Convex Optimization of Graph Laplacian Eigenvalues

Stephen Boyd

Stanford University

(Joint work with Persi Diaconis, Arpita Ghosh, Seung-Jean Kim, Sanjay Lall, Pablo Parrilo, Amin Saberi, Jun Sun, Lin Xiao. Thanks to Almir Mutapcic.)

Outline

- some basic stuff we'll need
- graph Laplacian eigenvalues
- convex optimization and semidefinite programming
- the basic idea
- some example problems
- distributed linear averaging
- fastest mixing Markov chain on a graph
- fastest mixing Markov process on a graph
- its dual: maximum variance unfolding
- conclusions

Outline

- some basic stuff we'll need
- graph Laplacian eigenvalues
- convex optimization and semidefinite programming
- the basic idea
- some example problems
- distributed linear averaging
- fastest mixing Markov chain on a graph
- fastest mixing Markov process on a graph
- its dual: maximum variance unfolding
- conclusions

(Weighted) graph Laplacian

- graph $G=(V, E)$ with $n=|V|$ nodes, $m=|E|$ edges
- edge weights $w_{1}, \ldots, w_{m} \in \mathbf{R}$
- $l \sim(i, j)$ means edge l connects nodes i, j
- incidence matrix: $A_{i l}=\left\{\begin{aligned} 1 & \text { edge } l \text { enters node } i \\ -1 & \text { edge } l \text { leaves node } i \\ 0 & \text { otherwise }\end{aligned}\right.$
- (weighted) Laplacian: $L=A \operatorname{diag}(w) A^{T}$
- $L_{i j}=\left\{\begin{array}{rl}-w_{l} & l \sim(i, j) \\ \sum_{l \sim(i, k)} w_{l} & i=j \\ 0 & \text { otherwise }\end{array}\right.$

Laplacian eigenvalues

- L is symmetric; $L \mathbf{1}=0$
- we'll be interested in case when $L \succeq 0$ (i.e., L is PSD) (always the case when weights nonnegative)
- Laplacian eigenvalues (eigenvalues of L):

$$
0=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

- spectral graph theory connects properties of graph, and λ_{i} (with $w=\mathbf{1}$) e.g.: G connected iff $\lambda_{2}>0$ (with $w=\mathbf{1}$)

Convex spectral functions

- suppose ϕ is a symmetric convex function in $n-1$ variables
- then $\psi(w)=\phi\left(\lambda_{2}, \ldots, \lambda_{n}\right)$ is a convex function of weight vector w
- examples:
$-\phi(u)=1^{T} u$ (i.e., the sum):

$$
\psi(w)=\sum_{i=2}^{n} \lambda_{i}=\sum_{i=1}^{n} \lambda_{i}=\operatorname{Tr} L=21^{T} w \quad \text { (twice the total weight) }
$$

$-\phi(u)=\max _{i} u_{i}:$

$$
\psi(w)=\max \left\{\lambda_{2}, \ldots, \lambda_{n}\right\}=\lambda_{n} \quad \text { (spectral radius) }
$$

More examples

- $\phi(u)=\min _{i} u_{i}$ (concave) gives $\psi(w)=\lambda_{2}$, algebraic connectivity (concave function of w)
- $\phi(u)=\sum_{i} 1 / u_{i}\left(\right.$ with $\left.u_{i}>0\right)$:

$$
\psi(w)=\sum_{i=2}^{n} \frac{1}{\lambda_{i}}
$$

proportional to total effective resistance of graph, $\operatorname{Tr} L^{\dagger}$

Outline

- some basic stuff we'll need
- graph Laplacian eigenvalues
- convex optimization and semidefinite programming
- the basic idea
- some example problems
- distributed linear averaging
- fastest mixing Markov chain on a graph
- fastest mixing Markov process on a graph
- its dual: maximum variance unfolding
- conclusions

Convex optimization

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in \mathcal{X}
\end{array}
$$

- $x \in \mathbf{R}^{n}$ is optimization variable
- f is convex function (can maximize concave f by minimizing $-f$)
- $\mathcal{X} \subseteq \mathbf{R}^{n}$ is closed convex set
- roughly speaking, convex optimization problems are tractable, 'easy' to solve numerically (tractability depends on how f and \mathcal{X} are described)

Symmetry in convex optimization

- permutation (matrix) π is a symmetry of problem if $f(\pi z)=f(z)$ for all $z, \pi z \in \mathcal{X}$ for all $z \in \mathcal{X}$
- if π is a symmetry and the convex optimization problem has a solution, it has a solution invariant under π
(if x^{\star} is a solution, so is average over $\left\{x^{\star}, \pi x^{\star}, \pi^{2} x^{\star}, \ldots\right\}$)

Duality in convex optimization

primal: \begin{tabular}{ll}
minimize \& $f(x)$

subject to \& $x \in \mathcal{X}$

\quad dual:

maximize $g(y)$

subject to

$y \in \mathcal{Y}$
\end{tabular}

- y is dual variable; dual objective g is concave; \mathcal{Y} is closed, convex (various methods can be used to generate g, \mathcal{Y})
- $p^{\star}\left(d^{\star}\right)$ is optimal value of primal (dual) problem
- weak duality: for any $x \in \mathcal{X}, y \in \mathcal{Y}, f(x) \geq g(y)$; hence, $p^{\star} \geq g(y)$
- strong duality: for convex problems, provided a 'constraint qualification' holds, there exist $x^{\star} \in \mathcal{X}, y^{\star} \in \mathcal{Y}$ with $f\left(x^{\star}\right)=g\left(y^{\star}\right)$ hence, x^{\star} is primal optimal, y^{\star} is dual optimal, and $p^{\star}=d^{\star}$

Semidefinite program (SDP)

a particular type of convex optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \sum_{i=1}^{n} x_{i} A_{i} \preceq B, \quad F x=g
\end{array}
$$

- variable is $x \in \mathbf{R}^{n}$; data are c, F, g, symmetric matrices A_{i}, B
- \preceq means with respect to positive semidefinite cone
- generalization of linear program (LP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \sum_{i=1}^{n} x_{i} a_{i} \leq b, \quad F x=g
\end{array}
$$

(here a_{i}, b are vectors; \leq means componentwise)

SDP dual

primal SDP:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \sum_{i=1}^{n} x_{i} A_{i} \preceq B, \quad F x=g
\end{array}
$$

dual SDP:

$$
\begin{array}{ll}
\operatorname{maximize} & -\operatorname{Tr} Z B-\nu^{T} g \\
\text { subject to } & Z \succeq 0, \quad\left(F^{T} \nu+c\right)_{i}+\operatorname{Tr} Z A_{i}=0, \quad i=1, \ldots, n
\end{array}
$$

with (matrix) variable Z, (vector) ν

SDP algorithms and applications

since 1990s,

- recently developed interior-point algorithms solve SDPs very effectively (polynomial time, work well in practice)
- many results for LP extended to SDP
- SDP widely used in many fields (control, combinatorial optimization, machine learning, finance, signal processing, communications, networking, circuit design, mechanical engineering, . . .)

Outline

- some basic stuff we'll need
- graph Laplacian eigenvalues
- convex optimization and semidefinite programming
- the basic idea
- some example problems
- distributed linear averaging
- fastest mixing Markov chain on a graph
- fastest mixing Markov process on a graph
- its dual: maximum variance unfolding
- conclusions

The basic idea

some interesting weight optimization problems have the common form

$$
\begin{array}{ll}
\operatorname{minimize} & \phi(w)=\phi\left(\lambda_{2}, \ldots, \lambda_{n}\right) \\
\text { subject to } & w \in \mathcal{W}
\end{array}
$$

where ϕ is symmetric convex, and \mathcal{W} is closed convex

- these are convex optimization problems
- we can solve them numerically (up to our ability to store data, compute eigenvalues . . .)
- for some simple graphs, we can get analytic solutions
- associated dual problems can be quite interesting

Outline

- some basic stuff we'll need
- graph Laplacian eigenvalues
- convex optimization and semidefinite programming
- the basic idea
- some example problems
- distributed linear averaging
- fastest mixing Markov chain on a graph
- fastest mixing Markov process on a graph
- its dual: maximum variance unfolding
- conclusions

Distributed averaging

- each node of connected graph has initial value $x_{i}(0) \in \mathbf{R}$; goal is to compute average $\mathbf{1}^{T} x(0) / n$ using distributed iterative method
- applications in load balancing, distributed optimization, sensor networks

Distributed linear averaging

- simple linear iteration: replace each node value with weighted average of its own and its neighbors' values; repeat

$$
\begin{aligned}
x_{i}(t+1) & =W_{i i} x_{i}(t)+\sum_{j \in \mathcal{N}_{i}} W_{i j} x_{j}(t) \\
& =x_{i}(t)-\sum_{j \in \mathcal{N}_{i}} W_{i j}\left(x_{i}(t)-x_{j}(t)\right)
\end{aligned}
$$

where $W_{i i}+\sum_{j \in \mathcal{N}_{i}} W_{i j}=1$

- we'll assume $W_{i j}=W_{j i}$, i.e., weights symmetric
- weights $W_{i j}$ determine whether convergence to average occurs, and if so, how fast
- classical result: convergence if weights $W_{i j}(i \neq j)$ are small, positive

Convergence rate

- vector form: $x(t+1)=W x(t)$ (we take $W_{i j}=0$ for $i \neq j,(i, j) \notin E$)
- W satisfies $W=W^{T}, W 1=1$
- convergence $\Longleftrightarrow \lim _{t \rightarrow \infty} W^{t}=(1 / n) \mathbf{1 1}^{T} \Longleftrightarrow$

$$
\rho\left(W-(1 / n) \mathbf{1 1}^{T}\right)=\left\|W-(1 / n) \mathbf{1 1}^{T}\right\|<1
$$

ρ is spectral radius; $\|\cdot\|$ is spectral norm

- asymptotic convergence rate given by $\| W$ - $(1 / n) \mathbf{1 1}^{T} \|$
- convergence time is $\tau=-1 / \log \left\|W-(1 / n) \mathbf{1 1}^{T}\right\|$

Connection to Laplacian eigenvalues

- identifying $W_{i j}=w_{l}$ for $l \sim(i, j)$, we have $W=I-L$
- convergence rate given by

$$
\begin{aligned}
\left\|W-(1 / n) \mathbf{1 1}^{T}\right\| & =\left\|I-L-(1 / n) \mathbf{1 1}^{T}\right\| \\
& =\max \left\{\left|1-\lambda_{2}\right|, \ldots,\left|1-\lambda_{n}\right|\right\} \\
& =\max \left\{1-\lambda_{2}, \lambda_{n}-1\right\}
\end{aligned}
$$

. . . a convex spectral function, with $\phi(u)=\max _{i}\left|1-u_{i}\right|$

Fastest distributed linear averaging

$$
\begin{array}{ll}
\operatorname{minimize} & \left\|W-(1 / n) \mathbf{1 1}^{T}\right\| \\
\text { subject to } & W \in \mathcal{S}, \quad W=W^{T}, \quad W \mathbf{1}=\mathbf{1}
\end{array}
$$

optimization variable is W; problem data is graph (sparsity pattern \mathcal{S})
in terms of Laplacian eigenvalues

$$
\operatorname{minimize} \max \left\{1-\lambda_{2}, \lambda_{n}-1\right\}
$$

with variable $w \in \mathbf{R}^{m}$

- these are convex optimization problems
- so, we can efficiently find the weights that give the fastest possible averaging on a graph

Semidefinite programming formulation

introduce scalar variable s to bound spectral norm

$$
\begin{array}{ll}
\operatorname{minimize} & s \\
\text { subject to } & -s I \preceq I-L-(1 / n) \mathbf{1 1}^{T} \preceq s I
\end{array}
$$

(for $Z=Z^{T},\|Z\| \leq s \Longleftrightarrow-s I \preceq Z \preceq s I$)
an SDP (hence, can be solved efficiently)

Constant weight averaging

- a simple, traditional method: constant weight on all edges, $w=\alpha \mathbf{1}$
- yields update

$$
x_{i}(t+1)=x_{i}(t)+\sum_{j \in \mathcal{N}_{i}} \alpha\left(x_{j}(t)-x_{i}(t)\right)
$$

- a simple choice: max-degree weight, $\alpha=1 / \max _{i} d_{i}$ d_{i} is degree (number of neighbors) of node i
- best constant weight: $\alpha^{\star}=\frac{2}{\lambda_{2}+\lambda_{n}}$
$\left(\lambda_{2}, \lambda_{n}\right.$ are eigenvalues of unweighted Laplacian, i.e., with $\left.w=1\right)$
- for edge transitive graph, $w_{l}=\alpha^{\star}$ is optimal

A small example

	max-degree	best constant	optimal		
$\rho=\left\\|W-(1 / n) \mathbf{1 1}^{T}\right\\|$	0.779	0.712	0.643		
$\tau=1 / \log (1 / \rho)$	4.01	2.94	2.27		

Optimal weights

(note: some are negative!)

$$
\lambda_{i}(W):-.643,-.643,-.106,0.000, .368, .643, .643,1.000
$$

Larger example

50 nodes, 200 edges

	max-degree	best constant	optimal		
$\rho=\left\\|W-(1 / n) \mathbf{1 1}^{T}\right\\|$.971	.947	.902		
$\tau=1 / \log (1 / \rho)$	33.5	18.3	9.7		

Eigenvalue distributions

Optimal weights

69 out of 250 are negative

Another example

- a cut grid with $n=64$ nodes, $m=95$ edges
- edge width shows weight value (red for negative)
- $\tau=85$; max-degree $\tau=137$

Some questions \& comments

- how much better are the optimal weights than the simple choices?
- for barbell graphs $K_{n}-K_{n}$, optimal weights are unboundedly better than max-degree, optimal constant, and several other simple weight choices
- what size problems can be handled (on a PC)?
- interior-point algorithms easily handle problems with 10^{4} edges
- subgradient-based methods handle problems with 10^{6} edges
- any symmetry can be exploited for efficiency gain
- what happens if we require the weights to be nonnegative?
- (we'll soon see)

Least-mean-square average consensus

- include random noise in averaging process: $x(t+1)=W x(t)+v(t)$ $v(t)$ i.i.d., $\mathbf{E} v(t)=0, \mathbf{E} v(t) v(t)^{T}=I$
- steady-state mean-square deviation:

$$
\delta_{\mathrm{ss}}=\lim _{t \rightarrow \infty} \mathbf{E}\left(\frac{1}{n} \sum_{i<j}\left(x_{i}(t)-x_{j}(t)\right)^{2}\right)=\sum_{i=2}^{n} \frac{1}{\lambda_{i}\left(2-\lambda_{i}\right)}
$$

for $\rho=\max \left\{1-\lambda_{2}, \lambda_{n}-1\right\}<1$

- another convex spectral function

Outline

- some basic stuff we'll need
- graph Laplacian eigenvalues
- convex optimization and semidefinite programming
- the basic idea
- some example problems
- distributed linear averaging
- fastest mixing Markov chain on a graph
- fastest mixing Markov process on a graph
- its dual: maximum variance unfolding
- conclusions

Random walk on a graph

- Markov chain on nodes of G, with transition probabilities on edges

$$
P_{i j}=\operatorname{Prob}(X(t+1)=j \mid X(t)=i)
$$

- we'll focus on symmetric transition probability matrices P (everything extends to reversible case, with fixed equilibrium distr.)
- identifying $P_{i j}$ with w_{l} for $l \sim(i, j)$, we have $P=I-L$
- same as linear averaging matrix W, but here $W_{i j} \geq 0$ (i.e., $w \geq 0, \operatorname{diag}(L) \leq 1$)

Mixing rate

- probability distribution $\pi_{i}(t)=\operatorname{Prob}(X(t)=i)$ satisfies $\pi(t+1)^{T}=\pi(t)^{T} P$
- since $P=P^{T}$ and $P \mathbf{1}=\mathbf{1}$, uniform distribution $\pi=(1 / n) \mathbf{1}$ is stationary, i.e., $((1 / n) \mathbf{1})^{T} P=((1 / n) \mathbf{1})^{T}$
- $\pi(t) \rightarrow(1 / n) \mathbf{1}$ for any $\pi(0)$ iff

$$
\mu=\left\|P-(1 / n) \mathbf{1 1}^{T}\right\|=\left\|I-L-(1 / n) \mathbf{1 1}^{T}\right\|<1
$$

μ is called second largest eigenvalue modulus (SLEM) of MC

- SLEM determines convergence (mixing) rate, e.g.,

$$
\sup _{\pi(0)}\|\pi(t)-(1 / n) \mathbf{1}\|_{\text {tv }} \leq(\sqrt{n} / 2) \mu^{t}
$$

- associated mixing time is $\tau=1 / \log (1 / \mu)$

Fastest mixing Markov chain problem

$$
\begin{array}{ll}
\operatorname{minimize} & \mu=\left\|I-L-(1 / n) \mathbf{1 1}^{T}\right\|=\max \left\{1-\lambda_{2}, \lambda_{n}-1\right\} \\
\text { subject to } & w \geq 0, \quad \operatorname{diag}(L) \leq \mathbf{1}
\end{array}
$$

- optimization variable is w; problem data is graph G
- same as fast linear averaging problem, with additional nonnegativity constraint $W_{i j} \geq 0$ on weights
- convex optimization problem (indeed, SDP), hence efficiently solved

Two common suboptimal schemes

- max-degree chain: $w=\left(1 / \max _{i} d_{i}\right) \mathbf{1}$
- Metropolis-Hastings chain: $w_{l}=\frac{1}{\max \left\{d_{i}, d_{j}\right\}}$, where $l \sim(i, j)$
(comes from Metropolis method of generating reversible MC with uniform stationary distribution)

Small example

optimal transition probabilities (some are zero)

	max-degree	M.-H.	optimal	(fastest avg)
SLEM μ	.779	.774	.681	$(.643)$
mixing time τ	4.01	3.91	2.60	(2.27)

Larger example

50 nodes, 200 edges

Optimal transition probabilities

- 82 edges (out of 200) edges have zero transition probability
- distribution of positive transition probabilities:

Subgraph with positive transition probabilities

Another example

- a cut grid with $n=64$ nodes, $m=95$ edges
- edge width shows weight value (dotted for zero)
- mixing time $\tau=89$; Metropolis-Hastings mixing time $\tau=120$

Some analytical results

- for path, fastest mixing MC is obvious one ($P_{i, i+1}=1 / 2$)
- for any edge-transitive graph (hypercube, ring, . . .), all edge weights are equal, with value $2 /\left(\lambda_{2}+\lambda_{n}\right)$ (unweighted Laplacian eigenvalues)

Commute time for random walk on graph

- $P_{i j}$ proportional to w_{l}, for $l \sim(i, j) ; P_{i i}=0$
- P not symmetric, but MC is reversible
- can normalize w as $\mathbf{1}^{T} w=1$
- commute time $C_{i j}$: time for random walk to return to i after visiting j
- expected commute time averaged over all pairs of nodes is

$$
\bar{C}=\frac{1}{n^{2}} \sum_{i, j=1}^{n} \mathbf{E} C_{i j}=\frac{2}{(n-1)} \sum_{i=2}^{n} \frac{1}{\lambda_{i}}
$$

(Chandra et al, 1989)

- called total effective resistance . . . another convex spectral function

Minimizing average commute time

find weights that minimize average commute time on graph:

$$
\begin{array}{ll}
\operatorname{minimize} & \bar{C}=2 /(n-1) \sum_{i=2}^{n} 1 / \lambda_{i} \\
\text { subject to } & w \geq 0, \quad 1^{T} w=1
\end{array}
$$

- another convex problem of our general form

Outline

- some basic stuff we'll need
- graph Laplacian eigenvalues
- convex optimization and semidefinite programming
- the basic idea
- some example problems
- distributed linear averaging
- fastest mixing Markov chain on a graph
- fastest mixing Markov process on a graph
- its dual: maximum variance unfolding
- conclusions

Markov process on a graph

- (continuous-time) Markov process on nodes of G, with transition rate $w_{l} \geq 0$ between nodes i and j, for $l \sim(i, j)$
- probability distribution $\pi(t) \in \mathbf{R}^{n}$ satisfies heat equation $\dot{\pi}(t)=-L \pi(t)$
- $\pi(t)=e^{-t L} \pi(0)$
- $\pi(t)$ converges to uniform distribution $(1 / n) \mathbf{1}$, for any $\pi(0)$, iff $\lambda_{2}>0$
- (asymptotic) convergence as $e^{-\lambda_{2} t} ; \lambda_{2}$ gives mixing rate of process
- λ_{2} is concave, homogeneous function of w (come from symmetric concave function $\phi(u)=\min _{i} u_{i}$)

Fastest mixing Markov process on a graph

$$
\begin{array}{ll}
\operatorname{maximize} & \lambda_{2} \\
\text { subject to } & \sum_{l} d_{l}^{2} w_{l} \leq 1, \quad w \geq 0
\end{array}
$$

- variable is $w \in \mathbf{R}^{m}$; data is graph, normalization constants $d_{l}>0$
- a convex optimization problem, hence easily solved
- allocate rate across edges so as maximize mixing rate
- constraint is always tight at solution, i.e., $\sum_{l} d_{l}^{2} w_{l}=1$
- when $d_{l}^{2}=1 / m$, optimal value is called absolute algebraic connectivity

Interpretation: Grounded unit capacitor RC circuit

- charge vector $q(t)$ satisfies $\dot{q}(t)=-L q(t)$, with edge weights given by conductances, $w_{l}=g_{l}$
- charge equilibrates (i.e., converges to uniform) at rate determined by λ_{2}
- with conductor resistivity ρ, length d_{l}, and cross-sectional area a_{l}, we have $g_{l}=a_{l} /\left(\rho d_{l}\right)$
- total conductor volume is $\sum_{l} d_{l} a_{l}=\rho \sum_{l} d_{l}^{2} w_{l}$
- problem is to choose conductor cross-sectional areas, subject to a total volume constraint, so as to make the circuit equilibrate charge as fast as possible

optimal λ_{2} is .105 ; uniform allocation of conductance gives $\lambda_{2}=.073$

SDP formulation and dual

alternate formulation:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{l} d_{l}^{2} w_{l} \\
\text { subject to } & \lambda_{2} \geq 1, \quad w \geq 0
\end{array}
$$

SDP formulation:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum d_{l}^{2} w_{l} \\
\text { subject to } & L \succeq I-(1 / n) \mathbf{1 1}{ }^{T}, \quad w \geq 0
\end{array}
$$

dual problem:

$$
\begin{array}{ll}
\operatorname{maximize} & \operatorname{Tr} X \\
\text { subject to } & X_{i i}+X_{j j}-X_{i j}-X_{j i} \leq d_{l}^{2}, \quad l \sim(i, j) \\
& \mathbf{1}^{T} X \mathbf{1}=0, \quad X \succeq 0
\end{array}
$$

with variable $X \in \mathbf{R}^{n \times n}$

A maximum variance unfolding problem

- use variables $x_{1}, \ldots, x_{n} \in \mathbf{R}^{n}$, with $X=\left[\begin{array}{c}x_{1}^{T} \\ \vdots \\ x_{n}^{T}\end{array}\right]\left[\begin{array}{lll}x_{1} & \cdots & \left.x_{n}\right]\end{array}\right.$
- dual problem becomes maximum variance unfolding (MVU) problem

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{i}\left\|x_{i}\right\|^{2} \\
\text { subject to } & \left\|x_{i}-x_{j}\right\| \leq d_{l}, \quad l \sim(i, j) \\
& \sum_{i} x_{i}=0
\end{array}
$$

- position n points in \mathbf{R}^{n} to maximize variance, while respecting local distance constraints
- similar to semidefinite embedding for unsupervised learning of manifolds (Weinberger \& Saul 2004)

- surprise: duality between fastest mixing Markov process and maximum variance unfolding

Conclusions

some interesting weight optimization problems have the common form

$$
\begin{array}{ll}
\operatorname{minimize} & \phi(w)=\phi\left(\lambda_{2}, \ldots, \lambda_{n}\right) \\
\text { subject to } & w \in \mathcal{W}
\end{array}
$$

where ϕ is symmetric convex, and \mathcal{W} is closed convex

- these are convex optimization problems
- we can solve them numerically (up to our ability to store data, compute eigenvalues ...)
- for some simple graphs, we can get analytic solutions
- associated dual problems can be quite interesting

Some references

- Convex Optimization

Cambridge University Press, 2004

- Fast linear iterations for distributed averaging Systems and Control Letters 53:65-78, 2004
- Fastest mixing Markov chain on a graph SIAM Review 46(4):667-689, 2004
- Fastest mixing Markov process on a graph and a connection to a maximum variance unfolding problem to appear, SIAM Review 48(4), 2006
- Minimizing effective resistance of a graph to appear, SIAM Review, 2007
- Distributed average consensus with least-mean-square deviation MTNS p2768-2776, 2006
these and other papers available at www.stanford.edu/ ~boyd

