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Contribution

dominant time constant as measure for RC circuit delay

� applies to general (nontree) RC circuits

� can be e�ciently, globally optimized

example applications: sizing of

� clock meshes

� busses with crosstalk
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Outline

� Elmore delay minimization in RC trees

� dominant time constant minimization in general RC circuits

� example applications

� conclusions
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RC models for digital circuits
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= �G(v(t)� V ); v(0) = 0

� C > 0, G > 0 (capacitance and conductance matrices)

� simple model for transistors & wires
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Sizing problem

design variables: transistor and wire widths

C(x), G(x) are a�ne in design variables x

tradeo� between

� threshold delay (e.g., 50%)

� power: 1
2
V TC(x)V per transition (i.e., a�ne in x)

� area (approximated by a�ne function of x)

. . . intractable
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The Elmore delay
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� good approximation of 50% delay (for monotonic step resp.)

� e�ciently & globally minimized for RC trees

(via geometric programming; c.f. TILOS)

� no useful convexity properties for non-tree circuits
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Dominant time constant

� node voltages have form vk(t) = 1�Pn
i=1�ike
�it

� 0 > �1 � �2 � � � � � �n: roots of det(�C(x) +G(x)) = 0

� slowest, i.e., dominant time constant is T dom = �1=�1

�1=T dom

good approximation of max threshold delay

(usually better than Elmore delay)
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Sizing with dominant time constant constraint

T dom � T () TG(x)� C(x) � 0

� convex constraint in x (linear matrix inequality)

� no restrictions on topology (i.e., G, C)

example: minimize linear function (e.g., area, power) s.t.

� upper bound on T dom

� upper and lower bounds on xi

a convex optimization problem (semide�nite program)
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Semide�nite programming (SDP)

minimize cTx

subject to F0 + x1F1 + � � �+ xmFm � 0

� linear objective function, linear matrix inequality constraint

(Fi = FT
i 2 Rn�n)

� convex (but not necessarily di�erentiable) constraint

� global optimum e�ciently computed using recent

interior-point methods
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Outline

� Elmore delay minimization in RC trees

� dominant time constant minimization in general RC circuits

� example applications

{ clock meshes

{ busses with crosstalk

� conclusions
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Clock distribution mesh

� used in high-performance designs to reduce clock skew

(e.g., DEC alpha)

� quantities of interest: skew, maximum delay, power

� non-tree topology: Elmore delay methods �nd local

optimum [Desai et al., DAC96]
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Clock mesh example

� multiple synchronized drivers

� variables xi: interconnect widths

�xi �xi

�xi

minimize power subject to T dom � T , 0 � xi � wmax
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Power versus dominant time constant
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Two solutions on tradeo� curve
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� T dom is a good approximation of max. 50% delay

� minimizing T dom reduces skew
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Busses with crosstalk

� capacitive coupling in deep submicron

� non-tree topology (non-grounded capacitors)

� Elmore delay is not a good delay measure (non-monotonic

step response)
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Example
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s11 s12 s13 s14 s15

s21 s22 s23 s24 s25

s1
s2

C1 = 10

C2 = 20

C3 = 30

� variables: widths wij, spacing s1, s2

� coupling capacitances � 1=sij

� minimize total width s1 + s2 subject to bound T dom � T ,

upper and lower bounds on sij, wij
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Total width versus dominant time constant
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globally optimal tradeo� curve via semide�nite programming
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E�ect on crosstalk level

apply unit step to bus line 2, zero input to lines 1 and 3

T dom large
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minimizing T dom indirectly reduces crosstalk level
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Computational complexity of SDP

interior-point methods

� worst-case: #iterations � pproblem size

� in practice: #iterations between 5 and 50

� can exploit structure to reduce computation per iteration

structure in SDPs arising in circuit sizing

� G(x), C(x) sparse; each entry depends on very few variables

� can evaluate T dom very e�ciently using Lanczos algorithm
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Conclusions

dominant time constant as measure for RC circuit delay

� applies to general (nontree) RC circuits

{ multiple sources

{ loops of resistors

{ capacitive coupling

� e�ciently, globally optimized via semide�nite

programming

no specialized implementation for large-scale problems
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