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(Weighted) graph Laplacian

• graph G = (V,E) with n = |V | nodes, m = |E| edges

• edge weights w1, . . . , wm ∈ R

• l ∼ (i, j) means edge l connects nodes i, j

• incidence matrix: Ail =







1 edge l enters node i
−1 edge l leaves node i

0 otherwise

• (weighted) Laplacian: L = Adiag(w)AT

• Lij =







−wl l ∼ (i, j)
∑

l∼(i,k)wl i = j

0 otherwise
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Laplacian eigenvalues

• L is symmetric; L1 = 0

• we’ll be interested in case when L � 0 (i.e., L is PSD)
(always the case when weights nonnegative)

• Laplacian eigenvalues (eigenvalues of L):

0 = λ1 ≤ λ2 ≤ · · · ≤ λn

• spectral graph theory connects properties of graph, and λi (with w = 1)

e.g.: G connected iff λ2 > 0 (with w = 1)
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Convex spectral functions

• suppose φ is a symmetric convex function in n− 1 variables

• then ψ(w) = φ(λ2, . . . , λn) is a convex function of weight vector w

• examples:

– φ(u) = 1Tu (i.e., the sum):

ψ(w) =

n
∑

i=2

λi =

n
∑

i=1

λi = TrL = 21Tw (twice the total weight)

– φ(u) = maxi ui:

ψ(w) = max{λ2, . . . , λn} = λn (spectral radius)
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More examples

• φ(u) = mini ui (concave) gives ψ(w) = λ2, algebraic connectivity
(concave function of w)

• φ(u) =
∑

i 1/ui (with ui > 0):

ψ(w) =

n
∑

i=2

1

λi

proportional to total effective resistance of graph, TrL†
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Convex optimization

minimize f(x)
subject to x ∈ X

• x ∈ Rn is optimization variable

• f is convex function (can maximize concave f by minimizing −f)

• X ⊆ Rn is closed convex set

• roughly speaking, convex optimization problems are tractable, ‘easy’ to
solve numerically (tractability depends on how f and X are described)
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Symmetry in convex optimization

• permutation (matrix) π is a symmetry of problem if f(πz) = f(z) for
all z, πz ∈ X for all z ∈ X

• if π is a symmetry and the convex optimization problem has a solution,
it has a solution invariant under π

(if x⋆ is a solution, so is average over {x⋆, πx⋆, π2x⋆, . . .})
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Duality in convex optimization

primal:
minimize f(x)
subject to x ∈ X dual:

maximize g(y)
subject to y ∈ Y

• y is dual variable; dual objective g is concave; Y is closed, convex
(various methods can be used to generate g, Y)

• p⋆ (d⋆) is optimal value of primal (dual) problem

• weak duality : for any x ∈ X , y ∈ Y, f(x) ≥ g(y); hence, p⋆ ≥ g(y)

• strong duality : for convex problems, provided a ‘constraint qualification’
holds, there exist x⋆ ∈ X , y⋆ ∈ Y with f(x⋆) = g(y⋆)

hence, x⋆ is primal optimal, y⋆ is dual optimal, and p⋆ = d⋆
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Semidefinite program (SDP)

a particular type of convex optimization problem

minimize cTx
subject to

∑n

i=1 xiAi � B, Fx = g

• variable is x ∈ Rn; data are c, F , g, symmetric matrices Ai, B

• � means with respect to positive semidefinite cone

• generalization of linear program (LP)

minimize cTx
subject to

∑n

i=1 xiai ≤ b, Fx = g

(here ai, b are vectors; ≤ means componentwise)
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SDP dual

primal SDP:

minimize cTx
subject to

∑n

i=1 xiAi � B, Fx = g

dual SDP:

maximize −TrZB − νTg
subject to Z � 0,

(

FTν + c
)

i
+ TrZAi = 0, i = 1, . . . , n

with (matrix) variable Z, (vector) ν
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SDP algorithms and applications

since 1990s,

• recently developed interior-point algorithms solve SDPs very effectively

(polynomial time, work well in practice)

• many results for LP extended to SDP

• SDP widely used in many fields

(control, combinatorial optimization, machine learning, finance, signal
processing, communications, networking, circuit design, mechanical
engineering, . . . )
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The basic idea

some interesting weight optimization problems have the common form

minimize φ(w) = φ(λ2, . . . , λn)
subject to w ∈ W

where φ is symmetric convex, and W is closed convex

• these are convex optimization problems

• we can solve them numerically
(up to our ability to store data, compute eigenvalues . . . )

• for some simple graphs, we can get analytic solutions

• associated dual problems can be quite interesting
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Distributed averaging

1
2

3
4

5

6

x1 x2

x3
x4 x5

x6

W12

W13
W14 W24

W36 W46

W45

• each node of connected graph has initial value xi(0) ∈ R; goal is to
compute average 1Tx(0)/n using distributed iterative method

• applications in load balancing, distributed optimization, sensor networks
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Distributed linear averaging

• simple linear iteration: replace each node value with weighted average
of its own and its neighbors’ values; repeat

xi(t+ 1) = Wiixi(t) +
∑

j∈Ni

Wijxj(t)

= xi(t) −
∑

j∈Ni

Wij (xi(t) − xj(t))

where Wii +
∑

j∈Ni
Wij = 1

• we’ll assume Wij = Wji, i.e., weights symmetric

• weights Wij determine whether convergence to average occurs, and if
so, how fast

• classical result: convergence if weights Wij (i 6= j) are small, positive
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Convergence rate

• vector form: x(t+ 1) = Wx(t) (we take Wij = 0 for i 6= j, (i, j) 6∈ E)

• W satisfies W = WT , W1 = 1

• convergence ⇐⇒ limt→∞W t = (1/n)11T ⇐⇒

ρ(W − (1/n)11T ) = ‖W − (1/n)11T‖ < 1

ρ is spectral radius; ‖ · ‖ is spectral norm

• asymptotic convergence rate given by ‖W − (1/n)11T‖

• convergence time is τ = −1/ log ‖W − (1/n)11T‖
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Connection to Laplacian eigenvalues

• identifying Wij = wl for l ∼ (i, j), we have W = I − L

• convergence rate given by

‖W − (1/n)11T‖ = ‖I − L− (1/n)11T‖
= max{|1 − λ2|, . . . , |1 − λn|}
= max{1 − λ2, λn − 1}

. . . a convex spectral function, with φ(u) = maxi |1 − ui|
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Fastest distributed linear averaging

minimize ‖W − (1/n)11T‖
subject to W ∈ S, W = WT , W1 = 1

optimization variable is W ; problem data is graph (sparsity pattern S)

in terms of Laplacian eigenvalues

minimize max{1 − λ2, λn − 1}

with variable w ∈ Rm

• these are convex optimization problems

• so, we can efficiently find the weights that give the fastest possible
averaging on a graph
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Semidefinite programming formulation

introduce scalar variable s to bound spectral norm

minimize s
subject to −sI � I − L− (1/n)11T � sI

(for Z = ZT , ‖Z‖ ≤ s⇐⇒ −sI � Z � sI)

an SDP (hence, can be solved efficiently)
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Constant weight averaging

• a simple, traditional method: constant weight on all edges, w = α1

• yields update

xi(t+ 1) = xi(t) +
∑

j∈Ni

α(xj(t) − xi(t))

• a simple choice: max-degree weight, α = 1/maxi di

di is degree (number of neighbors) of node i

• best constant weight: α⋆ =
2

λ2 + λn

(λ2, λn are eigenvalues of unweighted Laplacian, i.e., with w = 1)

• for edge transitive graph, wl = α⋆ is optimal
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A small example

max-degree best constant optimal
ρ = ‖W − (1/n)11T‖ 0.779 0.712 0.643

τ = 1/ log(1/ρ) 4.01 2.94 2.27
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Optimal weights

(note: some are negative!)

.07
.03

.36

.22.18

.34
−.25

.36

.50 .08

.22.43

.08

.34

.24

.15
.34

.22

.42 .34

−.03

λi(W ): −.643, −.643, −.106, 0.000, .368, .643, .643, 1.000
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Larger example

50 nodes, 200 edges

max-degree best constant optimal
ρ = ‖W − (1/n)11T‖ .971 .947 .902

τ = 1/ log(1/ρ) 33.5 18.3 9.7
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Eigenvalue distributions
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Optimal weights

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0
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69 out of 250 are negative
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Another example

• a cut grid with n = 64 nodes, m = 95 edges

• edge width shows weight value (red for negative)

• τ = 85; max-degree τ = 137
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Some questions & comments

• how much better are the optimal weights than the simple choices?

– for barbell graphs Kn −Kn, optimal weights are unboundedly better
than max-degree, optimal constant, and several other simple weight
choices

• what size problems can be handled (on a PC)?

– interior-point algorithms easily handle problems with 104 edges
– subgradient-based methods handle problems with 106 edges
– any symmetry can be exploited for efficiency gain

• what happens if we require the weights to be nonnegative?

– (we’ll soon see)
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Least-mean-square average consensus

• include random noise in averaging process: x(t+ 1) = Wx(t) + v(t)
v(t) i.i.d., E v(t) = 0, E v(t)v(t)T = I

• steady-state mean-square deviation:

δss = lim
t→∞

E





1

n

∑

i<j

(xi(t) − xj(t))
2



 =
n

∑

i=2

1

λi(2 − λi)

for ρ = max{1 − λ2, λn − 1} < 1

• another convex spectral function
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Random walk on a graph

• Markov chain on nodes of G, with transition probabilities on edges

Pij = Prob (X(t+ 1) = j | X(t) = i)

• we’ll focus on symmetric transition probability matrices P
(everything extends to reversible case, with fixed equilibrium distr.)

• identifying Pij with wl for l ∼ (i, j), we have P = I − L

• same as linear averaging matrix W , but here Wij ≥ 0
(i.e., w ≥ 0, diag(L) ≤ 1)
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Mixing rate

• probability distribution πi(t) = Prob(X(t) = i) satisfies
π(t+ 1)T = π(t)TP

• since P = PT and P1 = 1, uniform distribution π = (1/n)1 is
stationary, i.e., ((1/n)1)TP = ((1/n)1)T

• π(t) → (1/n)1 for any π(0) iff

µ = ‖P − (1/n)11T‖ = ‖I − L− (1/n)11T‖ < 1

µ is called second largest eigenvalue modulus (SLEM) of MC

• SLEM determines convergence (mixing) rate, e.g.,

sup
π(0)

‖π(t) − (1/n)1‖tv ≤
(√
n/2

)

µt

• associated mixing time is τ = 1/ log(1/µ)
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Fastest mixing Markov chain problem

minimize µ = ‖I − L− (1/n)11T‖ = max{1 − λ2, λn − 1}
subject to w ≥ 0, diag(L) ≤ 1

• optimization variable is w; problem data is graph G

• same as fast linear averaging problem, with additional nonnegativity
constraint Wij ≥ 0 on weights

• convex optimization problem (indeed, SDP), hence efficiently solved
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Two common suboptimal schemes

• max-degree chain: w = (1/maxi di)1

• Metropolis-Hastings chain: wl =
1

max{di, dj}
, where l ∼ (i, j)

(comes from Metropolis method of generating reversible MC with
uniform stationary distribution)
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Small example

optimal transition probabilities (some are zero)

.03
.00

.50

.26.25

.48
.00

.50

.50 .06

.18.47

.06

.38

.16

.12
.26

.18

.36 .26

.00

max-degree M.-H. optimal (fastest avg)
SLEM µ .779 .774 .681 (.643)

mixing time τ 4.01 3.91 2.60 (2.27)
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Larger example

50 nodes, 200 edges

max-degree M.-H. optimal (fastest avg)
SLEM µ .971 .949 .915 (.902)

mixing time τ 33.5 19.1 11.3 (9.7)
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Optimal transition probabilities

• 82 edges (out of 200) edges have zero transition probability

• distribution of positive transition probabilities:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10
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Subgraph with positive transition probabilities
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Another example

• a cut grid with n = 64 nodes, m = 95 edges

• edge width shows weight value (dotted for zero)

• mixing time τ = 89; Metropolis-Hastings mixing time τ = 120
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Some analytical results

• for path, fastest mixing MC is obvious one (Pi,i+1 = 1/2)

• for any edge-transitive graph (hypercube, ring, . . . ), all edge weights
are equal, with value 2/(λ2 + λn) (unweighted Laplacian eigenvalues)
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Commute time for random walk on graph

• Pij proportional to wl, for l ∼ (i, j); Pii = 0

• P not symmetric, but MC is reversible

• can normalize w as 1Tw = 1

• commute time Cij: time for random walk to return to i after visiting j

• expected commute time averaged over all pairs of nodes is

C =
1

n2

n
∑

i,j=1

ECij =
2

(n− 1)

n
∑

i=2

1

λi

(Chandra et al, 1989)

• called total effective resistance . . . another convex spectral function
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Minimizing average commute time

find weights that minimize average commute time on graph:

minimize C = 2/(n− 1)
∑n

i=2 1/λi

subject to w ≥ 0, 1Tw = 1

• another convex problem of our general form
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Markov process on a graph

• (continuous-time) Markov process on nodes of G, with transition rate
wl ≥ 0 between nodes i and j, for l ∼ (i, j)

• probability distribution π(t) ∈ Rn satisfies heat equation π̇(t) = −Lπ(t)

• π(t) = e−tLπ(0)

• π(t) converges to uniform distribution (1/n)1, for any π(0), iff λ2 > 0

• (asymptotic) convergence as e−λ2t; λ2 gives mixing rate of process

• λ2 is concave, homogeneous function of w
(come from symmetric concave function φ(u) = mini ui)
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Fastest mixing Markov process on a graph

maximize λ2

subject to
∑

l d
2
lwl ≤ 1, w ≥ 0

• variable is w ∈ Rm; data is graph, normalization constants dl > 0

• a convex optimization problem, hence easily solved

• allocate rate across edges so as maximize mixing rate

• constraint is always tight at solution, i.e.,
∑

l d
2
lwl = 1

• when d2
l = 1/m, optimal value is called absolute algebraic connectivity
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Interpretation: Grounded unit capacitor RC circuit

• charge vector q(t) satisfies q̇(t) = −Lq(t), with edge weights given by
conductances, wl = gl

• charge equilibrates (i.e., converges to uniform) at rate determined by λ2

• with conductor resistivity ρ, length dl, and cross-sectional area al, we
have gl = al/(ρdl)
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• total conductor volume is
∑

l dlal = ρ
∑

l d
2
lwl

• problem is to choose conductor cross-sectional areas, subject to a total
volume constraint, so as to make the circuit equilibrate charge as fast as
possible

optimal λ2 is .105; uniform allocation of conductance gives λ2 = .073
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SDP formulation and dual

alternate formulation:

minimize
∑

d2
lwl

subject to λ2 ≥ 1, w ≥ 0

SDP formulation:

minimize
∑

d2
lwl

subject to L � I − (1/n)11T , w ≥ 0

dual problem:

maximize TrX
subject to Xii +Xjj −Xij −Xji ≤ d2

l , l ∼ (i, j)
1TX1 = 0, X � 0

with variable X ∈ Rn×n
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A maximum variance unfolding problem

• use variables x1, . . . , xn ∈ Rn, with X =





xT
1
...
xT

n



 [x1 · · · xn]

• dual problem becomes maximum variance unfolding (MVU) problem

maximize
∑

i ‖xi‖2

subject to ‖xi − xj‖ ≤ dl, l ∼ (i, j)
∑

i xi = 0

• position n points in Rn to maximize variance, while respecting local
distance constraints
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• similar to semidefinite embedding for unsupervised learning of
manifolds (Weinberger & Saul 2004)

• surprise: duality between fastest mixing Markov process and maximum
variance unfolding
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Conclusions

some interesting weight optimization problems have the common form

minimize φ(w) = φ(λ2, . . . , λn)
subject to w ∈ W

where φ is symmetric convex, and W is closed convex

• these are convex optimization problems

• we can solve them numerically
(up to our ability to store data, compute eigenvalues . . . )

• for some simple graphs, we can get analytic solutions

• associated dual problems can be quite interesting
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