Convex Optimization of Graph Laplacian Eigenvalues

Stephen Boyd

Stanford University

(Joint work with Persi Diaconis, Arpita Ghosh, Seung-Jean Kim, Sanjay Lall, Pablo Parrilo, Amin Saberi, Jun Sun, Lin Xiao. Thanks to Almir Mutapcic.)

ICM 2006 Madrid, August 29, 2006

Outline

- some basic stuff we'll need
 - graph Laplacian eigenvalues
 - convex optimization and semidefinite programming
- the basic idea
- some example problems
 - distributed linear averaging
 - fastest mixing Markov chain on a graph
 - fastest mixing Markov process on a graph
 - its dual: maximum variance unfolding
- conclusions

Outline

- some basic stuff we'll need
 - graph Laplacian eigenvalues
 - convex optimization and semidefinite programming
- the basic idea
- some example problems
 - distributed linear averaging
 - fastest mixing Markov chain on a graph
 - fastest mixing Markov process on a graph
 - its dual: maximum variance unfolding
- conclusions

(Weighted) graph Laplacian

- graph G = (V, E) with n = |V| nodes, m = |E| edges
- edge weights $w_1, \ldots, w_m \in \mathbf{R}$
- $l \sim (i,j)$ means edge l connects nodes i, j

• incidence matrix:
$$A_{il} = \begin{cases} 1 & \text{edge } l \text{ enters node } i \\ -1 & \text{edge } l \text{ leaves node } i \\ 0 & \text{otherwise} \end{cases}$$

• (weighted) Laplacian: $L = A \operatorname{diag}(w) A^T$

•
$$L_{ij} = \begin{cases} -w_l & l \sim (i,j) \\ \sum_{l \sim (i,k)} w_l & i = j \\ 0 & \text{otherwise} \end{cases}$$

Laplacian eigenvalues

- L is symmetric; $L\mathbf{1} = 0$
- we'll be interested in case when L ≥ 0 (*i.e.*, L is PSD) (always the case when weights nonnegative)
- Laplacian eigenvalues (eigenvalues of *L*):

$$0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$$

spectral graph theory connects properties of graph, and λ_i (with w = 1)
 e.g.: G connected iff λ₂ > 0 (with w = 1)

Convex spectral functions

- suppose ϕ is a symmetric convex function in n-1 variables
- then $\psi(w) = \phi(\lambda_2, \dots, \lambda_n)$ is a convex function of weight vector w
- examples:

-
$$\phi(u) = \mathbf{1}^T u$$
 (*i.e.*, the sum):

$$\psi(w) = \sum_{i=2}^{n} \lambda_i = \sum_{i=1}^{n} \lambda_i = \operatorname{Tr} L = 2\mathbf{1}^T w \qquad \text{(twice the total weight)}$$

-
$$\phi(u) = \max_i u_i$$
:
 $\psi(w) = \max\{\lambda_2, \dots, \lambda_n\} = \lambda_n$ (spectral radius)

More examples

• $\phi(u) = \min_i u_i$ (concave) gives $\psi(w) = \lambda_2$, algebraic connectivity (concave function of w)

•
$$\phi(u) = \sum_{i} 1/u_i$$
 (with $u_i > 0$):

$$\psi(w) = \sum_{i=2}^{n} \frac{1}{\lambda_i}$$

proportional to *total effective resistance* of graph, $\mathbf{Tr} L^{\dagger}$

Outline

- some basic stuff we'll need
 - graph Laplacian eigenvalues
 - convex optimization and semidefinite programming
- the basic idea
- some example problems
 - distributed linear averaging
 - fastest mixing Markov chain on a graph
 - fastest mixing Markov process on a graph
 - its dual: maximum variance unfolding
- conclusions

Convex optimization

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathcal{X} \end{array}$

- $x \in \mathbf{R}^n$ is optimization variable
- f is convex function (can maximize concave f by minimizing -f)
- $\mathcal{X} \subseteq \mathbf{R}^n$ is closed convex set
- roughly speaking, convex optimization problems are tractable, 'easy' to solve numerically (tractability depends on how f and \mathcal{X} are described)

Symmetry in convex optimization

- permutation (matrix) π is a symmetry of problem if $f(\pi z) = f(z)$ for all $z, \pi z \in \mathcal{X}$ for all $z \in \mathcal{X}$
- if π is a symmetry and the convex optimization problem has a solution, it has a solution invariant under π

(if x^* is a solution, so is average over $\{x^*, \pi x^*, \pi^2 x^*, \ldots\}$)

Duality in convex optimization

primal: minimize
$$f(x)$$
 dual: maximize $g(y)$ subject to $x \in \mathcal{X}$ dual: subject to $y \in \mathcal{Y}$

- y is dual variable; dual objective g is concave; \mathcal{Y} is closed, convex (various methods can be used to generate g, \mathcal{Y})
- $p^{\star}(d^{\star})$ is optimal value of primal (dual) problem
- weak duality: for any $x \in \mathcal{X}$, $y \in \mathcal{Y}$, $f(x) \ge g(y)$; hence, $p^* \ge g(y)$
- strong duality: for convex problems, provided a 'constraint qualification' holds, there exist x^{*} ∈ X, y^{*} ∈ Y with f(x^{*}) = g(y^{*}) hence, x^{*} is primal optimal, y^{*} is dual optimal, and p^{*} = d^{*}

Semidefinite program (SDP)

a particular type of convex optimization problem

minimize
$$c^T x$$

subject to $\sum_{i=1}^n x_i A_i \preceq B$, $Fx = g$

- variable is $x \in \mathbf{R}^n$; data are c, F, g, symmetric matrices A_i , B
- \leq means with respect to positive semidefinite cone
- generalization of linear program (LP)

minimize
$$c^T x$$

subject to $\sum_{i=1}^n x_i a_i \le b$, $Fx = g$

(here a_i , b are vectors; \leq means componentwise)

SDP dual

primal SDP:

minimize
$$c^T x$$

subject to $\sum_{i=1}^n x_i A_i \preceq B$, $Fx = g$

dual SDP:

maximize
$$-\operatorname{Tr} ZB - \nu^T g$$

subject to $Z \succeq 0$, $(F^T \nu + c)_i + \operatorname{Tr} ZA_i = 0$, $i = 1, \dots, n$

with (matrix) variable Z, (vector) ν

SDP algorithms and applications

since 1990s,

- recently developed interior-point algorithms solve SDPs very effectively (polynomial time, work well in practice)
- many results for LP extended to SDP
- SDP widely used in many fields

(control, combinatorial optimization, machine learning, finance, signal processing, communications, networking, circuit design, mechanical engineering, . . .)

Outline

- some basic stuff we'll need
 - graph Laplacian eigenvalues
 - convex optimization and semidefinite programming
- the basic idea
- some example problems
 - distributed linear averaging
 - fastest mixing Markov chain on a graph
 - fastest mixing Markov process on a graph
 - its dual: maximum variance unfolding
- conclusions

The basic idea

some interesting weight optimization problems have the common form

minimize $\phi(w) = \phi(\lambda_2, \dots, \lambda_n)$ subject to $w \in \mathcal{W}$

where ϕ is symmetric convex, and ${\mathcal W}$ is closed convex

- these are convex optimization problems
- we can solve them numerically (up to our ability to store data, compute eigenvalues . . .)
- for some simple graphs, we can get analytic solutions
- associated dual problems can be quite interesting

Outline

- some basic stuff we'll need
 - graph Laplacian eigenvalues
 - convex optimization and semidefinite programming
- the basic idea
- some example problems
 - distributed linear averaging
 - fastest mixing Markov chain on a graph
 - fastest mixing Markov process on a graph
 - its dual: maximum variance unfolding
- conclusions

Distributed averaging

- each node of connected graph has initial value $x_i(0) \in \mathbf{R}$; goal is to compute average $\mathbf{1}^T x(0)/n$ using distributed iterative method
- applications in load balancing, distributed optimization, sensor networks

Distributed linear averaging

• simple linear iteration: replace each node value with weighted average of its own and its neighbors' values; repeat

$$x_i(t+1) = W_{ii}x_i(t) + \sum_{j \in \mathcal{N}_i} W_{ij}x_j(t)$$
$$= x_i(t) - \sum_{j \in \mathcal{N}_i} W_{ij} \left(x_i(t) - x_j(t)\right)$$

where $W_{ii} + \sum_{j \in \mathcal{N}_i} W_{ij} = 1$

- we'll assume $W_{ij} = W_{ji}$, *i.e.*, weights symmetric
- weights W_{ij} determine whether convergence to average occurs, and if so, how fast
- classical result: convergence if weights W_{ij} $(i \neq j)$ are small, positive

Convergence rate

- vector form: x(t+1) = Wx(t) (we take $W_{ij} = 0$ for $i \neq j$, $(i,j) \notin E$)
- W satisfies $W = W^T$, $W\mathbf{1} = \mathbf{1}$
- convergence $\iff \lim_{t\to\infty} W^t = (1/n)\mathbf{1}\mathbf{1}^T \iff$

$$\rho(W - (1/n)\mathbf{1}\mathbf{1}^T) = ||W - (1/n)\mathbf{1}\mathbf{1}^T|| < 1$$

 ρ is spectral radius; $\|\cdot\|$ is spectral norm

- asymptotic convergence rate given by $\|W (1/n)\mathbf{1}\mathbf{1}^T\|$
- convergence time is $\tau = -1/\log \|W (1/n)\mathbf{1}\mathbf{1}^T\|$

Connection to Laplacian eigenvalues

- identifying $W_{ij} = w_l$ for $l \sim (i, j)$, we have W = I L
- convergence rate given by

$$||W - (1/n)\mathbf{1}\mathbf{1}^{T}|| = ||I - L - (1/n)\mathbf{1}\mathbf{1}^{T}||$$
$$= \max\{|1 - \lambda_{2}|, \dots, |1 - \lambda_{n}|\}$$
$$= \max\{1 - \lambda_{2}, \lambda_{n} - 1\}$$

... a convex spectral function, with $\phi(u) = \max_i |1 - u_i|$

Fastest distributed linear averaging

 $\begin{array}{ll} \text{minimize} & \|W - (1/n) \mathbf{1} \mathbf{1}^T\| \\ \text{subject to} & W \in \mathcal{S}, \quad W = W^T, \quad W \mathbf{1} = \mathbf{1} \end{array}$

optimization variable is W; problem data is graph (sparsity pattern S) in terms of Laplacian eigenvalues

minimize
$$\max\{1 - \lambda_2, \lambda_n - 1\}$$

with variable $w \in \mathbf{R}^m$

- these are convex optimization problems
- so, we can efficiently find the weights that give the fastest possible averaging on a graph

Semidefinite programming formulation

introduce scalar variable \boldsymbol{s} to bound spectral norm

minimize
$$s$$

subject to $-sI \preceq I - L - (1/n)\mathbf{1}\mathbf{1}^T \preceq sI$

(for
$$Z = Z^T$$
, $||Z|| \le s \iff -sI \le Z \le sI$)

an SDP (hence, can be solved efficiently)

Constant weight averaging

- a simple, traditional method: constant weight on all edges, $w = \alpha \mathbf{1}$
- yields update

$$x_i(t+1) = x_i(t) + \sum_{j \in \mathcal{N}_i} \alpha(x_j(t) - x_i(t))$$

- a simple choice: max-degree weight, $\alpha = 1/\max_i d_i$ d_i is degree (number of neighbors) of node i
- best constant weight: $\alpha^* = \frac{2}{\lambda_2 + \lambda_n}$ (λ_2 , λ_n are eigenvalues of unweighted Laplacian, *i.e.*, with w = 1)
- for edge transitive graph, $w_l = \alpha^*$ is optimal

A small example

	max-degree	best constant	optimal
$\rho = \ W - (1/n)11^T\ $	0.779	0.712	0.643
$\tau = 1/\log(1/\rho)$	4.01	2.94	2.27

Optimal weights

(note: some are negative!)

 $\lambda_i(W)$: -.643, -.643, -.106, 0.000, .368, .643, .643, 1.000

Larger example

 $50~\mathrm{nodes},~200~\mathrm{edges}$

	max-degree	best constant	optimal
$\rho = \ W - (1/n)11^T\ $.971	.947	.902
$\tau = 1/\log(1/\rho)$	33.5	18.3	9.7

Eigenvalue distributions

Optimal weights

 $69 \ {\rm out} \ {\rm of} \ 250$ are negative

Another example

- a cut grid with $n=64~{\rm nodes},~m=95~{\rm edges}$
- edge width shows weight value (red for negative)
- $\tau = 85$; max-degree $\tau = 137$

Some questions & comments

- how much better are the optimal weights than the simple choices?
 - for barbell graphs $K_n K_n$, optimal weights are unboundedly better than max-degree, optimal constant, and several other simple weight choices
- what size problems can be handled (on a PC)?
 - interior-point algorithms easily handle problems with 10^4 edges
 - subgradient-based methods handle problems with 10^6 edges
 - any symmetry can be exploited for efficiency gain
- what happens if we *require* the weights to be nonnegative?
 - (we'll soon see)

Least-mean-square average consensus

- include random noise in averaging process: x(t+1) = Wx(t) + v(t)v(t) i.i.d., $\mathbf{E}v(t) = 0$, $\mathbf{E}v(t)v(t)^T = I$
- steady-state mean-square deviation:

$$\delta_{ss} = \lim_{t \to \infty} \mathbf{E} \left(\frac{1}{n} \sum_{i < j} (x_i(t) - x_j(t))^2 \right) = \sum_{i=2}^n \frac{1}{\lambda_i (2 - \lambda_i)}$$

for $\rho = \max\{1 - \lambda_2, \lambda_n - 1\} < 1$

• another convex spectral function

Outline

- some basic stuff we'll need
 - graph Laplacian eigenvalues
 - convex optimization and semidefinite programming
- the basic idea
- some example problems
 - distributed linear averaging
 - fastest mixing Markov chain on a graph
 - fastest mixing Markov process on a graph
 - its dual: maximum variance unfolding
- conclusions

Random walk on a graph

• Markov chain on nodes of G, with transition probabilities on edges

$$P_{ij} = \operatorname{\mathbf{Prob}} \left(X(t+1) = j \mid X(t) = i \right)$$

- we'll focus on symmetric transition probability matrices *P* (everything extends to reversible case, with fixed equilibrium distr.)
- identifying P_{ij} with w_l for $l \sim (i, j)$, we have P = I L
- same as linear averaging matrix W, but here W_{ij} ≥ 0 (*i.e.*, w ≥ 0, diag(L) ≤ 1)

Mixing rate

- probability distribution $\pi_i(t) = \mathbf{Prob}(X(t) = i)$ satisfies $\pi(t+1)^T = \pi(t)^T P$
- since $P = P^T$ and $P\mathbf{1} = \mathbf{1}$, uniform distribution $\pi = (1/n)\mathbf{1}$ is stationary, *i.e.*, $((1/n)\mathbf{1})^T P = ((1/n)\mathbf{1})^T$
- $\pi(t) \rightarrow (1/n) \mathbf{1}$ for any $\pi(0)$ iff

$$\mu = \|P - (1/n)\mathbf{1}\mathbf{1}^T\| = \|I - L - (1/n)\mathbf{1}\mathbf{1}^T\| < 1$$

 μ is called second largest eigenvalue modulus (SLEM) of MC

• SLEM determines convergence (mixing) rate, *e.g.*,

$$\sup_{\pi(0)} \|\pi(t) - (1/n)\mathbf{1}\|_{tv} \le (\sqrt{n}/2) \,\mu^t$$

• associated mixing time is $\tau = 1/\log(1/\mu)$

Fastest mixing Markov chain problem

minimize
$$\mu = \|I - L - (1/n)\mathbf{1}\mathbf{1}^T\| = \max\{1 - \lambda_2, \lambda_n - 1\}$$

subject to $w \ge 0$, $\operatorname{diag}(L) \le \mathbf{1}$

- optimization variable is w; problem data is graph G
- same as fast linear averaging problem, with additional nonnegativity constraint $W_{ij} \ge 0$ on weights
- convex optimization problem (indeed, SDP), hence efficiently solved

Two common suboptimal schemes

- max-degree chain: $w = (1 / \max_i d_i) \mathbf{1}$
- Metropolis-Hastings chain: $w_l = \frac{1}{\max\{d_i, d_j\}}$, where $l \sim (i, j)$

(comes from Metropolis method of generating reversible MC with uniform stationary distribution)

Small example

optimal transition probabilities (some are zero)

	max-degree	MH.	optimal	(fastest avg)
SLEM μ	.779	.774	.681	(.643)
mixing time $ au$	4.01	3.91	2.60	(2.27)

Larger example

50 nodes, 200 edges

Optimal transition probabilities

- 82 edges (out of 200) edges have zero transition probability
- distribution of positive transition probabilities:

Subgraph with positive transition probabilities

Another example

- a cut grid with $n=64~{\rm nodes},~m=95~{\rm edges}$
- edge width shows weight value (dotted for zero)
- mixing time $\tau = 89$; Metropolis-Hastings mixing time $\tau = 120$

Some analytical results

- for path, fastest mixing MC is obvious one $(P_{i,i+1} = 1/2)$
- for any edge-transitive graph (hypercube, ring, ...), all edge weights are equal, with value $2/(\lambda_2 + \lambda_n)$ (unweighted Laplacian eigenvalues)

Commute time for random walk on graph

- P_{ij} proportional to w_l , for $l \sim (i, j)$; $P_{ii} = 0$
- *P* not symmetric, but MC is reversible
- can normalize w as $\mathbf{1}^T w = 1$
- commute time C_{ij} : time for random walk to return to *i* after visiting *j*
- expected commute time averaged over all pairs of nodes is

$$\overline{C} = \frac{1}{n^2} \sum_{i,j=1}^{n} \mathbf{E} C_{ij} = \frac{2}{(n-1)} \sum_{i=2}^{n} \frac{1}{\lambda_i}$$

(Chandra et al, 1989)

• called *total effective resistance* . . . another convex spectral function

Minimizing average commute time

find weights that minimize average commute time on graph:

$$\begin{array}{ll} \text{minimize} & \overline{C} = 2/(n-1)\sum_{i=2}^n 1/\lambda_i\\ \text{subject to} & w \geq 0, \quad \mathbf{1}^T w = 1 \end{array}$$

• another convex problem of our general form

Outline

- some basic stuff we'll need
 - graph Laplacian eigenvalues
 - convex optimization and semidefinite programming
- the basic idea
- some example problems
 - distributed linear averaging
 - fastest mixing Markov chain on a graph
 - fastest mixing Markov process on a graph
 - its dual: maximum variance unfolding
- conclusions

Markov process on a graph

- (continuous-time) Markov process on nodes of G, with transition rate $w_l \ge 0$ between nodes i and j, for $l \sim (i, j)$
- probability distribution $\pi(t) \in \mathbf{R}^n$ satisfies heat equation $\dot{\pi}(t) = -L\pi(t)$
- $\pi(t) = e^{-tL}\pi(0)$
- $\pi(t)$ converges to uniform distribution $(1/n)\mathbf{1}$, for any $\pi(0)$, iff $\lambda_2 > 0$
- (asymptotic) convergence as $e^{-\lambda_2 t}$; λ_2 gives mixing rate of process
- λ_2 is concave, homogeneous function of w(come from symmetric concave function $\phi(u) = \min_i u_i$)

Fastest mixing Markov process on a graph

$$\begin{array}{ll} \text{maximize} & \lambda_2 \\ \text{subject to} & \sum_l d_l^2 w_l \leq 1, \qquad w \geq 0 \end{array}$$

- variable is $w \in \mathbf{R}^m$; data is graph, normalization constants $d_l > 0$
- a convex optimization problem, hence easily solved
- allocate rate across edges so as maximize mixing rate
- constraint is always tight at solution, i.e., $\sum_l d_l^2 w_l = 1$
- when $d_l^2 = 1/m$, optimal value is called *absolute algebraic connectivity*

Interpretation: Grounded unit capacitor RC circuit

- charge vector q(t) satisfies $\dot{q}(t)=-Lq(t),$ with edge weights given by conductances, $w_l=g_l$
- charge equilibrates (*i.e.*, converges to uniform) at rate determined by λ_2
- with conductor resistivity $\rho,$ length $d_l,$ and cross-sectional area $a_l,$ we have $g_l=a_l/(\rho d_l)$

- total conductor volume is $\sum_l d_l a_l = \rho \sum_l d_l^2 w_l$
- problem is to choose conductor cross-sectional areas, subject to a total volume constraint, so as to make the circuit equilibrate charge as fast as possible

optimal λ_2 is .105; uniform allocation of conductance gives $\lambda_2 = .073$

SDP formulation and dual

alternate formulation:

$$\begin{array}{ll} \mbox{minimize} & \sum d_l^2 w_l \\ \mbox{subject to} & \lambda_2 \geq 1, \quad w \geq 0 \end{array}$$

SDP formulation:

$$\begin{array}{ll} \text{minimize} & \sum d_l^2 w_l \\ \text{subject to} & L \succeq I - (1/n) \mathbf{1} \mathbf{1}^T, \quad w \geq 0 \end{array}$$

dual problem:

$$\begin{array}{ll} \text{maximize} & \mathbf{Tr} \, X \\ \text{subject to} & X_{ii} + X_{jj} - X_{ij} - X_{ji} \leq d_l^2, \quad l \sim (i,j) \\ & \mathbf{1}^T X \mathbf{1} = 0, \quad X \succeq 0 \end{array}$$

with variable $X \in \mathbf{R}^{n \times n}$

A maximum variance unfolding problem

• use variables
$$x_1, \ldots, x_n \in \mathbf{R}^n$$
, with $X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix} \begin{bmatrix} x_1 \cdots x_n \end{bmatrix}$

• dual problem becomes **maximum variance unfolding** (MVU) problem

maximize
$$\begin{split} \sum_{i} \|x_{i}\|^{2} \\ \text{subject to} \quad \|x_{i} - x_{j}\| \leq d_{l}, \quad l \sim (i, j) \\ \sum_{i} x_{i} = 0 \end{split}$$

position n points in Rⁿ to maximize variance, while respecting local distance constraints

• similar to **semidefinite embedding** for unsupervised learning of manifolds (Weinberger & Saul 2004)

• **surprise:** duality between fastest mixing Markov process and maximum variance unfolding

Conclusions

some interesting weight optimization problems have the common form

minimize $\phi(w) = \phi(\lambda_2, \dots, \lambda_n)$ subject to $w \in \mathcal{W}$

where ϕ is symmetric convex, and ${\mathcal W}$ is closed convex

• these are convex optimization problems

- we can solve them numerically (up to our ability to store data, compute eigenvalues . . .)
- for some simple graphs, we can get analytic solutions
- associated dual problems can be quite interesting

Some references

- Convex Optimization Cambridge University Press, 2004
- Fast linear iterations for distributed averaging Systems and Control Letters 53:65-78, 2004
- Fastest mixing Markov chain on a graph SIAM Review 46(4):667-689, 2004
- Fastest mixing Markov process on a graph and a connection to a maximum variance unfolding problem to appear, *SIAM Review 48(4), 2006*
- Minimizing effective resistance of a graph to appear, *SIAM Review, 2007*
- Distributed average consensus with least-mean-square deviation MTNS p2768-2776, 2006

these and other papers available at www.stanford.edu/~boyd