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Abstract

We present an efficient method for optimal design and synthe-
sis of CMOS inductors for use in RF circuits. This method uses
the the physical dimensions of the inductor as the design pa-
rameters and handles a variety of specifications including fixed
value of inductance, minimum self-resonant frequency, mini-
mum quality factor, etc. Geometric constraints that can be han-
dled include maximum and minimum values for every design
parameter and a limit on total area.

Our method is based on formulating the design problem
as a special type of optimization problem calledgeometric pro-
gramming, for which powerful efficient interior-point methods
have recently been developed. This allows us to solve the induc-
tor synthesis problemgloballyand extremely efficiently. Also, we
can rapidly compute globally optimal trade-off curves between
competing objectives such as quality factor and total inductor
area.

We have fabricated a number of inductors designed by the
method, and found good agreement between the experimental
data and the specifications predicted by our method.

1 Introduction

The rising demand for low-cost radio-frequency integrated circuits
(RF-ICs) has generated tremendous interest in on-chip spiral in-
ductors. The parasitic resistances and capacitances associated with
these spiral inductors result in several engineering tradeoffs. Un-
fortunately, no inductor optimization tools exist to aid in circuit
design. Currently, most designers are limited to using a library of
previously fabricated inductors or generating a large database of in-
ductors using a 3-D field solver. While the former option severely
constrains the available design space, the latter one requires a so-
phisticated search engine, a large computational effort, and the gen-
eration of a new library when process parameters change. More-
over, any inductor optimization based on these approaches requires
a good starting point and numerous iterations to arrive at an accept-
able design. This iterative process is time consuming and incon-
venient for obtaining globally optimal designs, determining infea-
sibility and exploring trade offs. Another drawback is that neither
approach is amenable to the application dependent nature of induc-
tor design. For example, while a resonator may require an inductor
with high parallel impedance, a shunt-peaked amplifier would re-
quire one with low capacitance. The optimal layout of these induc-
tors is determined by related, but somewhat different design goals.

In this paper, we propose a simple and efficient CAD tool for

designing on-chip spiral inductors for use in a variety of RF cir-
cuits. The tool is based on geometric programming (§2), a special
type of optimization problem for which very efficient global opti-
mization methods have been developed. It uses a simple and well
accepted inductor model [1], whose elements are given by special
expressions that are compatible with geometric programming (§3).
In §4, we show how the design specifications of inductor circuits
can be formulated in a way suitable for geometric programming.
In §5-§8, we give some examples of our approach. Experimental
verification and a summary of our results are given in§9.

The method isglobal, meaning that it finds the absolute best de-
sign possible, when the specifications are feasible, and unambigu-
ously determines infeasibility when the specifications are infeasi-
ble. The method is also very fast and provides valuable information
on the sensitivity of the objective to the constraints, permitting the
RF CMOS designer to spend more time exploring the fundamental
design tradeoffs instead of ad-hoc parameter tuning.

2 Geometric programming (GP)

Letf be a real-valued function ofn real, positive variablesx1, . . . , xn.
It is called aposynomialfunction if it has the form

f(x1, . . . , xn) =

t∑
k=1

ckx
α1k
1 x

α2k
2 · · ·xαnk

n

wherecj ≥ 0 andαij ∈ R. Whent = 1, f is called amonomial
function. Thus, for example,0.7 + 2x1/x2

3 + x0.3
2 is posynomial

and2.3(x1/x2)
1.5 is a monomial. Posynomials are closed under

sums, products, and nonnegative scaling.
A geometric program(GP) ) has the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, 2, . . . , m,

gi(x) = 1, i = 1, 2, . . . , p,
xi > 0, i = 1, 2, . . . , n,

(1)

wherefi are posynomial functions andgi are monomial functions.
If f is a posynomial andg is a monomial, then the constraintf(x) ≤
g(x) can be expressed asf(x)/g(x) ≤ 1 (sincef/g is posyno-
mial). From closure under non-negativity, constraints of the form
f(x) ≤ a, wherea > 0 can also be used. Similarly, ifg1 andg2

are both monomial functions, the constraintg1(x) = g2(x) can be
expressed asg1(x)/g2(x) = 1 (sinceg1/g2 is monomial).

For our purposes, the most important feature of geometric pro-
grams is that they can beglobally solved with great efficiency. GP
solution algorithms also determine whether the problem is infea-
sible. Also, the starting point for the optimization algorithm does
not have any effect on the final solution; indeed, a starting point or
initial design is completely unnecessary.

To carry out the designs described in this paper we used a very
simple (primal barrier) method for solving the convex form of a



GP. Despite the simplicity of the method, and our inefficient imple-
mentation, all the design problems in this paper were solved in well
under one second, on a simple personal computer.

3 Planar spiral inductors

3.1 Layout variables for optimization
Figure 1 shows the layout of a square planar inductor. The induc-
tor can be implemented with or without a patterned ground shield
(PGS) [3] (a grounded polysilicon shield broken regularly in the
direction perpendicular to the current flow of the inductor).

The optimization variables that characterize the inductor ge-
ometry are number of turnsn, the turn widthw, the turn spac-
ing s, the outer diameterdout and the average diameterdavg =
0.5(dout + din). These five variables are not independent, but it
will be convenient to consider this (redundant) set of variables. We
also note that the design variables are discrete;w, s anddout are re-
stricted to take values on a discrete grid while the number of turnsn
is restricted to take values that are integer multiples of0.25 (quarter
turns). In the rest of the paper, we ignore these grid constraints and
consider the variables to be continuous. The final inductor design is
then obtained via rounding to the nearest grid point. In every design
we have carried out, this step has caused no significant error.

Other geometry parameters of interest that can be expressed as
monomial functions of the design variables include the inductor
lengthl = 4ndavg , and the inductor areaA = d2

out.

din

dout

w

s

Figure 1: Square inductor layout and geometry.

3.2 Lumped electrical model

The CAD tool presented is based on a simple two port lumped
model shown in Figure 2(a) (see [1]). The results are accurate as
long as the assumption of a lumped model is valid (see [4]). In this
section, we give simple and accurate expressions for the model ele-
ments (see [1, 3, 5] for more detail). Each element is a posynomial
function of the design variables and a factorki that is dependent on
technology and frequency.
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Figure 2: Inductor model: (a) Π model, (b) simplified model.

InductanceLs. An accurate monomial expression for the induc-
tance can be found in [5] and has the form

Ls = βdα1
outw

α2dα3
avgn

α4sα5 , (2)

with inductance in nH and dimensions inµm and where the coef-
ficientsβ andαi are only layout dependent and do not depend on
the technology. With coefficientsβ = 1.66 · 10−3, α1 = −1.33,
α2 = −0.125, α3 = 2.50, α4 = 1.83, α5 = −0.022, this expres-
sion gives an accurate fit of the inductance as calculated from field
solver computations and experimental data with a typical error of a
few percent over a very broad design space.
Series resistanceRs. The series resistance is given by the mono-
mial expression

Rs = l/(σwδ(1 − e−t/δ)) = k1l/w, (3)

whereσ is the conductivity,t is the turn thickness andδ is the skin
depth. The skin depth is given byδ =

√
2/(ωµoσ), whereω is

the frequency andµ = 4π10−7H/m is the magnetic permeability
of free space.
Spiral-substrate oxide capacitanceCox. The spiral-substrate ox-
ide capacitance accounts for most of the inductor’s parasitic capac-
itance. It can be approximated by the monomial expression

Cox = (εoxlw)/(2tox) = k2lw, (4)

whereεox = 3.4510−13F/cm is the oxide permitivity andtox is
the oxide thickness between the spiral and the substrate.
Series capacitanceCs. This capacitance is mainly due to the ca-
pacitance between the spiral and the metal under-pass required to
connect the inner end of the spiral inductor to external circuitry. It
is modeled by the monomial expression

Cs = (εoxnw2)/(tox,M1−M2) = k3nw2, (5)

wheretox,M1−M2 is the oxide thickness between the the spiral and
the under-pass.
Substrate capacitanceCsi. The substrate capacitance is given by
the monomial expression

Csi = (Csublw)/2 = k4lw, (6)

whereCsub is the substrate capacitance per unit area.
Substrate resistanceRsi. The substrate resistance can be expressed
as the monomial

Rsi = 2/(Gsublw) = k5/(lw), (7)

whereGsub is the substrate conductance per unit area.
An equivalent inductor model is shown in Figure 2(b). The

elementsRp andCp, which are frequency dependent, have the fol-
lowing expressions:
Shunt resistanceRp. The shunt resistance is given by the mono-
mial expression,

Rp =
1 + [ωRsi (Csi + Cox)]

2

ω2RsiC2
ox

= k6/(lw). (8)

Shunt capacitanceCp. The shunt capacitance is given by the
posynomial expression,

Cp =
Cox + ω2Rsi (Csi + Cox)CsiCox

1 + [ωRsi (Csi + Cox)]
2

= k7lw + k8 (lw)2 .

(9)

3.2.1 Lumped model for inductors with PGS
In some cases, the placement of a PGS beneath the inductor im-
proves performance by eliminating the resistive and capacitive cou-
pling to the substrate at the expense of the increased oxide capaci-
tance. With a PGS the expressions forCox, Rp andCp, become:

Rp = ∞, Cp = Cox = (εoxlw)/(2tox,po),

wheretox,po is the oxide thickness between the spiral and the polysil-
icon layer.
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Figure 3: One-port small signal grounded inductor model.

3.2.2 Lumped model for one-port inductors
When the inductor is used as a one-port device, the simplified model
shown in Figure 3 can be used. The total shunt capacitance,Ctot =
Cs + Cp, is posynomial since bothCs andCp are given by mono-
mial expressions.

4 Constraints and specifications for inductor design

In this section we show how a variety of design specifications for
inductors can be expressed as either monomial equality constraints,
or posynomial inequality constraints, and therefore can be handled
by geometric programming.
Constraints onLs, Rs andCtot. Since the inductance is given
by a monomial expression, we can require the inductance to equal
some specific value, or to be within some range,i.e.,

Ls = Lreq Lmin ≤ Ls ≤ Lmax. (10)

The series resistance, being monomial, may be bounded similarly.
We can also impose a limit on the capacitance contributed by the
inductor with the posynomial constraintCtot ≤ Ctot,max.
Quality factor. The quality factor of an inductor is defined as the
ratio of peak magnetic energy minus peak electric energy to energy
loss in one cycle (see [3]),

QL =
ωLs

Rs
·
Rp

(
1 − Rs

2Ctot
Ls

− ω2LsCtot

)

Rp +
[(

ωLs
Rs

)2
+ 1

]
Rs

, (11)

whereRp = 2Rp andCtot = Ctot/2 for two-port devices and
Rp = Rp andCtot = Ctot for one-port devices. Equation (11)
is not posynomial in nature. However, the specification for mini-
mum quality factor (QL ≥ QL,min) can be written as a posynomial
inequality in the design variables andQL,min,

QL,minRs

ωLsRp

[
Rp +

(ωLs)
2

Rs
+ Rs

]
+

Rs
2Ctot

Ls
+ ω2LsCtot ≤ 1.

(12)
We can therefore specify a minimum required quality factor. We
may also maximize the quality factor by maximizingQL,min sub-
ject to constraint (12).
Minimum self-resonance frequency.The self-resonance frequency
ωsr is the frequency at which the quality factorQL is zero (see [3]).
A condition on minimum self-resonance frequencyωsr ≥ ωsr,min,
can be written as the posynomial inequality

ω2
sr,minLsCtot +

R2
sCtot

Ls
≤ 1. (13)

Therefore we can handle a specification on minimum self-resonance
frequency and we can maximize the self-resonance frequency (by
maximizingωsr,min subject to constraint (13)).
Geometry constraints.The monomial inequalitiesw ≥ wmin and
s ≥ smin handle the processing constraints that limit the minimum
feature size. The inductor area can be constrained or minimized
using the monomial inequality,d2

out ≤ Amax.

The average radiusdavg is related to the other design variables
by the expressiondavg + (n − 1)s + nw = dout. Noting that
spacings is typically small compared todavg , dout andw, we can
recast this last equation as the posynomial constraint,

davg + ns + nw ≤ dout. (14)

For all the design examples shown in this paper constraint (14) is
always tight. However, there could be cases where this would not
be the case and then the validity of the assumption must be checked.

5 Optimal design of inductors

A common problem in inductor design is to maximize the qual-
ity factor for a given inductance value and for a minimum self-
resonance frequency. For example, in narrow-band LNA’s (see
Figure 4), the matching inductorLs is required to take a value
Ls = RsCgs/gm whereCgs andgm are determined by the tran-
sistor choice. Ideally, the inductor must have a high quality factor.

CBRs Lg

Ls

iout

vin

Figure 4: Narrow-band LNA (simplified circuit).

The design problem of the inductor can be formulated as,

maximize QL,min

subject to QL ≥ QL.min

L = Lreq

ωsr ≥ ωsr,min

. . .

(15)

Other constraints may be added (such as the minimum spacing
and turn width, the maximum area available, the maximum parallel
capacitance, etc. . . ). The point is that the design problem can be
formulated as a geometric program.

By repeatedly solving optimal design problems as we sweep
over values of some constraint, we obtain globally optimal trade-
off curves. For example, we can fix all other constraints, and re-
peatedly maximize the quality factor as we vary the required in-
ductance. The resulting curve shows the globally optimal trade-off
between quality factor and inductance value. In Figure 5 we show
the maximum quality factor at2.5GHz versus inductance value for
inductors with PGS. The design constraints areA > 400µm2,
w > 1.9µm, s > 1.9µm andωsr > 7GHz for curve 1 and un-
constrainedωsr for curve 2. Note that when the self-resonance fre-
quency is not constrained one obtains a higherQL. The details on
the test inductors built are shown in Table 1.

In Figure 6 we compare the performance of inductors with and
without PGS at an operating frequency of1.5GHz while meeting
A > 400µm2, w > 1.9µm, s > 1.9µm andωsr > 5GHz. The
PGS option is preferable for small inductors because the increase
in QL due to the elimination of substrate losses more than offsets
the degradation due to the increased oxide capacitance. However,
determining the point at which the use of a PGS is detrimental is
challenging. Each inductor design was obtained in approximately
one second real-time, and each trade-off curve was obtained in a
few seconds.

6 Design of inductors for LC resonators

Tuned amplifiers are widely used to provide gain at selective fre-
quencies. A simple tuned amplifier is shown in Figure 7. A sim-



Name n dout w s Ls

L1 4.75 206.3 7.8 1.9 6
L2 7.5 166.5 3.2 1.9 12
L3 9.5 152.9 1.9 1.9 18
L4 8 221.6 4.3 1.9 18
L5 3.75 292.2 13 1.9 6
L6 6.5 216.7 5.4 1.9 12

Table 1: Test inductors (dimensions in�m, inductance in nH,
tox;M5�poly=5:2�m, tM5=0:9�m, �M5=3 � 105(Ωcm)�1).
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Figure 5: Maximum QL at 2.5GHz versus inductance value.
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Figure 6: Maximum QL at 1.5GHz versus inductance value.

plified small-signal circuit is shown in Figure 8(a), where the tran-
sistor has been replaced by an ideal transconductance amplifier, the
ideal inductor has been replaced by a real inductor, andCad repre-
sents the additional load capacitanceCload. An equivalent small-
signal circuit is shown in Figure 8(b). For this application we define
the quality factor of the tank asQtank = Rtank/(ωresLtank). Note
that this quality factor is not the same as the inductor quality factor
QL sinceQtank does not account for capacitive losses.

Here, the design objective is to maximize the total parallel tank
impedance at a given resonance frequencyωres. For practical tank
quality factors (Qtank > 1.5), this is equivalent to maximizing the
real impedance at resonance. The tank can be modeled as,

• Tank inductance (Ltank), given by a posynomial,

Ltank =
[
1 + (Rs/(Lsω))2

]
Ls

Vdd

LC

vout

vin

Figure 7: LC resonator.
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Ctot CadRp

Rs

I
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Ltank CtankRtankI
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Figure 8: LC resonator small-signal circuit

• Tank capacitance (Ctank), given by a posynomial,

Ctank = Cad + Ctot = Cload + Ctot

• Tank resistance (Rtank), given by

Rtank = Rp ‖ Rs,p = (1/Rp + 1/Rs,p)−1

whereRs,p is the parallel equivalent ofRs. ForQtank > 1.5,
Rs,p can be approximated by a monomial,

Rs,p =
[
(1 + (Lsω/Rs)

2
]
Rs ≈ (Lsω)2 /Rs.

Since bothRp andRs,p are given by monomial expressions,
the inverse ofRtank is a posynomial function of the design
variables and therefore we can maximizeRtank.

• Tank quality factor ( Qtank). SinceLtank and the inverse of
Rtank are posynomial functions of the design variables, the
inverse ofQtank is posynomial and we can therefore maxi-
mizeQtank or impose a minimum required value.

Thus, a typical design problem can be posed as a geometric pro-
gram,

maximize Rtank

subject to LtankCtank ≤ 1/ω2
res

Qtank ≥ Qtank,min

Cload ≤ Cload,max

. . .

(16)

Note that the inequality on the resonance frequency (LtankCtank ≤
1/ω2

res) is always tight if there is no limit on the inductor area
(i.e., it is practically an equality). The reason is that if it were not
tight, the inductor could contribute additional capacitance to the
tank, which in turn would improveQtank andRtank. One can also
add other design constraints (such as the ones shown in§4) and the
design problem will still be a geometric program.

7 Design of inductors for LC tunable oscillators

We now extend the work of§6 to the design of tuned resonators,
commonly found in LC oscillators. Figure 8 shows the differential
half-circuit of the LC oscillator of Figure 9. In this caseCad is the
sum of the load capacitanceCload and a variable capacitorCvar
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Figure 9: LC oscillator.

whose range isCmin ≤ Cvar ≤ Cmax. The ratioCmax/Cmin is
limited (≤ α) but the values ofCmax andCmin are not limited.
Typically, the design goal is to maximize the parallel resistance
for a given tuning range. The tuning range is specified with two
constraints

Ltank (Cload + Ctot + Cmin) ≤ 1/ω2
max (17)

Ltank (Cload + Ctot + Cmax) ≥ 1/ω2
min. (18)

Constraint (18) is not posynomial and cannot be handled di-
rectly by GP. Note though, that constraint (17) is generally tight (if
it were loose it would mean that an inductor with wider turns could
be used and a betterRtank could be obtained). The fact that con-
straint (17) is always tight allows us to indirectly handle constraint
(18). We can rewrite constraint (18) as,

ω2
min (Cload + Ctot + Cmax) ≥ ω2

max (Cload + Ctot + Cmin) .

Now we letr = ω2
res,max/ω2

res,min, and obtain

(r − 1)(Ctot + Cload)/Cmax + rCmin/Cmax ≤ 1. (19)

Therefore, we can substitute the constraint (18) by the posynomial
constraint (19). The typical design problem can be written as,

maximize Rtank

subject to L (Cload + Ctot + Cmin) ≤ 1/ω2
max

(r − 1)(Ctot + Cload)/Cmax + rCmin/Cmax ≤ 1
Cmin ≥ αCmax

Qtank ≥ Qtank,min

. . .
(20)

8 Design of inductors for shunt-peaked amplifiers

Consider a single-pole common source amplifier (Figure 10(a))
with ω3dB ≈ 1/RCload. The introduction of an inductance in se-
ries with the resistance (see Figure 10(b)) generates a double-pole,
single-zero system whose frequency response is determined by the
time constant ratiom = R2Cload/L. The optimal value ofm is
determined by whether the design goal is to maximize bandwidth,
minimize group delay or achieve a maximally flat response [6].

In on-chip implementations, the series resistance of the spiral
inductor is absorbed within the gain resistor,R, and the capacitance
of the inductorCtot is added to the load capacitanceCload. The
goal is to minimize the capacitance added by the inductor so that
a large bandwidth extension can be obtained. The shunt-peaked
amplifier problem can then be written as a geometric program,

minimize Ctank

subject to Ltank = R2Ctank/m
w > wmin

Ctank ≥ Cload + Ctot

. . .

(21)
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Figure 10: Shunt peaking example.

Note that the constraintCtank ≥ Cload + Ctot is always tight.
If it were not tight we would be able to obtain a smaller value for
Ctank, and the result would not be optimal.

9 Conclusions and Extensions

In this paper, we have exhibited how the design specifications of
many inductor circuits can be represented by posynomial expres-
sions. This representation enables us to translate the design goals
into geometric programs which permit the circuits to be optimized
efficiently and globally. The results of such optimization have been
verified by experiments.

One can quickly plot tradeoff curves between different speci-
fications, allowing an easy exploration of the design space. The
versatility of geometric programming allows this method to be ap-
plied to a more general class of circuit design [7], and gives the
designer the luxury of simultaneously optimizing all passive and
active components in a variety of circuit architectures.
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