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Basic Approach



Basic approach

1. formulate circuit design problem as geometric program (GP), an
optimization problem with special form

2. solve GP using specialized, tailored method

• this tutorial focuses on step 1 (a.k.a. GP modeling)

• step 2 is technology
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Why?

• we can solve even large GPs very effectively, using recently developed
methods

• so once we have a GP formulation, we can solve circuit design problem
effectively

we will see that

• GP is especially good at handling a large number of concurrent
constraints

• GP formulation is useful even when it is approximate
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Trade-offs in optimization

• general trade-off between generality and effectiveness

• generality

– number of problems that can be handled
– accuracy of formulation
– ease of formulation

• effectiveness

– speed of solution, scale of problems that can be handled
– global vs. local solutions
– reliability, baby-sitting, starting point
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Example: least-squares vs. simulated annealing

least-squares

• large problems reliably (globally) solved quickly

• no initial point, no algorithm parameter tuning

• solves very restricted problem form

• with tricks and extensions, basis of vast number of methods that work
(control, filtering, regression, . . . )

simulated annealing

• can be applied to any problem (more or less)

• slow, needs tuning, babysitting; not global in practice

• method of choice for some problems you can’t handle any other way
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Where GP fits in

somewhere in between, closer to least-squares . . .

• like least-squares, large problems can be solved reliably (globally), no
starting point, tuning, . . .

• solves a class of problems broader than least-squares, less general than
simulated annealing

• formulation takes effort, but is fun and has high payoff
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Geometric Programming



Monomial & posynomial functions

x = (x1, . . . , xn): vector of positive optimization variables

• function g of form
g(x) = cxα1

1 xα2
2 · · ·xαn

n ,

with c > 0, αi ∈ R, is called monomial

• sum of monomials, i.e., function f of form

f(x) =
t∑

k=1

ckx
α1k
1 x

α2k
2 · · ·xαnk

n ,

with ck > 0, αik ∈ R, is called posynomial
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Examples

with x, y, z variables,

• 0.23, 2z
√

x/y, 3x2y−.12z are monomials (hence also posynomials)

• 0.23 + x/y, 2(1 + xy)3, 2x + 3y + 2z are posynomials

• 2x + 3y − 2z, x2 + tanx are neither
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Geometric program (GP)

a special form of optimization problem:

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

gi(x) = 1, i = 1, . . . , p

fi are posynomials and gi are monomials

• a highly nonlinear constrained optimization problem

• but, can be solved extremely efficiently

– dense 1000 vbles, 10000 constraints: one minute on PC
– sparse 1M vbles, 10M constraints: one hour on PC
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Example

minimize x−1y

subject to 2x−1 ≤ 1,
(1/3)x ≤ 1,
x2y−1/2 + 3y1/2z−1 ≤ 1,
xy−1z−2 = 1

• this one could be solved by hand, or by sweeping values of x, y, and z

• but a GP with 1000 variables (which is easily solved if you know how)
cannot be solved by hand or sweeping
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Posynomial and monomial algebra

• monomials closed under products, division, positive scaling, powers
(hence, inverse), e.g.,

(
2x−0.2y1.1

) (
0.3xy−0.3z2

)
= 0.6x0.8y0.8z2

• posynomials closed under sums, products, positive scaling, division by
monomials, positive integer powers
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Simple GP extensions

• maximizing a monomial objective g

– same as minimizing g−1, a monomial (hence also posynomial)

• monomial-monomial equality constraint g1 = g2

– same as monomial equality constraint g1/g2 = 1

• posynomial-monomial inequality constraint f ≤ g

– same as posynomial inequality constraint f/g ≤ 1
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Example

• maximize volume of box with width w, height h, depth d

• subject to limits on wall and floor areas, aspect ratios h/w, d/w

maximize hwd
subject to 2(hw + hd) ≤ Awall, wd ≤ Aflr

α ≤ h/w ≤ β, γ ≤ d/w ≤ δ

in standard GP form:

minimize h−1w−1d−1

subject to (2/Awall)hw + (2/Awall)hd ≤ 1, (1/Aflr)wd ≤ 1
αh−1w ≤ 1, (1/β)hw−1 ≤ 1
γwd−1 ≤ 1, (1/δ)w−1d ≤ 1
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Trade-off analysis

(no equality constraints, for simplicity)

• form perturbed version of original GP, with changed righthand sides:

minimize f0(x)
subject to fi(x) ≤ ui, i = 1, . . . , m

• ui > 1 (ui < 1) means ith constraint is relaxed (tightened)

• let p(u) be optimal value of perturbed problem

• plot of p vs. u is (globally) optimal trade-off surface (of objective
against constraints)
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Trade-off curves for maximum volume box example

Afloor

V

10 102 103
1

10

102

103

Awall = 10

Awall = 50

Awall = 100

• maximum volume V vs. Aflr, for Awall = 10, 50, 100

• h/w, d/w aspect ratio limits 0.5, 2
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Sensitivity analysis

• optimal sensitivity of ith constraint is

Si =
∂p/p

∂ui/ui

∣∣∣∣
u=1

• Si predicts fractional change in optimal objective value if ith constraint
is (slightly) relaxed or tightened

• very useful in practice; give quantitative measure of how tight a binding
constraint is

• when we solve a GP we get all optimal sensitivities at no extra cost
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Example

• minimize circuit delay, subject to power, area constraints (details later)

minimize D(x)
subject to P (x) ≤ Pmax, A(x) ≤ Amax

• both constraints tight at optimal x�: P (x�) = Pmax, A(x�) = Amax

• suppose optimal sensitivities are Spwr = −2.1, Sarea = −0.3

• we predict:

– for 1% increase in allowed power, optimal delay decreases 2.1%
– for 1% increase in allowed area, optimal delay decreases 0.3%

ICCAD 2004 17



How GPs are solved

the practical answer: none of your business

more politely: you don’t need to know

it’s technology:

• good algorithms are known

• good software implementations are available
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How GPs are solved

• work with log of variables: yi = log xi

• take log of monomials/posynomials to get

minimize log f0(ey)
subject to log fi(ey) ≤ 0, i = 1, . . . , m

log gi(ey) = 0, i = 1, . . . , p

• log fi(ey) are convex functions

• log gi(ey) are affine functions, i.e., linear plus a constant

• solve (nonlinear) convex optimization problem above using
interior-point method
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Current state of the art

• basic interior-point method that exploits sparsity, generic GP structure

• approaching efficiency of linear programming solver

– sparse 1000 vbles, 10000 monomial terms: few seconds
– sparse 10000 vbles, 100000 monomial terms: minute
– sparse 106 vbles, 107 monomial terms: hour

(these are order-of-magnitude estimates, on simple PC)
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History

• GP (and term ‘posynomial’) introduced in 1967 by Duffin, Peterson,
Zener

• engineering applications from the very beginning

– early applications in chemical, mechanical, power engineering
– digital circuit transistor and wire sizing with Elmore delay since 1984

(Fishburn & Dunlap’s TILOS)
– analog circuit design since 1997 (Hershenson, Boyd, Lee)
– other applications in finance, wireless power control, statistics, . . .

• extremely efficient solution methods since 1994 or so
(Nesterov & Nemirovsky)
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Generalized Geometric Programming



Handling positive fractional powers

• suppose f1, f2 are posynomials

• we can handle f1 + f3
2 ≤ 1 directly, since LHS is posynomial

• we can’t handle f1 + f3.1
2 ≤ 1, since f3.1

2 isn’t posynomial

• trick: replace inequality f1 + f3.1
2 ≤ 1 with two (posy) inequalities

f1 + t3.1 ≤ 1, f2 ≤ t

t is new variable (called dummy or slack)

ICCAD 2004 22



Handling maximum

• suppose f1, f2, f3 are posynomials

• can’t handle f1 + max{f2, f3} ≤ 1 since max{f2, f3} isn’t posynomial

• trick: replace f1 + max{f2, f3} ≤ 1 with three (posy) inequalities

f1 + t ≤ 1, f2 ≤ t, f3 ≤ t

t is new slack variable

• can be applied recursively, together with fractional power trick
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Example

minimize xyz + 4x−1y−3/2

subject to max{x, y} + z ≤ 1
y(x1/2 + 3z)1/2 + z2 ≤ 1

equivalent to GP

minimize xyz + 4x−1y−3/2

subject to t1 + z ≤ 1, x ≤ t1, y ≤ t1

yt
1/2
2 + z2 ≤ 1, x1/2 + 3z ≤ t2

(t1 and t2 are new variables)
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Generalized posynomials

f is a generalized posynomial if it can be formed using addition,
multiplication, positive power, and maximum, starting from posynomials

examples:

• max
{
1 + x1, 2x1 + x0.2

2 x−3.9
3

}
• (

0.1x1x
−0.5
3 + x1.7

2 x0.7
3

)1.5

• (
max

{
1 + x1, 2x1 + x0.2

2 x−3.9
3

})1.7
+ x1.1

2 x3.7
3

• 4x−0.1
1 x2.7

2 max
{
max

{
1 + x1, 2x1 + x0.2

2 x−3.9
3

}
+ x1.1

2 , x1x2x3

}
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Generalized geometric program (GGP)

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

gi(x) = 1, i = 1, . . . , p

fi are generalized posynomials, gi are monomials

• using tricks, can convert GGP to GP, then solve efficiently

• conversion tricks can be automated

– parser scans problem description, forms GP
– GP solver solves GP
– solution transformed back (dummy variables eliminated)
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Floor planning

• configure cell widths, heights

• minimize bounding box area

• fixed cell areas

• aspect ratio constraints

w1 w2

w3
w4

w

h1 h2

h3 h4

h

minimize hw
subject to hiwi = Ai, 1/αmax ≤ hi/wi ≤ αmax,

max{h1, h2} + max{h3, h4} ≤ h,
max{w1 + w2, w3 + w4} ≤ w

. . . a GGP

ICCAD 2004 27



Mixed-integer geometric program

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

gi(x) = 1, i = 1, . . . , p
xi ∈ Di, i = 1, . . . , k

• fi are generalized posynomials, gi are monomials

• Di are discrete sets, e.g., {1, 2, 3, 4, . . .} or {1, 2, 4, 8 . . .}
• very hard to solve exactly; all methods make some compromise

(compared to methods for GP)

• heuristic methods attempt to find good approximate solutions quickly,
but cannot guarantee optimality

• global methods always find the global solution, but can be extremely
slow
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Digital Circuit Design Applications



Gate scaling

1

2

3

4

5

6

7

input flip flops output flip flops

in out

clock

combinational logic block

• combinational logic; circuit topology & gate types given

• gate sizes (scale factors xi ≥ 1) to be determined

• scale factors affect total circuit area, power and delay
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Area & power

• total circuit area: A = (a1x1 + · · · + anxn)Ā

– Ā: area of unit scaled inverter
– ai: area of unit scaled gate i (in units of Ā)

• total power (dynamic + static): P = (b1x1 + · · · + bnxn)fclkĒ

– fclk: clock frequency
– Ē: energy lost per transition by unit scaled inverter driving no load

• A and P are linear functions of x, with positive coefficients, hence
posynomials
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RC gate delay model

Ri

Vdd

C in
i

C in
i

C int
i CL

i

• input & intrinsic capacitances, driving resistance, load capacitance

C in
i = C̄ in

i xi, C int
i = C̄ int

i xi, Ri = R̄i/xi, CL
i =

∑
j∈FO(i)

C in
j
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RC gate delay model

• model
C̄ in

i = αiηC̄, C̄ int
i = βiC̄, Ri = γiR̄/xi

– C̄: intrinsic capacitance of unit scaled inverter
– η: (input capacitance of unit scaled inverter)/C̄
– R̄: driving resistance of unit scaled inverter

• RC gate delay:

Di = 0.69Ri(CL
i + C int

i ) =
(

γiβi + (γi/xi)
∑

j∈FO(i)

ηαjxj

)
D̄

D̄ = 0.69R̄C̄: delay of unit scaled inverter with no load

• Di are posynomials (of scale factors)
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Path and circuit delay

1

2

3

4

5

6

7

• delay of a path: sum of delays of gates on path
. . . posynomial

• circuit delay: maximum delay over all paths
. . . generalized posynomial
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Basic gate scaling problem

minimize D
subject to P ≤ Pmax, A ≤ Amax

1 ≤ xi, i = 1, . . . , n

. . . a GGP

extensions/variations:

• minimize area, power, or some combination

• add other constraints

• optimal trade-off of area, power, delay
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Example: Ladner-Fisher 32-bit adder

• 451 gates (scale factors); RC gate delay model

• typical optimization time: few seconds on PC

Amax

D

700Ā 1200Ā
50D̄

70D̄
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Ladner-Fisher 32-bit adder with integer scale factors

• add constraints xi ∈ {1, 2, 3, . . .}
• simple rounding of optimal continuous scalings

Amax

D

700Ā 1200Ā
50D̄

80D̄

after rounding

before rounding
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Sparse GP gate scaling problem

minimize D
subject to Tj ≤ D for j an output gate

Tj + Di ≤ Ti for j ∈ FI(i)
P ≤ Pmax, A ≤ Amax

1 ≤ xi, i = 1, . . . , n

• Ti are upper bounds on signal arrival times

• extremely sparse GP; can be solved very efficiently
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Better (generalized posynomial) models

can greatly improve model, while retaining GP compatibility
(hence efficient global solution)

• area, delay, power can be any generalized posynomials of scale factors,
e.g.,

Di = ai + bi(CL
i )1.05x−0.9

i , Pi = ci + di(CL
i )1.2 + eix

1.1
i

• these can be found by more refined analysis, or fitting generalized
posynomials to simulation/characterization data
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Distinguishing gate transitions

• can distinguish rising and falling transitions, with different delay, energy,
C in, for each gate input/transition

• (bounds on) signal arrival times can be propagated through recursions,
e.g.,

T r
i = max

j∈FI(i)

{
T r

j + Drr
ji, T f

j + Dfr
ji

}
, T f

i = max
j∈FI(i)

{
T r

j + Drf
ji, T f

j + Dff
ji

}

• gate scaling problem more complex, but still a GGP
(hence can be efficiently solved)
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Modeling signal slopes

• associate (worst-case) output signal transition time τ with each gate

• model delay, energy, input capacitance as (generalized posynomial)
functions of scale factor, load capacitance, input transition time

• propagate output transition time using (generalized posynomial)
function of scale factor, load capacitance, input transition time

• common model:

Di = aiC
L
i /xi +κiτ

in
i , Ei = bi(CL

i + cixi)+λixiτ
in
i , τi = νiDi

• gate scaling problem still a GGP
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Arrival time propagation with soft maximum

• can even generalize max function used to propagate signal arrival times

• replace with soft maximum, e.g., (T p
1 + · · · + T p

k )1/p (say, p ≈ 10)

• can account for increased delay when inputs switch simultaneously

• can choose soft maximum function by fitting simulation data

• gate scaling problem remains a GGP
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Design with a standard library

• circuit topology is fixed; choose size for each gate from discrete library

• a combinatorial optimization problem, difficult to solve exactly

• GP approach

– for each gate type in library, fit given library data to find
GP-compatible models of delay, power, . . .

– size with continuous fitted models, using GP

– snap continuous scale factors back to standard library
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Robust design over corners

• have K corners or scenarios, e.g., combinations of

– process parameters
– supply voltage
– temperature

• for each corner have (slightly) different models for delay, power, . . .

• robust design finds gate scalings that work well for all corners
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Robust design over corners

• basic (worst-case) robust design over corners:

minimize max{D(1), . . . , D(K)}
subject to P (1)(x) ≤ Pmax, . . . , P (K)(x) ≤ Pmax

A ≤ Amax

1 ≤ xi, i = 1, . . . , n

• many variations, e.g., minimize average delay over corners,

(1/K)
(
D(1) + · · · + D(K)

)

• results in (very large, but sparse) GGP
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Multiple-scenario design

• have K scenarios or operating modes, with K models for P , D, . . .

• scenarios are combinations of

– supply & threshold voltages
– clock frequency
– specifications & constraints

• like corner-based robust design, but scenarios are intentional

• find one set of gate scalings that work well in all scenarios
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Example

• find single set of gate scalings to support both high performance mode
and low power mode

– in high performance mode: P fast ≤ P̄ fast, Dfast ≤ D̄fast

– in low power mode: P slow ≤ P̄ slow, Dslow ≤ D̄slow

minimize A
subject to P slow ≤ P̄ slow, Dslow ≤ D̄slow

P fast ≤ P̄ fast, Dfast ≤ D̄fast

1 ≤ xi, i = 1, . . . , n

. . . a GGP
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Dual mode design example

• random netlist, 100 gates, average fanout 3

• alpha-power law delay model; dynamic + leakage power model

• dual mode

– low power (slow): f slow
clk = f̄clk, V slow

dd = 1.0, V slow
th = 0.4

– high performance (fast): f fast
clk = 2f̄clk, V fast

dd = 2.0, V fast
th = 0.2

• objective is area; different power/delay specs for each mode
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Dual mode design example

A D (slow) D (fast) P (slow) P (fast)
specification – 30D̄ 15D̄ 500P̄ 5000P̄

design for slow only 330Ā 30 22 290 2700
design for fast only 370Ā 38.4 15 440 4060
dual mode design 380Ā 25 15 444 4062

• D̄: delay of unit scaled inverter driving no load, in fast mode

• P̄ = fclkĒ: dynamic power dissipated by unit scaled inverter driving no
load, transition frequency fclk, supply voltage 1.0V
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Statistical parameter variation

• circuit peformance depends on random device and process parameters

• hence, performance measures like P , D are random variables P, D

• delay D is max of many random variables; often skewed to right

• distributions of P, D depend on gate scalings xi

50D̄ 75D̄circuit delay

P
D

F

• related to (parametric) yield, DFM, DFY . . .
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Statistical design

• measure random performance measures by 95% quantile (say)

minimize Q.95(D)
subject to Q.95(P) ≤ Pmax, A ≤ Amax

1 ≤ xi, i = 1, . . . , n

• extremely difficult stochastic optimization problem; almost no
analytic/exact results

• but, (GP-compatible) heuristic method works well
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Heuristic for statistical design

• assume generalized posynomial models for gate delay mean Di(x) and
variance σi(x)2

• e.g., σi(x) = ηix
−1/2
i Di(x) (Pelgrom’s model)

• optimize using surrogate gate delays

D̃i(x) = Di(x) + κiσi(x)

κiσi(x) are margins on gate delays (κi is typically 2 or 3)

• verify statistical performance via Monte Carlo
(can update κi’s and repeat)
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Heuristic for statistical design

heuristic statistical design

• often far superior to design obtained ignoring statistical variation

• not very sensitive to details of process variation statistics (distribution
shape, correlations, . . . )

• below: Ladner-Fisher 32-bit adder, Pelgrom variance model

50D̄ 75D̄circuit delay

P
D

F

statistical design

nominal design
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Path delay mean/std. dev. scatter plots

mean path delay

mean path delay
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nominal optimal design

statistical design
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RC tree optimization

R1

R2 R3

R4

R5

R6

C1

C2 C3

C4 C6

C5

• Ris and Cis are generalized posynomials of some underlying variables x
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Elmore delay

• Elmore delay at node i:

Di =
∫ ∞

0

vi(t) dt

area under voltage curve, when voltages are initialized as vi(0) = 1

t

1 Di

• Elmore delay of RC tree is D = max{D1, . . . , DN}
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Elmore delay expression

• analytic expression for Elmore delay Di

Di =
∑

j∈P(i)

RiC
tot
i

• P(i) is path from root to node i

• Ctot
i is the total capacitance downstream from node i (including Ci)

• Di is posynomial of x

• D is generalized posynomial of x
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RC tree optimization

• minimize RC tree delay subject to (generalized posynomial) constraints

minimize D
subject to fi(x) ≤ 0, i = 1, . . . , m

. . . a GGP

• sparse formulation:

minimize s
subject to s ≥ Di, i = 1, . . . , n

Ctot
j ≥ ∑

i∈Child(j) Ctot
i + Cj, i = 1, . . . , n

Di ≥ DPar(k) + RiC
tot
i , i = 1, . . . , n

fi(x) ≤ 0, i = 1, . . . , m
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Wire sizing

• choose wire segment widths wi, . . . , wN in an interconnect network

• optimize delay, area

1

2 3

4 5

C1

C2 C3

C4 C5
vin

Rs
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π model for wire segment

wi

li

Ci Ci

Ri

• wire resistance and capacitances

Ri = αi
li
wi

, Ci = βiliwi + γili,

• with π model, interconnect network becomes RC tree, with Ris and Cis
posynomial functions of wire segment widths wi
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Wire sizing via GP

minimize D
subject to wmin

i ≤ wi ≤ wmax
i , i = 1, . . . , N

l1w1 + · · · + lNwN ≤ Amax

. . . a GGP

• can easily optimize interconnect network with 10000 wires, using sparse
GP formulation

• can use more accurate generalized posynomial models of Ri, Ci
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Device sizing

• devices (and wire segments) are sized individually

• replace each device with switch-level RC model

• each transition is associated with RC tree

• use Elmore delay to measure delay of transition

• . . . problem is GGP
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Switch-level RC device model

G

S

D

B

G

G

D

D

S

S

B

B

NMOS

PMOS

Rsd

Cgb

Cgd

Cgs

Cdb

Csb

• crude linear approximation of device, for delay and power optimization

• R, all Cs are generalized posynomials of device width

• we’ll ignore Cgd (but can be incorporated via Miller effect . . . )
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Example: 2-input NAND

A

B

M1 M2

M3

M4

X

CL

Vdd

Rsd1 Rsd2

Rsd3

Rsd4

C1

C2

C3

C4

B A

A

B

Cdb3

Csb3 + Cdb4

Cdb1 Cdb2A

B

X

CL

Vdd

Vdd

C1 = Cgb2+Cgs2, C2 = Cgb3+Cgs3, C3 = Cgb1+Cgs1, C4 = Cgb4+Cgs4
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Example transition

• transition: B falls from Vdd to zero; A remains at Vdd

• associated RC tree:

Rsd1

Rsd3
C1

C2

CL

Vdd

C1 = Cdb1 + Cdb2 + Cdb3, C2 = Csb3 + Cdb4

• Elmore delay: D = Rsd1(CL + C1 + C2)

• energy lost: E = (CL + C1 + C2)V 2
dd/2
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Device, supply and threshold voltage optimization

• goal: jointly optimize device sizes, supply and threshold voltages via
GGP

• need to: model delay, power as generalized posynomial functions of
device sizes, supply and threshold voltages
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Generalized posynomial delay model

• alpha-power law model

D =
Vdd

(Vdd − Vth)α
h(w,CL, τ in)

h is generalized posynomial

• generalized posynomial approximation

D̂ = V 1−α
dd (1 + Vth/Vdd + · · · + (Vth/Vdd)5)αh(w,CL, τ in)

error under 1% for Vdd ≥ 2Vth, 1.3 ≤ α ≤ 2
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Generalized posynomial power model

• gate dynamic power: Pdyn = ft(CL + C int)V 2
dd

• leakage current model for NMOS: Ileak = awe−(Vth−γVdd)/V0

• simple gate leakage power model:

Pleak = Vddψ(x)e−(Vth−γVdd)/V0

ψ is generalized posynomial (from gate topology, stack effect . . . )

• bad news: Pleak (by itself) cannot be approximated by a generalized
posynomial

• good news: the total power P = Pdyn + Pleak can be approximated by
a generalized posynomial
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Example

total power P = V 2
dd + 30Vdde

−(Vth−0.06Vdd)/0.039 (up to scaling)

VddVth

P

1

2

0.2

0.4

1

12

VddVth 1

2

0.2

0.4

1

12

|P
−

b P|
• posynomial approximation

P̂ = V 2
dd + 0.06Vdd(1 + 0.0031Vdd)500(Vth/0.039)−6.16

• error under 3% (well under accuracy of model!)
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Joint optimization of device sizes, Vdd, & Vth

basic problem, with variables: xi, Vth,i, Vdd,i (. . . a GGP)

minimize D
subject to P ≤ Pmax, A ≤ Amax

V min
th ≤ Vth,i ≤ V max

th , i = 1, . . . , n
V min

dd ≤ Vdd,i ≤ V max
dd , i = 1, . . . , n

other constraints . . .

extensions/variations:

• discrete allowed Vdd, Vth values (yields MIGP)

• clustering, with single Vdd, Vth per cluster

• multi-scenario design: choose single set of wi’s, different V
(k)
dd , V

(k)
th for

each scenario k = 1, . . . , K
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Joint optimization example

• random netlist, 100 gates, average fanout 3, alpha-power-law model

• variables: gate scale factors xi, threshold voltages Vth,i

• all gates with common supply voltage

• four delay-power trade-off curves:

– all gates low Vth,i = 0.2
– all gates high Vth,i = 0.4
– continuous threshold voltages 0.2 ≤ Vth,i ≤ 0.4
– discrete threshold voltages Vth,i ∈ {0.2, 0.3, 0.4}
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Joint optimization example

Vth,i = 0.2

Vth,i = 0.4

0.2 ≤ Vth,i ≤ 0.4

Vth,i ∈ {0.2, 0.3, 0.4}

Dmax

P

15D̄ 40D̄
300P̄

1000P̄

• D̄: delay of unit scaled inverter driving no load in fast mode

• P̄ : dynamic power dissipated by unit scaled inverter driving no load
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Joint optimization example

Dmax

%
of

ga
te

s

15D̄ 40D̄
0%

100%

Vth = 0.4

Vth = 0.3

Vth = 0.2
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Analog Circuit Design Applications



Large signal MOS model

PMOSNMOS

D

D

G G

S

S

II

• gate overdrive voltage Vgov = Vgs − Vth

• saturation condition: Vds ≥ Vdsat = Vgov (Vdsat is minimum
drain-source voltage for device to operate in saturation)

• square-law model I = 0.5µCox(W/L)V 2
gov

• GP model variables: I, L, W

• Vgov = (µCox/2)−1/2I1/2L1/2W−1/2 is monomial

• Vgs = Vgov + Vth is posynomial
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Small signal dynamic MOS model

Cgb Cgs gmvgs go Cdb

Cgd

B S

DG

• transconductance gm = (2µCox)1/2I1/2L−1/2W 1/2 is monomial

• output conductance go = λI is monomial

• all capacitances are (approximately) posynomial in I, L, W

• better (GP-compatible) models can be obtained by fitting data from
accurate models or measurements
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Example: monomial gm model

• monomial model of gm for I/O NMOS device in a 0.13µm technology

• 11000 data points (from BSIM3) over ranges

– 0.3µm ≤ L ≤ 3µm, 2µm ≤ W ≤ 20µm
– 0.7V ≤ Vgs ≤ 1.7V, Vdsat ≤ Vds ≤ 1.5Vgs

• Vds appears in data set, but not in gm model

• monomial fit (using simple log-regression, SI units):

gm = 0.0278I0.4798L−0.511W 0.5632
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Example: monomial gm model

• fitting (relative) error cumulative distribution plot:

fitting error

fr
ac
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of
d
at

a
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n
ts

0% 5% 10%
0%

100%

• for 90% of points, fit is better than 4%
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Single transistor common source amplifier

• variables: I, L, W , R

• saturation: Vdsat + IR ≤ Vdd

• gain G = gm/(1/R + go)

• power P = VddI

• (unity gain) bandwidth B = gm/CL

• design problem:

minimize P
subject to B ≥ Bmin, G ≥ Gmin

saturation

CL

R

Vdd

in

out
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Common source amplifier design via GP

• rewrite as

minimize P
subject to B ≥ Bmin, G−1 ≥ 1/Gmin

Vdsat + IR ≤ Vdd

• . . . a GP, since P and B are monomials, and

G−1 =
1/R + go

gm

is posynomial

• this is a simple problem; don’t need GP sledgehammer . . .
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Current mirror opamp

M1

M3

M5

M6

M7

M2

M4

M8

M9

M10

CL

Iref

Vdd

in+in−
out

• M1,M2 and M3,M4 matched pairs

• four current mirrors: M8,M5; M10,M7; M9,M3; M4, M6
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Design problem

minimize P
subject to B ≥ Bmin, G ≥ Gmin, A ≤ Amax

other constraints . . .

• objective & specifications:

– P is power dissipation
– B is unity gain bandwidth
– G is DC gain
– A is (active) area

• design variables: L1, . . . , L10, W1, . . . , W10

• given: Vdd, CL, Iref, common-mode voltage Vcm

• we’ll formulate as GP
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Power, bandwidth, gain, & area

• power: P = Vdd(I8 + I5 + I7 + I10) . . . posynomial

• bandwidth: B = gm,2gm,6/(gm,4CL) . . . monomial

• area: A = W1L1 + · · · + W10L10 . . . posynomial

• gain: G =
gm,2gm,6

gm,4(go,6 + go,7)

. . . G−1 is posynomial, so G ≥ Gmin can be written as G−1 ≤ 1/Gmin
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Dimension, matching, and current constraints

• limits on device sizes: Lmin ≤ Li ≤ Lmax, Wmin ≤ Wi, i = 1, . . . , 10

• differential symmetry constraints (M1, M2 and M3, M4 matched):

W1 = W2, L1 = L2, I1 = I2,
W3 = W4, L3 = L4, I3 = I4,

• length & gate overdrive voltage matched for current mirror pairs:

L5 = L8, L10 = L7, L3 = L9, L4 = L6

Vgov,5 = Vgov,8, Vgov,10 = Vgov,7, Vgov,3 = Vgov,9, Vgov,4 = Vgov,6

• current relations:

I1 = I3 = I5/2, I8 = Iref, I6 = I7, I9 = I10
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Saturation constraints

• diode connected devices (M3,M4,M8, M10) automatically in saturation

• others must have Vds ≥ Vdsat:

– M7: Vdsat,7 ≤ Vcm

– M6: Vdsat,6 + Vcm ≤ Vdd

– M9: Vdsat,9 + Vgs,10 ≤ Vdd

– M5: Vds,5 + Vgs,1 ≤ Vcm

– M1 & M2: Vcm + Vgs,3 ≤ Vdd + Vth

• . . . all are posynomial inequalities
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Node capacitances and non-dominant poles

• capacitances at nodes are posynomials, e.g.,

Cout = Cgd,6 + Cdb,6 + Cgd,7 + Cdb,7 + CL

• non-dominant time constants are posynomials:

τ1 =
Cd1

gm,3
, τ2 =

Cd2

gm,4
, τ9 =

Cd9

gm,10

(Cd1, Cd2, Cd9 are node capacitances at drains of M1,M2,M9)

• to limit effect of non-dominant poles, make sum smaller than dominant
time constant:

τ1 + τ2 + τ9 ≤ τdom = CL/gm

. . . a posynomial constraint
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Power versus bandwidth trade-off

Gmin = 10

Gmin = 20

Gmin = 30

10 60
0.1

1

10

Bmin (MHz)

P
(m

W
)
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Joint electrical/physical design

• each device has a (physical) cell width w and height h for floor planning

• devices are folded into multiple fingers

• (approximate) posynomial or monomial relations link electrical variables
(I, L, W ) and physical variables (w, h), e.g.,

– cell area is at least 4× active area: wh ≥ 4WL
– cell aspect ratio limited to 5:1: 1/5 ≤ w/h ≤ 5

W/6

L

w

h
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Slicing tree layout scheme

• vertical and horizontal slices fix relative placement of device cells

• leaves are device cells; root is bounding box

v

h h

M1

v
M4 M5

M2 M3

M1

M4

M2 M3

M5

wbbox

hbbox
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Slicing tree constraints

• introduce width, height for each node in slicing tree

• for each vertical slice with parent a and children b, c add constraints

wa = wb + wc, ha = max{hb, hc}

• for each horizontal slice with parent a and children b, c add constraints

wa = max{wb, wc}, ha = hb + hc

• shows width and height of bounding box and each node is generalized
posynomial of device cell widths, heights

• resulting GP formulation is very sparse
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Joint electrical/physical design via GP

• form one GP that includes

– electrical variables, constraints (Ii, Li, Wi, gm,i . . .)
– physical variables, constraints (wi, hi, w

bbox, hbbox, . . .)
– coupling constraints (wihi ≥ 4WiLi, . . . )

• solve it all together

• extensions: can add

– parasitic estimates
– more accurate expressions for device cell dimensions
– channels for routing
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Optimal filter implementation

simple Gm-C two-pole lowpass filter

g1
g2

C1 C2

input
output

transfer function is

H(s) =
1

1 + t1s + t1t2s2
, t1 = C1/g1, t2 = C2/g2

gi is amplifier transconductance
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Noise analysis

• Ni is input referred (white) amplifier input-referred voltage density

• spectral density of output noise is

N(ω)2 =
N2

1 + ω2N2
2

(1 − t1t2ω2)2 + t21ω
2

• root-mean-square output noise voltage is

M =
(∫ ∞

0

N(ω)2 dω

)1/2

=
(
αN2

1 + βN2
2

)1/2
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Amplifier and capacitor implementation models

• each amplifier has private variables u (e.g., device lengths & widths)
and constraints

• transconductance g is monomial in u; area Aamp, power P ,
input-referred noise density N are posynomial in u

• each capacitor has private variables v (e.g., physical dimensions) and
constraints

• capacitance C is monomial in v; area Acap is posynomial

• design variables are u1, u2, v1, v2
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Optimal filter implementation problem

• filter is Butterworth with frequency ωc:

t1 =
√

2/ωc, t2 = (1/
√

2)/ωc

• minimize total power of implementation, subject to area, output noise
limits:

minimize P (u1) + P (u2)
subject to t1 =

√
2/ωc, t2 = (1/

√
2)/ωc

Aamp(u1) + Aamp(u2) + Acap(v1) + Acap(v2) ≤ Amax

M = (ωc/4
√

2)(N2
1 + 2N2

2 )1/2 ≤ Mmax

• a GGP in the variables u1, u2, v1, v2
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Example

• Butterworth filter with ωc = 108rad/s

• private variables in amplifiers: (equivalent) L, W

• amplifier model:

A = WL, P = 2.5·10−4W/L,

g = 4·10−5W/L, N =
√

7.5·10−16L/W

(based on simple model with Vdd = 2.5, Vgov = 0.2)

• private variable in capacitors is area Acap; C = 10−4Acap

• Amax = 4·10−6
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Power versus noise trade-off

p
ow

er
P

(m
W

)

max noise Mmax (µV RMS)
10 100

0.1

1

10
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Monomial and Posynomial Fitting



A basic property of posynomials

• if f is a monomial, then log f(ey) is affine (linear plus constant)

• if f is a posynomial, then log f(ey) is convex

• roughly speaking, a posynomial is convex when plotted on log-log plot

• midpoint rule for posynomial f :

– let z be elementwise geometric mean of x, y, i.e., zi =
√

xiyi

– then f(z) ≤ √
f(x)f(y)

• a converse: if log φ(ey) is convex, then φ can be approximated as well
as you like by a posynomial
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Convexity in circuit design context

• consider circuit with design variables W1, . . . , Wn (say) & performance
measure φ(W1, . . . , Wn) (e.g., power, delay, area)

• two designs: W
(a)
i & W

(b)
i , with performance φ(a) & φ(b)

• form geometric mean compromise design with W
(c)
i =

√
W

(a)
i W

(b)
i ,

performance φ(c)

• if φ is generalized posynomial, then we have φ(c) ≤
√

φ(a)φ(b)

• this is not obvious
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Monomial/posynomial approximation: Theory

when can a function f be approximated by a monomial or generalized
posynomial?

• form function F (y) = log f(ey)

• f can be approximated by a monomial if and only if F is nearly affine
(linear plus constant)

• f can be approximated by a generalized posynomial if and only if F is
nearly convex
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Examples

0.1 1
0.1

1

2√
π

R ∞
x

e−t2 dt

0.5/(1.5 − x)

tanh(x)

• tanh(x) can be reasonably well fit by a monomial

• 0.5/(1.5 − x) can be fit by a generalized posynomial

• (2/
√

π)
∫ ∞

x
e−t2 dt cannot be fit very well by a generalized posynomial
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What problems can be approximated by GGPs?

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

gi(x) = 1, i = 1, . . . , p

• transformed objective and inequality constraint functions
Fi(y) = log fi(ey) must be nearly convex

• transformed equality constraint functions Gi(y) = log Gi(ey) must be
nearly affine
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Monomial fitting via log-regression

find coefficient c > 0 and exponents a1, . . . , an of monomial f so that

f(x(i)) ≈ f (i), i = 1, . . . , N

• rewrite as

log f(x(i)) = log c + a1 log x
(i)
1 + · · · + an log x(i)

n

≈ log f (i), i = 1, . . . , N

• use least-squares (regression) to find log c, a1, . . . , an that minimize

N∑
i=1

(
log c + a1 log x

(i)
1 + · · · + an log x(i)

n − log f (i)
)2
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Posynomial fitting via Gauss-Newton

find coefficients and exponents of posynomial f so that

f(x(i)) ≈ f (i), i = 1, . . . , N

• minimize sum of squared fractional errors

N∑
i=1

(
f (i) − f(x(i))

f (i)

)2

can be (locally) solved by Gauss-Newton method

• needs starting guess for coefficients, exponents
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Posynomial fitting example

• 1000 data points from f(x) = (1 − 0.5(x2
1 + x2 + x−1

3 − 1)2)1/2 over
0.1 ≤ xi ≤ 1

• cumulative error distribution for 3-, 5-, and 10-term posynomial fits

fitting error
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Conclusions



Conclusions

(generalized) geometric programming

• comes up in a variety of circuit sizing contexts

• can be used to formulate a variety of problems

• admits fast, reliable solution of large-scale problems

• is good at concurrently balancing lots of coupled constraints and
objectives

• is useful even when problem has discrete constraints
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Approach

• most problems don’t come naturally in GP form; be prepared to
reformulate and/or approximate

• GP modeling is not a “try my software” method; it requires thinking

• our approach:

– start with simple analytical models (RC, square-law, Pelgrom, . . . )
to verify GP might apply

– then fit GP-compatible models to simulation or measured data
– for highest accuracy, revert to local method for final polishing
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• looking for keys under street light
(not where keys were lost, but lighting is good)

• forcing problems into GP-compatible form
(problems aren’t GPs, but solving is good)
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