Optimal Wire and Transistor Sizing for Circuits With Non-Tree Topology

Lieven Vandenberghe (UCLA) Stephen Boyd (Stanford University) Abbas El Gamal (Stanford University)

Contribution

dominant time constant as measure for RC circuit delay

- applies to general (nontree) RC circuits
- can be efficiently, globally optimized

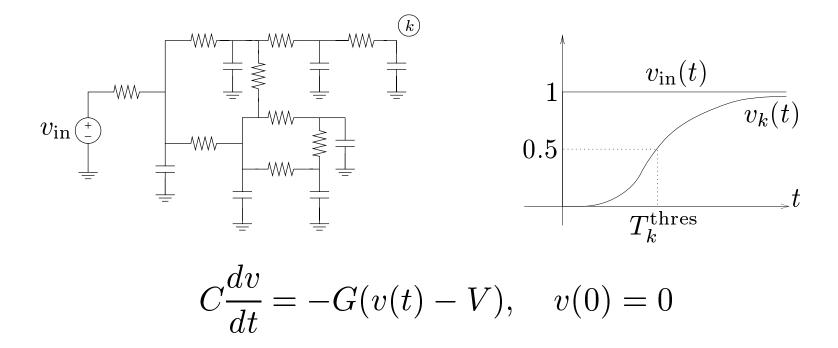
example applications: sizing of

- clock meshes
- busses with crosstalk

Outline

- Elmore delay minimization in RC trees
- dominant time constant minimization in general RC circuits
- example applications
- conclusions

RC models for digital circuits



- C > 0, G > 0 (capacitance and conductance matrices)
- simple model for transistors & wires

Sizing problem

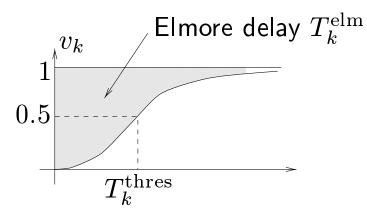
design variables: transistor and wire widths

 $C(\boldsymbol{x})\text{, }G(\boldsymbol{x})$ are affine in design variables \boldsymbol{x}

tradeoff between

- threshold delay (e.g., 50%)
- power: $\frac{1}{2}V^T C(x)V$ per transition (*i.e.*, affine in x)
- area (approximated by affine function of x)
- . . . intractable

The Elmore delay



- good approximation of 50% delay (for monotonic step resp.)
- efficiently & globally minimized for RC **trees** (via geometric programming; c.f. TILOS)
- no useful convexity properties for **non-tree** circuits

Dominant time constant

- node voltages have form $v_k(t) = 1 \sum_{i=1}^n \alpha_{ik} e^{\lambda_i t}$
- $0 > \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$: roots of $det(\lambda C(x) + G(x)) = 0$
- slowest, *i.e.*, **dominant** time constant is $T^{\mathrm{dom}} = -1/\lambda_1$

$$- \times \times \times \times - \frac{-1/T^{\text{dom}}}{\times}$$

good approximation of max threshold delay (usually better than Elmore delay)

Sizing with dominant time constant constraint

$$T^{\text{dom}} \leq T \iff TG(x) - C(x) \geq 0$$

- **convex** constraint in x (linear matrix inequality)
- no restrictions on topology (*i.e.*, G, C)

example: minimize linear function (e.g., area, power) s.t.

- upper bound on T^{dom}
- upper and lower bounds on x_i
- a convex optimization problem (semidefinite program)

Semidefinite programming (SDP)

minimize
$$c^T x$$

subject to $F_0 + x_1 F_1 + \dots + x_m F_m \ge 0$

- linear objective function, linear matrix inequality constraint $(F_i = F_i^T \in \mathbf{R}^{n \times n})$
- convex (but not necessarily differentiable) constraint
- **global** optimum efficiently computed using recent interior-point methods

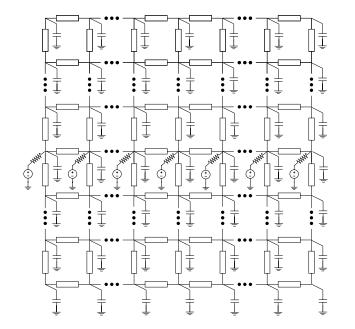
Outline

- Elmore delay minimization in RC trees
- dominant time constant minimization in general RC circuits
- example applications
 - clock meshes
 - busses with crosstalk
- conclusions

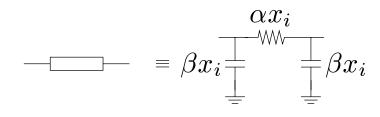
Clock distribution mesh

- used in high-performance designs to reduce clock skew (*e.g.*, DEC alpha)
- quantities of interest: skew, maximum delay, power
- **non-tree** topology: Elmore delay methods find **local** optimum [Desai et al., DAC96]

Clock mesh example

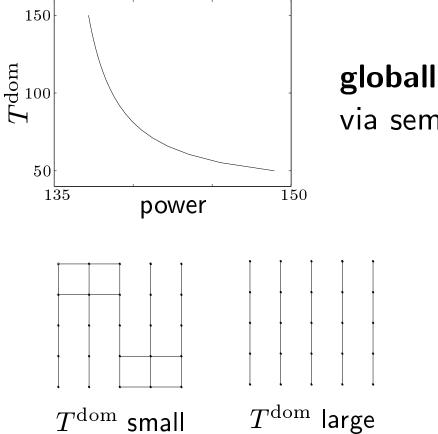


- multiple synchronized drivers
- variables x_i : interconnect widths



minimize power subject to $T^{\mathrm{dom}} \leq T$, $0 \leq x_i \leq w_{\mathrm{max}}$

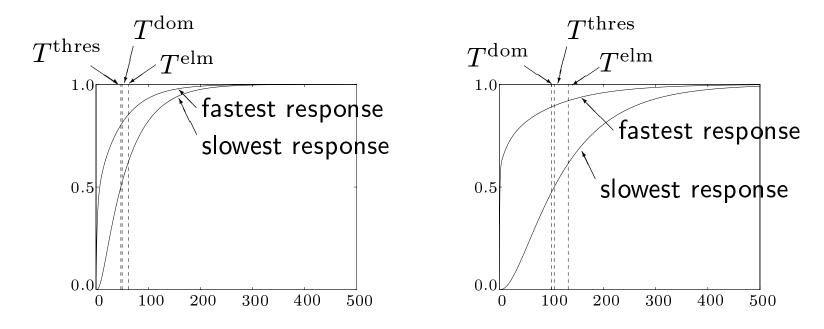
Power versus dominant time constant



globally optimal tradeoff curve via semidefinite programming

optimal **topology** varies along tradeoff curve

Two solutions on tradeoff curve

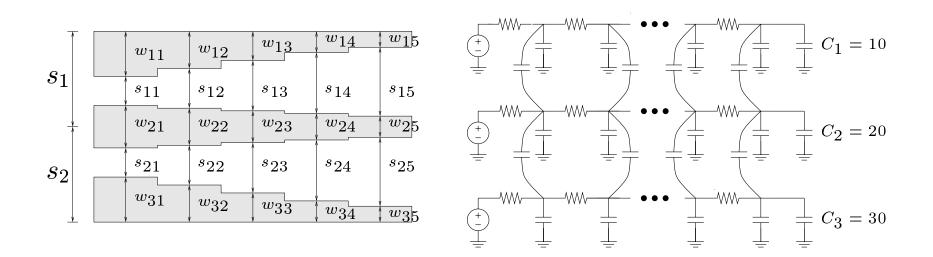


- T^{dom} is a good approximation of max. 50% delay
- minimizing T^{dom} reduces skew

Busses with crosstalk

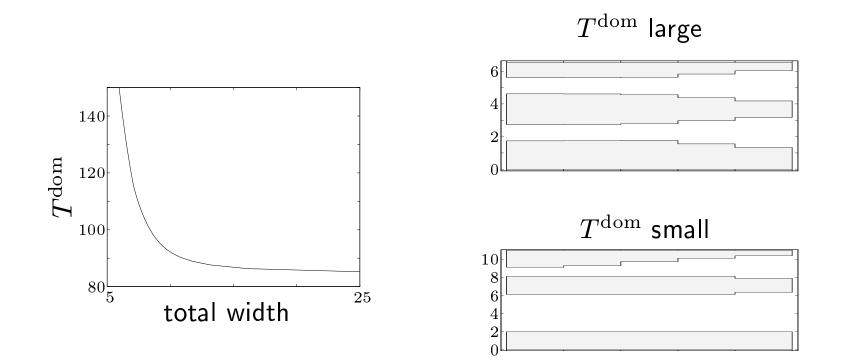
- capacitive coupling in deep submicron
- **non-tree** topology (non-grounded capacitors)
- Elmore delay is not a good delay measure (non-monotonic step response)

Example



- ullet variables: widths w_{ij} , spacing s_1 , s_2
- coupling capacitances $\sim 1/s_{ij}$
- minimize total width $s_1 + s_2$ subject to bound $T^{\text{dom}} \leq T$, upper and lower bounds on s_{ij} , w_{ij}

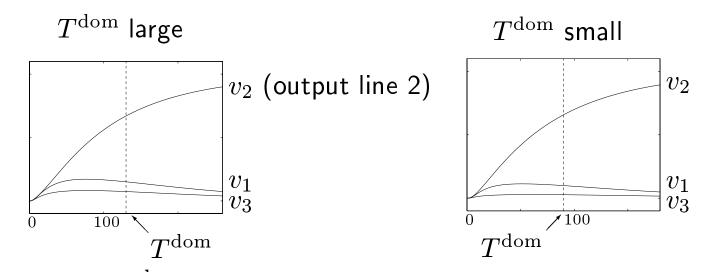
Total width versus dominant time constant



globally optimal tradeoff curve via semidefinite programming

Effect on crosstalk level

apply unit step to bus line 2, zero input to lines 1 and 3



minimizing T^{dom} indirectly reduces crosstalk level

Computational complexity of SDP

interior-point methods

- worst-case: #iterations $\sim \sqrt{\text{problem size}}$
- in practice: #iterations between 5 and 50
- can exploit structure to reduce computation per iteration

structure in SDPs arising in circuit sizing

- G(x), C(x) sparse; each entry depends on very few variables
- can evaluate T^{dom} very efficiently using Lanczos algorithm

Conclusions

dominant time constant as measure for RC circuit delay

- applies to general (nontree) RC circuits
 - multiple sources
 - loops of resistors
 - capacitive coupling
- efficiently, globally optimized via semidefinite programming

no specialized implementation for large-scale problems