1/(owd(1 — e %)) = kyl/w, 3)
Om;?; :r%tlmﬁggp c;a{&?g{ﬂéstggattufg zurlzia(;:ttﬁg’zethtg ?ulrnndl;;g_ 9 Whereo is the <_:onductiv.ityt _is the turn thickness andlis the skin
ing s, the outer diameted,.. and the average diametef,, = depth. The skin depth is given ly= /2/(wpoo), wherew is
0.5(dous + din). These five variables are not independent, but it the frequency ang = 4710~ "H/m is the magnetic permeability
will be convenient to consider this (redundant) set of variables. We of free space.

also note that the design variables are discrete;andd,.. are re- Spiral-substrate oxide capacitana€o.x. The spiral-substrate ox-
stricted to take values on a discrete grid while the number of turns  ide capacitance accounts for most of the inductor’s parasitic capac-
is restricted to take values that are integer multiples 2§ (quarter itance. It can be approximated by the monomial expression

turns). In the rest of the paper, we ignore these grid constraints and
consider the variables to be continuous. The final inductor design is Cox = (€oxlw)/(2tox) = kalw, Q)

then obtained via rounding to the nearest grid point. In every design \heree,, = 3.45107'*F/cm is the oxide permitivity and,, is

we have carried out, this step has caused no significant error. the oxide thickness between the spiral and the substrate.

Other geometry parameters of interest that can be expressed ageries capacitanc€s. This capacitance is mainly due to the ca-
monomial functions of the design variables include the inductor pacitance between the spiral and the metal under-pass required to
lengthl = 4ndave, and the inductor ared = d;. connect the inner end of the spiral inductor to external circuitry. It

is modeled by the monomial expression

Cs = (€oxnw?) /(tox,m1-m2) = kanw?, (%)

wheretox m1—m2 IS the oxide thickness between the the spiral and
the under-pass.

Substrate capacitanc€s;. The substrate capacitance is given by
the monomial expression

Csi = (Csublw) /2 = kalw, (6)
—o-t whereCy,, is the substrate capacitance per unit area.
Substrate resistanc®s;. The substrate resistance can be expressed
Figure 1: Square inductor layout and geometry. as the monomial
Rsi = 2/(Gsunlw) = ks /(lw), (7)
3.2 Lumped electrical model whereGy.1, is the substrate conductance per unit area.

. . An equivalent inductor model is shown in Figure 2(b). The
The CAD tool presented is based on a simple two port lumped gjementsiz,, andC',, which are frequency dependent, have the fol-
model shown in Figure 2(a) (see [1]). The results are accurate S|owing expressions:
long as the assumption of a lumped model is valid (see [4]). In thiS gpnt resistanceR,,. The shunt resistance is given by the mono-
section, we give simple and accurate expressions for the model ele-ig) expression
ments (see [1, 3, 5] for more detail). Each element is a posynomial '
function of the design variables and a factpthat is dependent on 1+ [wRsi (Csi + Cox)]?
technology and frequency. Ry = W2R4C2.

Shunt apacitanceCp. The shunt capacitance is given by the
I G posynomial expression,

= ke /(lw). (8)

Ls Rs Cox + W2Rsi (Csi + Cox) CsiCox 2
1TJWJ\—¢W 2 = = krlw + ks (lw)” .
Cox COXJ— ' ° 1 + [WRsi (Csi + Cox)]2 ! i ( )
ﬁ Rp 9)
Rsi Csi  Csi Rsi
T T . .
I 3.2.1 Lumped model for inductors with PGS
In some cases, the placement of a PGS beneath the inductor im-
@ (b) proves performance by eliminating the resistive and capacitive cou-
pling to the substrate at the expense of the increased oxide capaci-
Figure 2: Inductor model: (a) IT model, (b) simplified model. tance. With a PGS the expressions €@k, R, andC, become:
Inductance Ls. An accurate monomial expression for the induc- Ry, =00, Cp = Cox = (€oxlw)/(2tox,po);

tance can be found in [5] and has the form . ) . . ]
wheretox po is the oxide thickness between the spiral and the polysil-

Ly = Bdgp w™ dad,n™ s, 2 icon layer.



The average radius... is related to the other design variables
by the expressioays + (n — 1)s + nw = dous. Noting that
spacings is typically small compared t@,v,, dous andw, we can
recast this last equation as the posynomial constraint,

davg + ns + nw S dou(‘,- (14)

For all the design examples shown in this paper constraint (14) is
always tight. However, there could be cases where this would not
be the case and then the validity of the assumption must be checked.

Figure 3: One-port small signal grounded inductor model.

3.2.2 Lumped model for one-port inductors

5 Optimal design of inductors
When the inductor is used as a one-port device, the simplified model pH '8 thdu

shown in Figure 3 can be used. The total shunt capacitahece = A common problem in inductor design is to maximize the qual-
Cs + Cp, is posynomial since botéis andC,, are given by mono- ity factor for a given inductance value and for a minimum self-
mial expressions. resonance frequency. For example, in narrow-band LNAs (see

Figure 4), the matching inductaks is required to take a value
. e e . . Ls = RsCpgs/gm WhereCys and g, are determined by the tran-
4 Constraints and specifications for inductor design sistor choice. Ideally, the inductor must have a high quality factor.
In this section we show how a variety of design specifications for

inductors can be expressed as either monomial equality constraints, Viout
ou

or posynomial inequality constraints, and therefore can be handled R. Cs L

by geometric programming. " X g
Constraints onLs, Rs and Ciot. Since the inductance is given "

by a monomial expression, we can require the inductance to equal L

some specific value, or to be within some rarige,

Ls = Lreq Lmin S Ls S Lmax~ (10) . . gn . .
Figure 4: Narrow-band LNA (simplified circuit).

The series resistance, being monomial, may be bounded similarly.

We can also impose a limit on the capacitance contributed by the  The design problem of the inductor can be formulated as
inductor with the posynomial constrai@te; < Ctot,max-

Quality factor. The quality factor of an inductor is defined as the ma>_<imize QL min
ratio of peak magnetic energy minus peak electric energy to energy subjectto Qr > Qr.min
loss in one cycle (see [3]), L = Lieq (15)

Wsr 2 Wsr,min

_ 2~ —_
wle R, (1 - R“L—?'“' - w2Lchot)
QL= B T— — , o (11) Other constraints may be added (such as the minimum spacing

s R, + {(“’R—) + 1} R and turn width, the maximum area available, the maximum parallel

capacitance, etc...). The point is that the design problem can be
whereR, = 2R, andCror = Chot/2 for two-port devices and ~ formulated as a geometric program.
R, = Ry andCror = Cror for one-port devices. Equation (11) By repeatedly solving op_tlmal de5|gr} problems as we sweep
is not posynomial in nature. However, the specification for mini- CVEr values of some constraint, we obtain globally optimal trade-
mum quality factor Qr, > Qr. min) can b’e written as a posynomial off curves. For example, we can fix all other constraints, and re-

. o f h ) peatedly maximize the quality factor as we vary the required in-
inequality in the design variables agh. min, ductance. The resulting curve shows the globally optimal trade-off

between quality factor and inductance value. In Figure 5 we show

QL minRs o (“-)Ls)2 :| R%2m 2 amn 5 H H
——— |Rp+ ——+Rs| + ———— +w LCior < 1. the maximum quality factor & 5GHz versus inductance value for
wLsRp Rs s inductors with PGS. The design constraints are> 400um?,
) o . . (12) w > 1.9um, s > 1.9um andws, > 7GHz for curve 1 and un-
We can therefore specify a minimum required quality factor. We constrainedy., for curve 2. Note that when the self-resonance fre-
may also maximize the quality factor by maximiziay. min Sub- guency is not constrained one obtains a higher The details on
ject to constraint (12). the test inductors built are shown in Table 1.
Minimum self-resonance frequencyT he self-resonance frequency In Figure 6 we compare the performance of inductors with and
wsr is the frequency at which the quality faciQx. is zero (see [3]).  without PGS at an operating frequency105GHz while meeting
A condition on minimum self-resonance frequengy > wesr,min, A > 400pm?, w > 1.9um, s > 1.9um andws: > 5GHz. The
can be written as the posynomial inequality PGS option is preferable for small inductors because the increase
g in Q1, due to the elimination of substrate losses more than offsets
NN oy RS Crot <1 (13) the degradation due to the increased oxide capacitance. However,
o Ls — determining the point at which the use of a PGS is detrimental is

I - challenging. Each inductor design was obtained in approximatel
Therefore we can handle a specification on minimum self-resonance ging 9 S y

e one second real-time, and each trade-off curve was obtained in a
frequency and we can maximize the self-resonance frequency (byfew seconds

maximizingws: min Subject to constraint (13)). '

Geometry constraintsThe monomial inequalities® > wmi, and 6 Design of inductors for LC resonators

s > smin handle the processing constraints that limit the minimum

feature size. The inductor area can be constrained or minimized Tuned amplifiers are widely used to provide gain at selective fre-

using the monomial inequality2,; < Amax. guencies. A simple tuned amplifier is shown in Figure 7. A sim-



pd
)
3
©
3
<%
©
=
S
«
h
@

[I [475]2063| 78] 19]6 Yad

L2 75 || 166.5| 3.2 | 19| 12

L3 9.5 || 152.9| 19| 19| 18

L4 8 2216|431 1.9 | 18 CL g

L5 375 2922 | 13 || 19| 6

L6 6.5 || 216.7| 5.4 | 1.9 | 12 Vout
Table 1: Test inductors (dimensions inum, inductance in nH, . [l

tox,M5—poly=5.2M, tps=0.9um, ons=3 - 10%(Qcm)~1).

Figure 7: LC resonator.
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Figure 8: LC resonator small-signal circuit

‘3 1‘0 1‘2 . 1‘4 1‘6 1‘5 2‘0 22 . . .
Inductance in nH e Tank capacitance Ciank), given by a posynomial,
Figure 5: Maximum @, at 2.5GHz versus inductance value. Ctank = Cad + Crot = Cload + Crot

e Tank resistance Rtank), given by

’ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Riank = Rp H Rsp = (I/Rp + 1/Rs,p)71
whereR; ;, is the parallel equivalent d&s. ForQank > 1.5,
T i R, can be approximated by a monomial,
5t ,
g Rop = [(1+ (Lsw/Rs)*] Rs & (Lsw)® /Rs.
'TgA, without PGS | Since bothR,, andRs,, are given by monomial expressions,
o the inverse ofR;ank iS @ posynomial function of the design
il ) variables and therefore we can maximg -
o ith PGS 1 . . .
" e Tank quality factor ( Qtank)- SinceLank and the inverse of
i . Riank are posynomial functions of the design variables, the
L I inverse ofQ:ank is posynomial and we can therefore maxi-
©o ®IndictanceinnH *© 0 * mize Qank OF iMpose a minimum required value.
. . . Thus, a typical design problem can be posed as a geometric pro-
Figure 6: Maximum @y, at 1.5GHz versus inductance value. gram yp gnp P g P
maximize Riank
SUbjeCt to LtankCtank S l/wvges
plified small-signal circuit is shown in Figure 8(a), where the tran- Qtank > Qtank,min (16)
sistor has been replaced by an ideal transconductance amplifier, the Cload < Cload,max
ideal inductor has been replaced by a real inductor,@ndrepre- e
sents the additional load capacitanCga.q. An equivalent small- N : :

; O A ad: g ) ote that the inequality on the resonance frequegy. Crank <
fr:genalljg;ir Cl’;gést;rhgﬁﬂéqgalg 8(b).7F§r this appllzatlon V\'/\leot;ieeflne 1/w?.,) is always tight if there is no limit on the inductor area
thatclhis tyualit factor is not thé ?;m_e a;aa:e/ E:&ﬁctgnkﬁalit factor (e, itis practically an equality). The reason is that if it were not

s q yd " 0f itive | d y tight, the inductor could contribute additional capacitance to the
Q1 SInCeQrani does not account for capacitive losses. tank, which in turn would improv€)anx and R:.ni.. One can also

_ Here, the desi_gn objective is to maximize the total parallel tank add other design constraints (such as the ones shog) and the
|mpedance ata given resonance frequ_en,gy. For pragtlt_:a_l ok design problem will still be a geometric program.
quality factors Qank > 1.5), this is equivalent to maximizing the

real impedance at resonance. The tank can be modeled as, 7 Design of inductors for LC tunable oscillators

e Tankinductance (Lanx), given by a posynomial, We now extend the work of6 to the design of tuned resonators,
5 commonly found in LC oscillators. Figure 8 shows the differential
Liank = [1 + (Rs/(Lsw)) ] Ls half-circuit of the LC oscillator of Figure 9. In this caé&g is the

sum of the load capacitan@&,..q and a variable capacit@@ya,



T C(load

Vout

() (b)
Figure 9: LC oscillator. Figure 10: Shunt peaking example.

Note that the constraimiank > Cload + Ctot IS always tight.
whose range i€min < Cvar < Cmax. The ratioCrax/Crmin 1S If it were not tight we would be able to obtain a smaller value for
limited (< «) but the values of01ax and Cmin are not limited. Ctank, and the result would not be optimal.

Typically, the design goal is to maximize the parallel resistance

for a gi\_/en tuning range. The tuning range is specified with two 9 Conclusions and Extensions

constraints

5 In this paper, we have exhibited how the design specifications of

Liank (Cioad + Ciot + Cmin) - < 1/wiax 17 many inductor circuits can be represented by posynomial expres-

Liank (Croad + Crot + Cmax) > 1/winin. (18) sions. This representation enables us to translate the design goals
into geometric programs which permit the circuits to be optimized

Constraint (18) is not posynomial and cannot be handled di- efficiently and globally. The results of such optimization have been
rectly by GP. Note though, that constraint (17) is generally tight (if yerified by experiments.

it were loose it would mean that an inductor with wider turns could One can quickly plot tradeoff curves between different speci-
be used and a bettét... could be obtained). The fact that con-  fications, allowing an easy exploration of the design space. The
straint (17) is always tight allows us to indirectly handle constraint yersatility of geometric programming allows this method to be ap-
(18). We can rewrite constraint (18) as, plied to a more general class of circuit design [7], and gives the
w2in (Cload + Ctot + Cmax) > whax (Cload + Ctot + Comin) - designer the luxury of simultaneously optimizing all passive and
active components in a variety of circuit architectures.
NOW We letr = wiee max/Wres min» @Nd Obtain

(7" - 1)(0(',0(', + Cload)/cmax + rCmin/Cmax S 1. (19) 10 ACknOW|Edgments
We are also grateful to C. Patrick Yue for helpful discussions, LCDR.

Therefore, we can substitute the constraint (18) by the posynomial Gregory Gorton for coordinating layout and National Semiconduc-
constraint (19). The typical design problem can be written as, tor Corporation, Santa Clara, CA for fabricating the die.

maximize Riank
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