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Simple Accurate Expressions for Planar Spiral Inductances
Sunderarajan S. Mohan, Maria del Mar Hershenson, Stephen P. Boyd, and Thomas H. Lee

Abstract—We present several new simple and accurate expres-
sions for the DC inductance of square, hexagonal, octagonal,
and circular spiral inductors. We evaluate the accuracy of our
expressions, as well as several previously published inductance
expressions, in two ways: by comparison with three-dimensional
field solver predictions and by comparison with our own measure-
ments, and also previously published measurements. Our simple
expression matches the field solver inductance values typically
within around 3%, about an order of magnitude better than
the previously published expressions, which have typical errors
around 20% (or more). Comparison with measured values gives
similar results: our expressions (and, indeed, the field solver
results) match within around 5%, compared to errors of around
20% for the previously published expressions. (We believe most
of the additional errors in the comparison to published measured
values is due to the variety of experimental conditions under
which the inductance was measured.)

Our simple expressions are accurate enough for design and
optimization of inductors or of circuits incorporating inductors.
Indeed, since inductor tolerance is typically on the order of sev-
eral percent, “more accurate” expressions are not really needed
in practice.

Index Terms—CMOS analog integrated circuits, inductors,
integrated circuit design, integrated circuit modeling.

I. INTRODUCTION

T HE RISING demand for low-cost radio frequency in-
tegrated circuits (RF-IC’s) has generated tremendous

interest in on-chip passive components [1]. Currently, there
are several integrated resistor and capacitor options and most
of these implementations are easy to model. Considerable
effort has also gone into the design and modeling of inductor
implementations, of which the only practical options are bond
wires and planar spiral geometries. Although bond wires
permit a high quality factor ( ) to be achieved, with typical

’s in the 20–50 range, their inductance values are constrained
and can be rather sensitive to production fluctuations. On the
other hand, planar spiral inductors have limited’s, but have
inductances that are well-defined over a broad range of process
variations. Thus, planar spiral inductors have become essential
elements of communication circuit blocks such as voltage
controlled oscillators (VCO’s), low-noise amplifiers (LNA’s),
mixers, and intermediate frequency filters (IFF’s).

Square spirals are popular because of the ease of their
layout. Squares are generated easily even in simple Manhattan-
style layout tools (such as MAGIC). However, other polygonal
spirals have also been used in circuit design. Some designers
prefer polygons with more than four sides to improve per-
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formance. Among these, hexagonal and octagonal inductors
are used widely. Fig. 1(a)–(d) shows the layout for square,
hexagonal, octagonal, and circular inductors, respectively. For
a given shape, an inductor is completely specified by the
number of turns , the turn width , the turn spacing , and
any one of the following: the outer diameter , the inner
diameter , the average diameter ,
or the fill ratio, defined as .
The thickness of the inductor has only a very small effect on
inductance and will therefore be ignored in this paper.

To facilitate the design of such components, significant work
has gone into modeling spiral inductors using lumped circuit
models [2], [3]. Fig. 2 illustrates a commonly used model.
The parasitic resistors and capacitors in this model have simple
physically intuitive expressions, but the inductance value lacks
a simple but accurate expression.

This inductance can be computed exactly by solving
Maxwell’s equations. A very accurate numerical solution may
be obtained by using a three-dimensional (3-D) finite-element
simulator such as MagNet [4]. However, 3-D simulators
are computationally intensive and require long run times,
and so are more appropriate fordesign verificationthan
the design of an inductor. Another technique is to use the
Greenhouse method [2], [5], [6] to compute the inductance.
The Greenhouse method offers sufficient accuracy and
adequate speed, but cannot provide an inductor design directly
from specifications and is cumbersome for initial design.

At the other extreme we can use a simple approximate
expression for the inductance [7]–[10]. While the simple
expressions do predict the correct order of magnitude of
the inductance, typical errors are 20% or more, which is
unacceptable for circuit design and optimization.

In Section II, we describe new approximate expressions for
the inductance of square, hexagonal, octagonal, and circular
planar inductors. The first approximation is based on a modifi-
cation of an expression developed by Wheeler [11]; the second
is derived from electromagnetic principles by approximating
the sides of the spirals as current-sheets; and the third is a
monomial expression derived from fitting to a large database
of inductors (and the exact inductance values). All three
expressions are accurate, with typical errors of 2–3%, and
very simple, and are therefore excellent candidates for use
in design and synthesis.

The accuracy of these approximate expressions was eval-
uated in two ways: with field solver simulations and also
with measurement data. For simulations, we used ASITIC,
a simplified field solver geared for the design of inductors
and transformers [12]. We used a wide range of inductors,
with varying from 100–480 m, varying from 0.5–100
nH, varying from 2 m to 0.3 , varying from 2
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Fig. 1. On-chip inductor realizations: (a) square, (b) hexagonal, (c) octagonal, and (d) circular.

Fig. 2. Lumped inductor model.

m to 3 , and varying from – . A total of
19 000 inductors were simulated using the program ASITIC,
spanning the entire design space that is of use for RF circuit
designs. (We did not consider inductors larger than 100 nH,
since such inductors have a total length great enough that
they can no longer be considered lumped at frequencies of
interest. See [13] for further discussion of this topic.) Our
approximate expressions were also verified using around 60
measurement results that have been reported in the literature.
Both previously published expressions and our expressions are
compared to these measurements in Section IV. We summarize
our findings in Section V.

II. NEW EXPRESSIONS

In this section we describe our new expressions for the
inductance.

A. Modified Wheeler Formula

Wheeler [11] presented several formulas for planar spiral
inductors, which were intended for discrete inductors. We
have found that a simple modification of the original Wheeler
formula allows us to obtain an expression that is valid for
planar spiral integrated inductors

(1)

where is the fill ratio defined previously. The coefficients
and are layout dependent and are shown in Table I.

The ratio represents how hollow the inductor is: for small
we have a hollow inductor ( ) and for a large

we have a full inductor ( ). Two inductors with the
same average diameter but different fill ratios will, of course,
have different inductance values. The full one has a smaller
inductance because its inner turns are closer to the center of
the spiral and so contribute less positive mutual inductance
and more negative mutual inductance.

B. Expression Based on Current Sheet Approximation

Another simple and accurate expression for the inductance
of a planar spiral can be obtained by approximating the sides
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TABLE I
COEFFICIENTS FORMODIFIED WHEELER EXPRESSION

TABLE II
COEFFICIENTS FORCURRENT SHEET EXPRESSION

of the spirals by symmetrical current sheets of equivalent
current densities [14]. For example, in the case of the square,
we obtain four identical current sheets. The current sheets
on opposite sides are parallel to one another, whereas the
adjacent ones are orthogonal. Using symmetry and the fact
that sheets with orthogonal current sheets have zero mutual
inductance, the computation of the inductance is now reduced
to evaluating the self-inductance of one sheet and the mu-
tual inductance between opposite current sheets. These self-
and mutual inductances are evaluated using the concepts of
geometric mean distance (GMD), arithmetic mean distance
(AMD), and arithmetic mean square distance (AMSD [14],
[15]). The resulting expression is

(2)

where the coefficients are layout dependent and are shown
in Table II. Although the accuracy of this expression worsens
as the ratio becomes large, it exhibits a maximum error
of 8% for . Note that typical practical integrated
spiral inductors are built with . The reason is that a
smaller spacing improves the interwinding magnetic coupling
and reduces the area consumed by the spiral. A large spacing
is only desired to reduce the interwinding capacitance. In
practice, this is not a concern as this capacitance is dwarfed
by the underpass capacitance [2].

C. Data Fitted Monomial Expression

Our final expression is based on a data fitting technique,
which yielded the expression

(3)

where the coefficients and are layout dependent and given
in Table III. The expression in (3) is called amonomial in
the variables , , , , and . The coefficients were
obtained as follows. We first change variables to use the
logarithms of the variables:

. Taking the logarithm of the
inductance as well we can express the monomial relation (3) as

where . This is a linear-plus-constant model of
as a function of , and is easily fit by various regression

TABLE III
COEFFICIENTS FORDATA-FITTED MONOMIAL EXPRESSION

or data-fitting techniques. To develop our models we used a
simple least-squares fit: we chose to minimize

where the sum is over our family of inductors (so
19 000). It is also possible to use more sophisticated data-
fitting techniques, e.g., one which minimizes the maximum
error of the fit, or one in which the coefficients must satisfy
given inequalities or bounds.

Since the monomial expression is developed from
our library of inductors, it is important to check that it has
predictive ability as well, by checking its error on inductors not
in the library. Such tests reveal that the fit for such inductors
is as good as the fit for the ones in the family from which the
model was developed. This is hardly surprising since the fitting
method compresses 19 000 numbers (i.e., the inductances) to
six (i.e., the monomial coefficients), and so is not prone to
“over-fitting.”

The monomial expression is useful since, like the other
expressions, it is very accurate and very simple. Its real
use, however, is that it can be used for optimal design of
inductors and circuits containing inductors, usinggeometric
programming,which is a type of optimization problem that
uses monomial models [16].

III. COMPARISON TO FIELD SOLVERS

In this section we analyze the error distributions of our
expressions as well as previously published expressions by
comparing them to the inductance computed using the field
solver ASITIC.

Fig. 3(a) shows the error distributions of previously reported
expressions, when compared to the inductance computed using
the field solver ASITIC [7]–[10]. We define the absolute
percentage error of an approximationof an inductance as

. The horizontal axis gives an absolute percentage
error level, and the vertical axis shows the fraction of inductors
(out of a family of 19 000) with error exceeding the specified
level. Roughly speaking, the closer the error distribution curve
to the axis, the more accurate the expression. We can
determine several important statistics from the curves. By
following the horizontal line at the 50% level, we can read
off the median error for each approximation. By following a
vertical line at some level of error we can find the fraction
of inductors for which the approximation was at least that
accurate. The maximum error is given by the point where the
curve hits the axis. Consider, for example, the solid curve
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TABLE IV
COMPARISON OFMEASURED INDUCTANCE VALUES WITH FIELD SOLVER INDUCTANCE VALUES AND THE VARIOUS APPROXIMATE EXPRESSIONS
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(a) (b)

(c) (d)

Fig. 3. Error distributions for: (a) previous expressions versus field solver simulations, (b) new expressions versus field solver simulations, (c) previous
expressions versus measurements, and (d) new expressions versus measurements.

which corresponds to Crols’ expression. The median error is
about 18%; we can also see that the maximum error is around
25%. All of the expressions described above have significant
mean offset errors, i.e., they tend to over or underestimate
inductance. However, even if the expressions are scaled to
zero mean error (by multiplying each by a constant correction
factor or adding a fixed offset) the errors are still typically
around 15–20%, and in some cases larger.

Fig. 3(b) shows the absolute error distributions for our
expressions, using the same format as in Fig. 3(a), but with
a different horizontal scale since the errors here are smaller.
The plots show that the typical errors are in the 1–2% range,
and most of the errors are smaller than 3%, almost an order of
magnitude smaller than the previously published expressions
shown in Fig. 3(a). Our expressions for inductance, while com-
parable in complexity to the previously reported expressions,
exhibit substantially better accuracy.

IV. M EASUREMENT RESULTS

In this section, we compare the inductance values predicted
by all the approximate expressions with 60 measured induc-
tance values. In Table IV we compare the measured inductance
values with those predicted by the various expressions. The
first fifteen inductors shown in Table IV were fabricated using
the top metal level (of thickness 0.9m) of a 0.35 m
CMOS process. The data for the remaining inductors were

obtained from previously published work. The first column in
Table IV gives the inductor number; the second column shows
the source of the inductor data; the third column shows the
number of sides; the fourth is the number of turns (); the fifth,
sixth, and seventh columns are the outer diameter () turn
width ( ) and spacing () in m; the eighth column shows the
measured or reported value of the inductance ( ) in nH. In
the ninth column we give the percent relative error between

and ( predicted by ASITIC), which we define as
. In the final three columns

we give the corresponding relative errors , , and
for our inductance expressions (1), (2), and (3), respectively.

We observe close agreement between our expressions and
the measured data, with larger errors for the smaller inductors.
The reason, as explained in [17], is that the parasitic inductance
inherent in the measurement setup results in large relative
errors for low inductances values.

Fig. 3(c) compares the experimental values to the induc-
tances predicted by previously published expressions, while
Fig. 3(d) compares the experimental values to the inductance
predicted by our formulas as well as ASITIC. Once again,
it is clear that our expressions exhibit much smaller errors
compared to the previous ones. It is also interesting to note
how well the predictions of ASITIC compare to our expres-
sions. This is particularly of interest in those few cases where
the errors between experiment and our expressions approach
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20%, which suggests substantial measurement errors, either in
calibration or parameter extraction. More important, it is clear
that our expressions perform as well as a field solver.

We can also put the accuracy of our formulas in the context
of other variations and uncertainties in a spiral inductor.
A major limitation in the design, modeling, and simulation
of spirals is the uncertainty in the oxide thickness due to
process variations. Process variations can cause the parasitic
capacitances in the inductor model to vary by around 5–10%.
These variations translate to an uncertainty in the impedance
of the spiral that is of the same order of magnitude as the
errors introduced by our expressions. This limitation suggests
that inductance expressions with better accuracies than what
we have achieved are not necessary and that our expressions
are acceptable for use in circuit design and optimization.

V. CONCLUSIONS

In this paper, we have presented three simple, approxi-
mate expressions for spiral inductors of square, hexagonal,
octagonal, and circular geometries. The first expression, called
the modified Wheeler expression, is obtained by modifying
an expression that Wheeler obtained for discrete inductors.
This expression is simple and gives very good accuracy. The
second expression is derived from electromagnetic principles
by approximating the sides of the spiral by current sheets with
uniform current distribution. This expression is intuitive and
similar in form to inductance expressions for more conven-
tional elements such as coaxial transmission lines and parallel
wire transmission lines. The third expression is obtained
by data-fitting techniques. Although it lacks the physically
intuitive derivation of the other two approximations, it is
very well suited for optimization of circuits using geometric
programming.

All three expressions match field solver simulations well,
with typical errors of 1–2%, and most errors smaller than
around 3%. This represents a great improvement over pre-
viously published expressions, which have typical errors of
around 20% or more. When compared to experimental data,
the errors of our three expressions are comparable to the errors
of a field solver, which suggests that the errors may be due, at
least in part, to measurement error. The simplicity, versatility,
and robustness of our expressions make them good candidates
for circuit design and optimization applications. They can be
included in a physical, scalable lumped-circuit model for spiral
inductors, where, in addition to providing design insight, they
allow efficient optimization schemes to be employed.
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