Circuit Design via Geometric Programming

Stephen Boyd Seung Jean Kim S. S. Mohan
Mark Horowitz Dinesh Patil
ICCAD Tutorial 11/11/04

Outline

- Basic approach
- Geometric programming \& generalized geometric programming
- Digital circuit design applications
- Analog circuit design applications
- Conclusions

Basic Approach

Basic approach

1. formulate circuit design problem as geometric program (GP), an optimization problem with special form
2. solve GP using specialized, tailored method

- this tutorial focuses on step 1 (a.k.a. GP modeling)
- step 2 is technology

Why?

- we can solve even large GPs very effectively, using recently developed methods
- so once we have a GP formulation, we can solve circuit design problem effectively
we will see that
- GP is especially good at handling a large number of concurrent constraints
- GP formulation is useful even when it is approximate

Trade-offs in optimization

- general trade-off between generality and effectiveness
- generality
- number of problems that can be handled
- accuracy of formulation
- ease of formulation
- effectiveness
- speed of solution, scale of problems that can be handled
- global vs. local solutions
- reliability, baby-sitting, starting point

Example: least-squares vs. simulated annealing

least-squares

- large problems reliably (globally) solved quickly
- no initial point, no algorithm parameter tuning
- solves very restricted problem form
- with tricks and extensions, basis of vast number of methods that work (control, filtering, regression, . . .)
simulated annealing
- can be applied to any problem (more or less)
- slow, needs tuning, babysitting; not global in practice
- method of choice for some problems you can't handle any other way

Where GP fits in

somewhere in between, closer to least-squares . . .

- like least-squares, large problems can be solved reliably (globally), no starting point, tuning, . . .
- solves a class of problems broader than least-squares, less general than simulated annealing
- formulation takes effort, but is fun and has high payoff

Geometric Programming

Monomial \& posynomial functions

$x=\left(x_{1}, \ldots, x_{n}\right):$ vector of positive optimization variables

- function g of form

$$
g(x)=c x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

with $c>0, \alpha_{i} \in \mathbf{R}$, is called monomial

- sum of monomials, i.e., function f of form

$$
f(x)=\sum_{k=1}^{t} c_{k} x_{1}^{\alpha_{1 k}} x_{2}^{\alpha_{2 k}} \cdots x_{n}^{\alpha_{n k}}
$$

with $c_{k}>0, \alpha_{i k} \in \mathbf{R}$, is called posynomial

Examples

with x, y, z variables,

- $0.23,2 z \sqrt{x / y}, 3 x^{2} y^{-.12} z$ are monomials (hence also posynomials)
- $0.23+x / y, 2(1+x y)^{3}, 2 x+3 y+2 z$ are posynomials
- $2 x+3 y-2 z, x^{2}+\tan x$ are neither

Geometric program (GP)

a special form of optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 1, \quad i=1, \ldots, m \\
& g_{i}(x)=1, \quad i=1, \ldots, p
\end{array}
$$

f_{i} are posynomials and g_{i} are monomials

- a highly nonlinear constrained optimization problem
- but, can be solved extremely efficiently
- dense 1000 vbles, 10000 constraints: one minute on PC
- sparse 1 M vbles, 10 M constraints: one hour on PC

Example

$$
\begin{array}{ll}
\operatorname{minimize} & x^{-1} y \\
\text { subject to } & 2 x^{-1} \leq 1 \\
& (1 / 3) x \leq 1 \\
& x^{2} y^{-1 / 2}+3 y^{1 / 2} z^{-1} \leq 1 \\
& x y^{-1} z^{-2}=1
\end{array}
$$

- this one could be solved by hand, or by sweeping values of x, y, and z
- but a GP with 1000 variables (which is easily solved if you know how) cannot be solved by hand or sweeping

Posynomial and monomial algebra

- monomials closed under products, division, positive scaling, powers (hence, inverse), e.g.,

$$
\left(2 x^{-0.2} y^{1.1}\right)\left(0.3 x y^{-0.3} z^{2}\right)=0.6 x^{0.8} y^{0.8} z^{2}
$$

- posynomials closed under sums, products, positive scaling, division by monomials, positive integer powers

Simple GP extensions

- maximizing a monomial objective g
- same as minimizing g^{-1}, a monomial (hence also posynomial)
- monomial-monomial equality constraint $g_{1}=g_{2}$
- same as monomial equality constraint $g_{1} / g_{2}=1$
- posynomial-monomial inequality constraint $f \leq g$
- same as posynomial inequality constraint $f / g \leq 1$

Example

- maximize volume of box with width w, height h, depth d
- subject to limits on wall and floor areas, aspect ratios $h / w, d / w$

$$
\begin{array}{ll}
\operatorname{maximize} & h w d \\
\text { subject to } & 2(h w+h d) \leq A_{\text {wall }}, \quad w d \leq A_{\text {flr }} \\
& \alpha \leq h / w \leq \beta, \quad \gamma \leq d / w \leq \delta
\end{array}
$$

in standard GP form:

$$
\begin{array}{ll}
\operatorname{minimize} & h^{-1} w^{-1} d^{-1} \\
\text { subject to } & \left(2 / A_{\text {wall }}\right) h w+\left(2 / A_{\text {wall }} h d \leq 1, \quad\left(1 / A_{\text {fir }}\right) w d \leq 1\right. \\
& \alpha h^{-1} w \leq 1, \quad(1 / \beta) h w^{-1} \leq 1 \\
& \gamma w d^{-1} \leq 1, \quad(1 / \delta) w^{-1} d \leq 1
\end{array}
$$

Trade-off analysis

(no equality constraints, for simplicity)

- form perturbed version of original GP, with changed righthand sides:

$$
\begin{array}{ll}
\underset{f_{0}(x)}{\operatorname{minimize}} & \\
\text { subject to } & f_{i}(x) \leq u_{i}, \quad i=1, \ldots, m
\end{array}
$$

- $u_{i}>1\left(u_{i}<1\right)$ means i th constraint is relaxed (tightened)
- let $p(u)$ be optimal value of perturbed problem
- plot of p vs. u is (globally) optimal trade-off surface (of objective against constraints)

Trade-off curves for maximum volume box example

- maximum volume V vs. $A_{\text {frr }}$, for $A_{\text {wall }}=10,50,100$
- $h / w, d / w$ aspect ratio limits $0.5,2$

Sensitivity analysis

- optimal sensitivity of i th constraint is

$$
S_{i}=\left.\frac{\partial p / p}{\partial u_{i} / u_{i}}\right|_{u=1}
$$

- S_{i} predicts fractional change in optimal objective value if i th constraint is (slightly) relaxed or tightened
- very useful in practice; give quantitative measure of how tight a binding constraint is
- when we solve a GP we get all optimal sensitivities at no extra cost

Example

- minimize circuit delay, subject to power, area constraints (details later)

$$
\begin{array}{ll}
\operatorname{minimize} & D(x) \\
\text { subject to } & P(x) \leq P^{\max }, \quad A(x) \leq A^{\max }
\end{array}
$$

- both constraints tight at optimal $x^{\star}: P\left(x^{\star}\right)=P^{\max }, A\left(x^{\star}\right)=A^{\text {max }}$
- suppose optimal sensitivities are $S^{\mathrm{pwr}}=-2.1, S^{\text {area }}=-0.3$
- we predict:
- for 1% increase in allowed power, optimal delay decreases 2.1\%
- for 1% increase in allowed area, optimal delay decreases 0.3%

How GPs are solved

the practical answer: none of your business
more politely: you don't need to know
it's technology:

- good algorithms are known
- good software implementations are available

How GPs are solved

- work with log of variables: $y_{i}=\log x_{i}$
- take log of monomials/posynomials to get

$$
\begin{array}{ll}
\operatorname{minimize} & \log f_{0}\left(e^{y}\right) \\
\text { subject to } & \log f_{i}\left(e^{y}\right) \leq 0, \quad i=1, \ldots, m \\
& \log g_{i}\left(e^{y}\right)=0, \quad i=1, \ldots, p
\end{array}
$$

- $\log f_{i}\left(e^{y}\right)$ are convex functions
- $\log g_{i}\left(e^{y}\right)$ are affine functions, i.e., linear plus a constant
- solve (nonlinear) convex optimization problem above using interior-point method

Current state of the art

- basic interior-point method that exploits sparsity, generic GP structure
- approaching efficiency of linear programming solver
- sparse 1000 vbles, 10000 monomial terms: few seconds
- sparse 10000 vbles, 100000 monomial terms: minute
- sparse 10^{6} vbles, 10^{7} monomial terms: hour
(these are order-of-magnitude estimates, on simple PC)

History

- GP (and term 'posynomial') introduced in 1967 by Duffin, Peterson, Zener
- engineering applications from the very beginning
- early applications in chemical, mechanical, power engineering
- digital circuit transistor and wire sizing with Elmore delay since 1984 (Fishburn \& Dunlap's TILOS)
- analog circuit design since 1997 (Hershenson, Boyd, Lee)
- other applications in finance, wireless power control, statistics, . . .
- extremely efficient solution methods since 1994 or so (Nesterov \& Nemirovsky)

Generalized Geometric Programming

Handling positive fractional powers

- suppose f_{1}, f_{2} are posynomials
- we can handle $f_{1}+f_{2}^{3} \leq 1$ directly, since LHS is posynomial
- we can't handle $f_{1}+f_{2}^{3.1} \leq 1$, since $f_{2}^{3.1}$ isn't posynomial
- trick: replace inequality $f_{1}+f_{2}^{3.1} \leq 1$ with two (posy) inequalities

$$
f_{1}+t^{3.1} \leq 1, \quad f_{2} \leq t
$$

t is new variable (called dummy or slack)

Handling maximum

- suppose f_{1}, f_{2}, f_{3} are posynomials
- can't handle $f_{1}+\max \left\{f_{2}, f_{3}\right\} \leq 1$ since $\max \left\{f_{2}, f_{3}\right\}$ isn't posynomial
- trick: replace $f_{1}+\max \left\{f_{2}, f_{3}\right\} \leq 1$ with three (posy) inequalities

$$
f_{1}+t \leq 1, \quad f_{2} \leq t, \quad f_{3} \leq t
$$

t is new slack variable

- can be applied recursively, together with fractional power trick

Example

$$
\begin{array}{ll}
\operatorname{minimize} & x y z+4 x^{-1} y^{-3 / 2} \\
\text { subject to } & \max \{x, y\}+z \leq 1 \\
& y\left(x^{1 / 2}+3 z\right)^{1 / 2}+z^{2} \leq 1
\end{array}
$$

equivalent to GP

$$
\begin{array}{ll}
\operatorname{minimize} & x y z+4 x^{-1} y^{-3 / 2} \\
\text { subject to } & t_{1}+z \leq 1, \quad x \leq t_{1}, \quad y \leq t_{1} \\
& y t_{2}^{1 / 2}+z^{2} \leq 1, \quad x^{1 / 2}+3 z \leq t_{2}
\end{array}
$$

(t_{1} and t_{2} are new variables)

Generalized posynomials

f is a generalized posynomial if it can be formed using addition, multiplication, positive power, and maximum, starting from posynomials

examples:

- $\max \left\{1+x_{1}, 2 x_{1}+x_{2}^{0.2} x_{3}^{-3.9}\right\}$
- $\left(0.1 x_{1} x_{3}^{-0.5}+x_{2}^{1.7} x_{3}^{0.7}\right)^{1.5}$
- $\left(\max \left\{1+x_{1}, 2 x_{1}+x_{2}^{0.2} x_{3}^{-3.9}\right\}\right)^{1.7}+x_{2}^{1.1} x_{3}^{3.7}$
- $4 x_{1}^{-0.1} x_{2}^{2.7} \max \left\{\max \left\{1+x_{1}, 2 x_{1}+x_{2}^{0.2} x_{3}^{-3.9}\right\}+x_{2}^{1.1}, x_{1} x_{2} x_{3}\right\}$

Generalized geometric program (GGP)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 1, \quad i=1, \ldots, m \\
& g_{i}(x)=1, \quad i=1, \ldots, p
\end{array}
$$

f_{i} are generalized posynomials, g_{i} are monomials

- using tricks, can convert GGP to GP, then solve efficiently
- conversion tricks can be automated
- parser scans problem description, forms GP
- GP solver solves GP
- solution transformed back (dummy variables eliminated)

Floor planning

- configure cell widths, heights
- minimize bounding box area
- fixed cell areas
- aspect ratio constraints

$$
\begin{array}{ll}
\operatorname{minimize} & h w \\
\text { subject to } & h_{i} w_{i}=A_{i}, \quad 1 / \alpha_{\max } \leq h_{i} / w_{i} \leq \alpha_{\max } \\
& \max \left\{h_{1}, h_{2}\right\}+\max \left\{h_{3}, h_{4}\right\} \leq h \\
& \max \left\{w_{1}+w_{2}, w_{3}+w_{4}\right\} \leq w
\end{array}
$$

. . . a GGP

Mixed-integer geometric program

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 1, \quad i=1, \ldots, m \\
& g_{i}(x)=1, \quad i=1, \ldots, p \\
& x_{i} \in \mathcal{D}_{i}, \quad i=1, \ldots, k
\end{array}
$$

- f_{i} are generalized posynomials, g_{i} are monomials
- \mathcal{D}_{i} are discrete sets, e.g., $\{1,2,3,4, \ldots\}$ or $\{1,2,4,8 \ldots\}$
- very hard to solve exactly; all methods make some compromise (compared to methods for GP)
- heuristic methods attempt to find good approximate solutions quickly, but cannot guarantee optimality
- global methods always find the global solution, but can be extremely slow

Digital Circuit Design Applications

Gate scaling

- combinational logic; circuit topology \& gate types given
- gate sizes (scale factors $x_{i} \geq 1$) to be determined
- scale factors affect total circuit area, power and delay

Area \& power

- total circuit area: $A=\left(a_{1} x_{1}+\cdots+a_{n} x_{n}\right) \bar{A}$
- \bar{A} : area of unit scaled inverter
- a_{i} : area of unit scaled gate i (in units of \bar{A})
- total power (dynamic + static): $P=\left(b_{1} x_{1}+\cdots+b_{n} x_{n}\right) f_{\mathrm{clk}} \bar{E}$
- $f_{\text {clk }}$: clock frequency
- \bar{E} : energy lost per transition by unit scaled inverter driving no load
- A and P are linear functions of x, with positive coefficients, hence posynomials

RC gate delay model

- input \& intrinsic capacitances, driving resistance, load capacitance

$$
C_{i}^{\mathrm{in}}=\bar{C}_{i}^{\mathrm{in}} x_{i}, \quad C_{i}^{\mathrm{int}}=\bar{C}_{i}^{\mathrm{int}} x_{i}, \quad R_{i}=\bar{R}_{i} / x_{i}, \quad C_{i}^{\mathrm{L}}=\sum_{j \in \mathrm{FO}(i)} C_{j}^{\mathrm{in}}
$$

RC gate delay model

- model

$$
\bar{C}_{i}^{\text {in }}=\alpha_{i} \eta \bar{C}, \quad \bar{C}_{i}^{\text {int }}=\beta_{i} \bar{C}, \quad R_{i}=\gamma_{i} \bar{R} / x_{i}
$$

- \bar{C} : intrinsic capacitance of unit scaled inverter
- η : (input capacitance of unit scaled inverter) $/ \bar{C}$
- \bar{R} : driving resistance of unit scaled inverter
- RC gate delay:

$$
D_{i}=0.69 R_{i}\left(C_{i}^{\mathrm{L}}+C_{i}^{\mathrm{int}}\right)=\left(\gamma_{i} \beta_{i}+\left(\gamma_{i} / x_{i}\right) \sum_{j \in \mathrm{FO}(i)} \eta \alpha_{j} x_{j}\right) \bar{D}
$$

$\bar{D}=0.69 \bar{R} \bar{C}$: delay of unit scaled inverter with no load

- D_{i} are posynomials (of scale factors)

Path and circuit delay

- delay of a path: sum of delays of gates on path
. . . posynomial
- circuit delay: maximum delay over all paths
. . . generalized posynomial

Basic gate scaling problem

```
minimize D
subject to }P\leq\mp@subsup{P}{}{\operatorname{max}},\quadA\leq\mp@subsup{A}{}{\operatorname{max}
    1\leq xi, i=1,\ldots,n
```

. . . a GGP
extensions/variations:

- minimize area, power, or some combination
- add other constraints
- optimal trade-off of area, power, delay

Example: Ladner-Fisher 32-bit adder

- 451 gates (scale factors); RC gate delay model
- typical optimization time: few seconds on PC

Ladner-Fisher 32-bit adder with integer scale factors

- add constraints $x_{i} \in\{1,2,3, \ldots\}$
- simple rounding of optimal continuous scalings

Sparse GP gate scaling problem

$$
\begin{array}{ll}
\operatorname{minimize} & D \\
\text { subject to } & T_{j} \leq D \quad \text { for } j \text { an output gate } \\
& T_{j}+D_{i} \leq T_{i} \quad \text { for } j \in \mathrm{FI}(i) \\
& P \leq P^{\max }, \quad A \leq A^{\max } \\
& 1 \leq x_{i}, \quad i=1, \ldots, n
\end{array}
$$

- T_{i} are upper bounds on signal arrival times
- extremely sparse GP; can be solved very efficiently

Better (generalized posynomial) models

can greatly improve model, while retaining GP compatibility (hence efficient global solution)

- area, delay, power can be any generalized posynomials of scale factors, e.g.,

$$
D_{i}=a_{i}+b_{i}\left(C_{i}^{\mathrm{L}}\right)^{1.05} x_{i}^{-0.9}, \quad P_{i}=c_{i}+d_{i}\left(C_{i}^{\mathrm{L}}\right)^{1.2}+e_{i} x_{i}^{1.1}
$$

- these can be found by more refined analysis, or fitting generalized posynomials to simulation/characterization data

Distinguishing gate transitions

- can distinguish rising and falling transitions, with different delay, energy, $C^{\text {in }}$, for each gate input/transition
- (bounds on) signal arrival times can be propagated through recursions, e.g.,

$$
T_{i}^{\mathrm{r}}=\max _{j \in \mathrm{FI}(i)}\left\{T_{j}^{\mathrm{r}}+D_{j i}^{\mathrm{rr}}, T_{j}^{\mathrm{f}}+D_{j i}^{\mathrm{fr}}\right\}, \quad T_{i}^{\mathrm{f}}=\max _{j \in \mathrm{FI}(i)}\left\{T_{j}^{\mathrm{r}}+D_{j i}^{\mathrm{rf}}, T_{j}^{\mathrm{f}}+D_{j i}^{\mathrm{ff}}\right\}
$$

- gate scaling problem more complex, but still a GGP (hence can be efficiently solved)

Modeling signal slopes

- associate (worst-case) output signal transition time τ with each gate
- model delay, energy, input capacitance as (generalized posynomial) functions of scale factor, load capacitance, input transition time
- propagate output transition time using (generalized posynomial) function of scale factor, load capacitance, input transition time
- common model:

$$
D_{i}=a_{i} C_{i}^{\mathrm{L}} / x_{i}+\kappa_{i} \tau_{i}^{\mathrm{in}}, \quad E_{i}=b_{i}\left(C_{i}^{\mathrm{L}}+c_{i} x_{i}\right)+\lambda_{i} x_{i} \tau_{i}^{\mathrm{in}}, \quad \tau_{i}=\nu_{i} D_{i}
$$

- gate scaling problem still a GGP

Arrival time propagation with soft maximum

- can even generalize max function used to propagate signal arrival times
- replace with soft maximum, e.g., $\left(T_{1}^{p}+\cdots+T_{k}^{p}\right)^{1 / p}$ (say, $p \approx 10$)
- can account for increased delay when inputs switch simultaneously
- can choose soft maximum function by fitting simulation data
- gate scaling problem remains a GGP

Design with a standard library

- circuit topology is fixed; choose size for each gate from discrete library
- a combinatorial optimization problem, difficult to solve exactly
- GP approach
- for each gate type in library, fit given library data to find GP-compatible models of delay, power, . . .
- size with continuous fitted models, using GP
- snap continuous scale factors back to standard library

Robust design over corners

- have K corners or scenarios, e.g., combinations of
- process parameters
- supply voltage
- temperature
- for each corner have (slightly) different models for delay, power, . . .
- robust design finds gate scalings that work well for all corners

Robust design over corners

- basic (worst-case) robust design over corners:

$$
\begin{array}{ll}
\operatorname{minimize} & \max \left\{D^{(1)}, \ldots, D^{(K)}\right\} \\
\text { subject to } & P^{(1)}(x) \leq P^{\max }, \ldots, P^{(K)}(x) \leq P^{\max } \\
& A \leq A^{\max } \\
& 1 \leq x_{i}, \quad i=1, \ldots, n
\end{array}
$$

- many variations, e.g., minimize average delay over corners,

$$
(1 / K)\left(D^{(1)}+\cdots+D^{(K)}\right)
$$

- results in (very large, but sparse) GGP

Multiple-scenario design

- have K scenarios or operating modes, with K models for P, D, \ldots
- scenarios are combinations of
- supply \& threshold voltages
- clock frequency
- specifications \& constraints
- like corner-based robust design, but scenarios are intentional
- find one set of gate scalings that work well in all scenarios

Example

- find single set of gate scalings to support both high performance mode and low power mode
- in high performance mode: $P^{\text {fast }} \leq \bar{P}^{\text {fast }}, D^{\text {fast }} \leq \bar{D}^{\text {fast }}$
- in low power mode: $P^{\text {slow }} \leq \bar{P}^{\text {slow }}, D^{\text {slow }} \leq \bar{D}^{\text {slow }}$

$$
\begin{array}{ll}
\operatorname{minimize} & A \\
\text { subject to } & P^{\text {slow }} \leq \bar{P}^{\text {slow }}, \quad D^{\text {slow }} \leq \bar{D}^{\text {slow }} \\
& P^{\text {fast }} \leq \bar{P}^{\text {fast }}, \quad D^{\text {fast }} \leq \bar{D}^{\text {fast }} \\
& 1 \leq x_{i}, \quad i=1, \ldots, n
\end{array}
$$

. . . a GGP

Dual mode design example

- random netlist, 100 gates, average fanout 3
- alpha-power law delay model; dynamic + leakage power model
- dual mode
- low power (slow): $f_{\text {clk }}^{\text {slow }}=\bar{f}_{\text {clk }}, V_{\text {dd }}^{\text {slow }}=1.0, V_{\text {th }}^{\text {slow }}=0.4$
- high performance (fast): $f_{\mathrm{clk}}^{\text {fast }}=2 \bar{f}_{\mathrm{clk}}, V_{\mathrm{dd}}^{\text {fast }}=2.0, V_{\mathrm{th}}^{\text {fast }}=0.2$
- objective is area; different power/delay specs for each mode

Dual mode design example

	A	D (slow)	D (fast)	P (slow)	P (fast)
specification	-	$30 D$	$15 D$	$500 P$	$5000 P$
design for slow only	$330 \bar{A}$	30	22	290	2700
design for fast only	$370 \bar{A}$	38.4	15	440	4060
dual mode design	$380 \bar{A}$	25	15	444	4062

- \bar{D} : delay of unit scaled inverter driving no load, in fast mode
- $\bar{P}=f_{\mathrm{clk}} \bar{E}$: dynamic power dissipated by unit scaled inverter driving no load, transition frequency $f_{\text {clk }}$, supply voltage 1.0 V

Statistical parameter variation

- circuit peformance depends on random device and process parameters
- hence, performance measures like P, D are random variables \mathbf{P}, \mathbf{D}
- delay \mathbf{D} is max of many random variables; often skewed to right
- distributions of \mathbf{P}, \mathbf{D} depend on gate scalings x_{i}

- related to (parametric) yield, DFM, DFY . . .

Statistical design

- measure random performance measures by 95% quantile (say)

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{Q}^{\cdot 95}(\mathbf{D}) \\
\text { subject to } & \mathbf{Q}^{95}(\mathbf{P}) \leq P^{\max }, \quad A \leq A^{\max } \\
& 1 \leq x_{i}, \quad i=1, \ldots, n
\end{array}
$$

- extremely difficult stochastic optimization problem; almost no analytic/exact results
- but, (GP-compatible) heuristic method works well

Heuristic for statistical design

- assume generalized posynomial models for gate delay mean $D_{i}(x)$ and variance $\sigma_{i}(x)^{2}$
- e.g., $\sigma_{i}(x)=\eta_{i} x_{i}^{-1 / 2} D_{i}(x)$ (Pelgrom's model)
- optimize using surrogate gate delays

$$
\tilde{D}_{i}(x)=D_{i}(x)+\kappa_{i} \sigma_{i}(x)
$$

$\kappa_{i} \sigma_{i}(x)$ are margins on gate delays (κ_{i} is typically 2 or 3)

- verify statistical performance via Monte Carlo (can update κ_{i} 's and repeat)

Heuristic for statistical design

heuristic statistical design

- often far superior to design obtained ignoring statistical variation
- not very sensitive to details of process variation statistics (distribution shape, correlations, . . .)
- below: Ladner-Fisher 32-bit adder, Pelgrom variance model

Path delay mean/std. dev. scatter plots

RC tree optimization

- $R_{i} \mathrm{~S}$ and $C_{i} \mathrm{~s}$ are generalized posynomials of some underlying variables x

Elmore delay

- Elmore delay at node i :

$$
D_{i}=\int_{0}^{\infty} v_{i}(t) d t
$$

area under voltage curve, when voltages are initialized as $v_{i}(0)=1$

- Elmore delay of RC tree is $D=\max \left\{D_{1}, \ldots, D_{N}\right\}$

Elmore delay expression

- analytic expression for Elmore delay D_{i}

$$
D_{i}=\sum_{j \in \mathbf{P}(i)} R_{i} C_{i}^{\text {tot }}
$$

- $\mathbf{P}(i)$ is path from root to node i
- $C_{i}^{\text {tot }}$ is the total capacitance downstream from node i (including C_{i})
- D_{i} is posynomial of x
- D is generalized posynomial of x

RC tree optimization

- minimize RC tree delay subject to (generalized posynomial) constraints

$$
\begin{array}{ll}
\operatorname{minimize} & D \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

. . . a GGP

- sparse formulation:

$$
\begin{array}{ll}
\operatorname{minimize} & s \\
\text { subject to } & s \geq D_{i}, \quad i=1, \ldots, n \\
& C_{j}^{\text {tot }} \geq \sum_{i \in \operatorname{Child}(j)} C_{i}^{\text {tot }}+C_{j}, \quad i=1, \ldots, n \\
& D_{i} \geq D_{\operatorname{Par}(k)}+R_{i} C_{i}^{\text {tot }}, \quad i=1, \ldots, n \\
& f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

Wire sizing

- choose wire segment widths w_{i}, \ldots, w_{N} in an interconnect network
- optimize delay, area

π model for wire segment

- wire resistance and capacitances

$$
R_{i}=\alpha_{i} \frac{l_{i}}{w_{i}}, \quad \bar{C}_{i}=\beta_{i} l_{i} w_{i}+\gamma_{i} l_{i},
$$

- with π model, interconnect network becomes RC tree, with $R_{i} \mathrm{~s}$ and $C_{i} \mathrm{~s}$ posynomial functions of wire segment widths w_{i}

Wire sizing via GP

```
minimize D
subject to }\mp@subsup{w}{i}{min}\leq\mp@subsup{w}{i}{}\leq\mp@subsup{w}{i}{\operatorname{max}},\quadi=1,\ldots,
    l}\mp@subsup{l}{1}{}\mp@subsup{w}{1}{}+\cdots+\mp@subsup{l}{N}{}\mp@subsup{w}{N}{}\leq\mp@subsup{A}{}{\operatorname{max}
```

. . . a GGP

- can easily optimize interconnect network with 10000 wires, using sparse GP formulation
- can use more accurate generalized posynomial models of R_{i}, C_{i}

Device sizing

- devices (and wire segments) are sized individually
- replace each device with switch-level RC model
- each transition is associated with RC tree
- use Elmore delay to measure delay of transition
- . . problem is GGP

Switch-level RC device model

- crude linear approximation of device, for delay and power optimization
- R, all $C \mathrm{~s}$ are generalized posynomials of device width
- we'll ignore C_{gd} (but can be incorporated via Miller effect . . .)

Example: 2-input NAND

Example transition

- transition: B falls from $V_{\text {dd }}$ to zero; A remains at $V_{\text {dd }}$
- associated RC tree:

$$
C_{1}=C_{\mathrm{db} 1}+C_{\mathrm{db} 2}+C_{\mathrm{db} 3}, C_{2}=C_{\mathrm{sb} 3}+C_{\mathrm{db} 4}
$$

- Elmore delay: $D=R_{\mathrm{sd} 1}\left(C^{\mathrm{L}}+C_{1}+C_{2}\right)$
- energy lost: $E=\left(C^{\mathrm{L}}+C_{1}+C_{2}\right) V_{\mathrm{dd}}^{2} / 2$

Device, supply and threshold voltage optimization

- goal: jointly optimize device sizes, supply and threshold voltages via GGP
- need to: model delay, power as generalized posynomial functions of device sizes, supply and threshold voltages

Generalized posynomial delay model

- alpha-power law model

$$
D=\frac{V_{\mathrm{dd}}}{\left(V_{\mathrm{dd}}-V_{\mathrm{th}}\right)^{\alpha}} h\left(w, C^{\mathrm{L}}, \tau^{\mathrm{in}}\right)
$$

h is generalized posynomial

- generalized posynomial approximation

$$
\widehat{D}=V_{\mathrm{dd}}^{1-\alpha}\left(1+V_{\mathrm{th}} / V_{\mathrm{dd}}+\cdots+\left(V_{\mathrm{th}} / V_{\mathrm{dd}}\right)^{5}\right)^{\alpha} h\left(w, C^{\mathrm{L}}, \tau^{\mathrm{in}}\right)
$$

error under 1% for $V_{\mathrm{dd}} \geq 2 V_{\mathrm{th}}, 1.3 \leq \alpha \leq 2$

Generalized posynomial power model

- gate dynamic power: $P_{\mathrm{dyn}}=f_{\mathrm{t}}\left(C^{\mathrm{L}}+C^{\mathrm{int}}\right) V_{\mathrm{dd}}^{2}$
- leakage current model for NMOS: $I_{\text {leak }}=a w e^{-\left(V_{\text {th }}-\gamma V_{\text {dd }}\right) / V_{0}}$
- simple gate leakage power model:

$$
P_{\text {leak }}=V_{\mathrm{dd}} \psi(x) e^{-\left(V_{\text {th }}-\gamma V_{\mathrm{dd}}\right) / V_{0}}
$$

ψ is generalized posynomial (from gate topology, stack effect . . .)

- bad news: $P_{\text {leak }}$ (by itself) cannot be approximated by a generalized posynomial
- good news: the total power $P=P_{\mathrm{dyn}}+P_{\text {leak }}$ can be approximated by a generalized posynomial

Example

total power $P=V_{\mathrm{dd}}^{2}+30 V_{\mathrm{dd}} e^{-\left(V_{\mathrm{th}}-0.06 V_{\mathrm{dd}}\right) / 0.039}$ (up to scaling)

- posynomial approximation
$\widehat{P}=V_{\mathrm{dd}}^{2}+0.06 V_{\mathrm{dd}}\left(1+0.0031 V_{\mathrm{dd}}\right)^{500}\left(V_{\mathrm{th}} / 0.039\right)^{-6.16}$
- error under 3% (well under accuracy of model!)

Joint optimization of device sizes, $V_{\mathrm{dd}}, \& V_{\mathrm{th}}$

basic problem, with variables: $x_{i}, V_{\mathrm{th}, i}, V_{\mathrm{dd}, i}(\ldots$ a GGP)

$$
\begin{array}{ll}
\operatorname{minimize} & D \\
\text { subject to } & P \leq P^{\max }, \quad A \leq A^{\max } \\
& V_{\mathrm{th}}^{\min } \leq V_{\mathrm{th}, i} \leq V_{\mathrm{th}}^{\max }, \quad i=1, \ldots, n \\
& V_{\mathrm{dd}}^{\min } \leq V_{\mathrm{dd}, i} \leq V_{\mathrm{dd}}^{\max }, \quad i=1, \ldots, n \\
& \text { other constraints } \ldots
\end{array}
$$

extensions/variations:

- discrete allowed $V_{\text {dd }}$, $V_{\text {th }}$ values (yields MIGP)
- clustering, with single $V_{\mathrm{dd}}, V_{\text {th }}$ per cluster
- multi-scenario design: choose single set of w_{i} 's, different $V_{\mathrm{dd}}^{(k)}, V_{\mathrm{th}}^{(k)}$ for each scenario $k=1, \ldots, K$

Joint optimization example

- random netlist, 100 gates, average fanout 3, alpha-power-law model
- variables: gate scale factors x_{i}, threshold voltages $V_{\mathrm{th}, i}$
- all gates with common supply voltage
- four delay-power trade-off curves:
- all gates low $V_{\text {th }, i}=0.2$
- all gates high $V_{\mathrm{th}, i}=0.4$
- continuous threshold voltages $0.2 \leq V_{\text {th }, i} \leq 0.4$
- discrete threshold voltages $V_{\mathrm{th}, i} \in\{0.2,0.3,0.4\}$

Joint optimization example

- \bar{D} : delay of unit scaled inverter driving no load in fast mode
- \bar{P} : dynamic power dissipated by unit scaled inverter driving no load

Joint optimization example

Analog Circuit Design Applications

Large signal MOS model

- gate overdrive voltage $V_{\text {gov }}=V_{\mathrm{gs}}-V_{\mathrm{th}}$
- saturation condition: $V_{\mathrm{ds}} \geq V_{\mathrm{dsat}}=V_{\mathrm{gov}}$ (V_{dsat} is minimum drain-source voltage for device to operate in saturation)
- square-law model $I=0.5 \mu C_{\mathrm{ox}}(W / L) V_{\mathrm{gov}}^{2}$
- GP model variables: I, L, W
- $V_{\text {gov }}=\left(\mu C_{\mathrm{ox}} / 2\right)^{-1 / 2} I^{1 / 2} L^{1 / 2} W^{-1 / 2}$ is monomial
- $V_{\mathrm{gs}}=V_{\mathrm{gov}}+V_{\mathrm{th}}$ is posynomial

Small signal dynamic MOS model

- transconductance $g_{\mathrm{m}}=\left(2 \mu C_{\mathrm{ox}}\right)^{1 / 2} I^{1 / 2} L^{-1 / 2} W^{1 / 2}$ is monomial
- output conductance $g_{\mathrm{o}}=\lambda I$ is monomial
- all capacitances are (approximately) posynomial in I, L, W
- better (GP-compatible) models can be obtained by fitting data from accurate models or measurements

Example: monomial g_{m} model

- monomial model of g_{m} for I/O NMOS device in a $0.13 \mu \mathrm{~m}$ technology
- 11000 data points (from BSIM3) over ranges
$-0.3 \mu \mathrm{~m} \leq L \leq 3 \mu \mathrm{~m}, \quad 2 \mu \mathrm{~m} \leq W \leq 20 \mu \mathrm{~m}$
$-0.7 \mathrm{~V} \leq V_{\mathrm{gs}} \leq 1.7 \mathrm{~V}, \quad V_{\mathrm{dsat}} \leq V_{\mathrm{ds}} \leq 1.5 V_{\mathrm{gs}}$
- V_{ds} appears in data set, but not in g_{m} model
- monomial fit (using simple log-regression, SI units):

$$
g_{\mathrm{m}}=0.0278 I^{0.4798} L^{-0.511} W^{0.5632}
$$

Example: monomial g_{m} model

- fitting (relative) error cumulative distribution plot:

- for 90% of points, fit is better than 4%

Single transistor common source amplifier

- variables: I, L, W, R
- saturation: $V_{\mathrm{dsat}}+I R \leq V_{\mathrm{dd}}$
- gain $G=g_{\mathrm{m}} /\left(1 / R+g_{\mathrm{o}}\right)$
- power $P=V_{\mathrm{dd}} I$
- (unity gain) bandwidth $B=g_{\mathrm{m}} / C^{\mathrm{L}}$
- design problem:

$$
\begin{array}{ll}
\operatorname{minimize} & P \\
\text { subject to } & B \geq B^{\min }, \quad G \geq G^{\min } \\
& \text { saturation }
\end{array}
$$

Common source amplifier design via GP

- rewrite as

$$
\begin{array}{ll}
\operatorname{minimize} & P \\
\text { subject to } & B \geq B^{\min }, \quad G^{-1} \geq 1 / G^{\min } \\
& V_{\mathrm{dsat}}+I R \leq V_{\mathrm{dd}}
\end{array}
$$

- . . . a GP, since P and B are monomials, and

$$
G^{-1}=\frac{1 / R+g_{\mathrm{o}}}{g_{\mathrm{m}}}
$$

is posynomial

- this is a simple problem; don't need GP sledgehammer . . .

Current mirror opamp

- M_{1}, M_{2} and M_{3}, M_{4} matched pairs
- four current mirrors: $M_{8}, M_{5} ; M_{10}, M_{7} ; M_{9}, M_{3} ; M_{4}, M_{6}$

Design problem

$$
\begin{array}{ll}
\operatorname{minimize} & P \\
\text { subject to } & B \geq B^{\min }, \quad G \geq G^{\min }, \quad A \leq A^{\max } \\
& \text { other constraints } \ldots
\end{array}
$$

- objective \& specifications:
- P is power dissipation
$-B$ is unity gain bandwidth
- G is DC gain
- A is (active) area
- design variables: $L_{1}, \ldots, L_{10}, W_{1}, \ldots, W_{10}$
- given: $V_{\mathrm{dd}}, C_{\mathrm{L}}, I_{\text {ref }}$, common-mode voltage V_{cm}
- we'll formulate as GP

Power, bandwidth, gain, \& area

- power: $P=V_{\mathrm{dd}}\left(I_{8}+I_{5}+I_{7}+I_{10}\right)$
... posynomial
- bandwidth: $B=g_{\mathrm{m}, 2} g_{\mathrm{m}, 6} /\left(g_{\mathrm{m}, 4} C_{\mathrm{L}}\right)$
... monomial
- area: $A=W_{1} L_{1}+\cdots+W_{10} L_{10}$
... posynomial
- gain: $G=\frac{g_{\mathrm{m}, 2} g_{\mathrm{m}, 6}}{g_{\mathrm{m}, 4}\left(g_{\mathrm{o}, 6}+g_{\mathrm{o}, 7}\right)}$
$\ldots G^{-1}$ is posynomial, so $G \geq G^{\min }$ can be written as $G^{-1} \leq 1 / G^{\text {min }}$

Dimension, matching, and current constraints

- limits on device sizes: $L_{\text {min }} \leq L_{i} \leq L_{\text {max }}, W_{\text {min }} \leq W_{i}, i=1, \ldots, 10$
- differential symmetry constraints (M_{1}, M_{2} and M_{3}, M_{4} matched):

$$
\begin{array}{lll}
W_{1}=W_{2}, & L_{1}=L_{2}, & I_{1}=I_{2} \\
W_{3}=W_{4}, & L_{3}=L_{4}, & I_{3}=I_{4}
\end{array}
$$

- length \& gate overdrive voltage matched for current mirror pairs:

$$
\begin{array}{llll}
L_{5}=L_{8}, & L_{10}=L_{7}, & L_{3}=L_{9}, & L_{4}=L_{6} \\
V_{\mathrm{gov}, 5}=V_{\mathrm{gov}, 8}, & V_{\mathrm{gov}, 10}=V_{\mathrm{gov}, 7}, & V_{\mathrm{gov}, 3}=V_{\mathrm{gov}, 9}, & V_{\mathrm{gov}, 4}=V_{\mathrm{gov}, 6}
\end{array}
$$

- current relations:

$$
I_{1}=I_{3}=I_{5} / 2, \quad I_{8}=I_{\mathrm{ref}}, \quad I_{6}=I_{7}, \quad I_{9}=I_{10}
$$

Saturation constraints

- diode connected devices ($M_{3}, M_{4}, M_{8}, M_{10}$) automatically in saturation
- others must have $V_{\mathrm{ds}} \geq V_{\mathrm{dsat}}$:
- $M_{7}: V_{\mathrm{dsat}, 7} \leq V_{\mathrm{cm}}$
- $M_{6}: V_{\mathrm{dsat}, 6}+V_{\mathrm{cm}} \leq V_{\mathrm{dd}}$
- $M_{9}: V_{\mathrm{dsat}, 9}+V_{\mathrm{gs}, 10} \leq V_{\mathrm{dd}}$
- $M_{5}: \quad V_{\mathrm{ds}, 5}+V_{\mathrm{gs}, 1} \leq V_{\mathrm{cm}}$
- $M_{1} \& M_{2}: V_{\mathrm{cm}}+V_{\mathrm{gs}, 3} \leq V_{\mathrm{dd}}+V_{\mathrm{th}}$
- . . . all are posynomial inequalities

Node capacitances and non-dominant poles

- capacitances at nodes are posynomials, e.g.,

$$
C^{\text {out }}=C_{\mathrm{gd}, 6}+C_{\mathrm{db}, 6}+C_{\mathrm{gd}, 7}+C_{\mathrm{db}, 7}+C_{\mathrm{L}}
$$

- non-dominant time constants are posynomials:

$$
\tau_{1}=\frac{C_{\mathrm{d} 1}}{g_{\mathrm{m}, 3}}, \quad \tau_{2}=\frac{C_{\mathrm{d} 2}}{g_{\mathrm{m}, 4}}, \quad \tau_{9}=\frac{C_{\mathrm{d} 9}}{g_{\mathrm{m}, 10}}
$$

$\left(C_{\mathrm{d} 1}, C_{\mathrm{d} 2}, C_{\mathrm{d} 9}\right.$ are node capacitances at drains of $\left.M_{1}, M_{2}, M_{9}\right)$

- to limit effect of non-dominant poles, make sum smaller than dominant time constant:

$$
\tau_{1}+\tau_{2}+\tau_{9} \leq \tau_{\mathrm{dom}}=C_{\mathrm{L}} / g_{\mathrm{m}}
$$

... a posynomial constraint

Power versus bandwidth trade-off

Joint electrical/physical design

- each device has a (physical) cell width w and height h for floor planning
- devices are folded into multiple fingers
- (approximate) posynomial or monomial relations link electrical variables (I, L, W) and physical variables (w, h), e.g.,
- cell area is at least $4 \times$ active area: $w h \geq 4 W L$
- cell aspect ratio limited to 5:1: $1 / 5 \leq w / h \leq 5$

Slicing tree layout scheme

- vertical and horizontal slices fix relative placement of device cells
- leaves are device cells; root is bounding box

Slicing tree constraints

- introduce width, height for each node in slicing tree
- for each vertical slice with parent a and children b, c add constraints

$$
w_{a}=w_{b}+w_{c}, \quad h_{a}=\max \left\{h_{b}, h_{c}\right\}
$$

- for each horizontal slice with parent a and children b, c add constraints

$$
w_{a}=\max \left\{w_{b}, w_{c}\right\}, \quad h_{a}=h_{b}+h_{c}
$$

- shows width and height of bounding box and each node is generalized posynomial of device cell widths, heights
- resulting GP formulation is very sparse

Joint electrical/physical design via GP

- form one GP that includes
- electrical variables, constraints ($I_{i}, L_{i}, W_{i}, g_{\mathrm{m}, i} \ldots$)
- physical variables, constraints ($w_{i}, h_{i}, w^{\text {bbox }}, h^{\text {bbox }}, \ldots$)
- coupling constraints ($w_{i} h_{i} \geq 4 W_{i} L_{i}, \ldots$)
- solve it all together
- extensions: can add
- parasitic estimates
- more accurate expressions for device cell dimensions
- channels for routing

Optimal filter implementation

simple Gm-C two-pole lowpass filter

transfer function is

$$
H(s)=\frac{1}{1+t_{1} s+t_{1} t_{2} s^{2}}, \quad t_{1}=C_{1} / g_{1}, \quad t_{2}=C_{2} / g_{2}
$$

g_{i} is amplifier transconductance

Noise analysis

- N_{i} is input referred (white) amplifier input-referred voltage density
- spectral density of output noise is

$$
N(\omega)^{2}=\frac{N_{1}^{2}+\omega^{2} N_{2}^{2}}{\left(1-t_{1} t_{2} \omega^{2}\right)^{2}+t_{1}^{2} \omega^{2}}
$$

- root-mean-square output noise voltage is

$$
M=\left(\int_{0}^{\infty} N(\omega)^{2} d \omega\right)^{1 / 2}=\left(\alpha N_{1}^{2}+\beta N_{2}^{2}\right)^{1 / 2}
$$

Amplifier and capacitor implementation models

- each amplifier has private variables u (e.g., device lengths \& widths) and constraints
- transconductance g is monomial in u; area $A^{\text {amp }}$, power P, input-referred noise density N are posynomial in u
- each capacitor has private variables v (e.g., physical dimensions) and constraints
- capacitance C is monomial in v; area $A^{\text {cap }}$ is posynomial
- design variables are $u_{1}, u_{2}, v_{1}, v_{2}$

Optimal filter implementation problem

- filter is Butterworth with frequency ω_{c} :

$$
t_{1}=\sqrt{2} / \omega_{c}, \quad t_{2}=(1 / \sqrt{2}) / \omega_{c}
$$

- minimize total power of implementation, subject to area, output noise limits:

$$
\begin{array}{ll}
\operatorname{minimize} & P\left(u_{1}\right)+P\left(u_{2}\right) \\
\text { subject to } & t_{1}=\sqrt{2} / \omega_{c}, \quad t_{2}=(1 / \sqrt{2}) / \omega_{c} \\
& A^{\text {amp }}\left(u_{1}\right)+A^{\text {amp }}\left(u_{2}\right)+A^{\text {cap }}\left(v_{1}\right)+A^{\text {cap }}\left(v_{2}\right) \leq A^{\max } \\
& M=\left(\omega_{c} / 4 \sqrt{2}\right)\left(N_{1}^{2}+2 N_{2}^{2}\right)^{1 / 2} \leq M^{\max }
\end{array}
$$

- a GGP in the variables $u_{1}, u_{2}, v_{1}, v_{2}$

Example

- Butterworth filter with $\omega_{c}=10^{8} \mathrm{rad} / \mathrm{s}$
- private variables in amplifiers: (equivalent) L, W
- amplifier model:

$$
\begin{aligned}
& A=W L, \quad P=2.5 \cdot 10^{-4} W / L \\
& g=4 \cdot 10^{-5} W / L, \quad N=\sqrt{7.5 \cdot 10^{-16} L / W}
\end{aligned}
$$

(based on simple model with $V_{\mathrm{dd}}=2.5, V_{\text {gov }}=0.2$)

- private variable in capacitors is area $A^{\text {cap } ; ~} C=10^{-4} A^{\text {cap }}$
- $A^{\max }=4 \cdot 10^{-6}$

Power versus noise trade-off

Monomial and Posynomial Fitting

A basic property of posynomials

- if f is a monomial, then $\log f\left(e^{y}\right)$ is affine (linear plus constant)
- if f is a posynomial, then $\log f\left(e^{y}\right)$ is convex
- roughly speaking, a posynomial is convex when plotted on log-log plot
- midpoint rule for posynomial f :
- let z be elementwise geometric mean of x, y, i.e., $z_{i}=\sqrt{x_{i} y_{i}}$
- then $f(z) \leq \sqrt{f(x) f(y)}$
- a converse: if $\log \phi\left(e^{y}\right)$ is convex, then ϕ can be approximated as well as you like by a posynomial

Convexity in circuit design context

- consider circuit with design variables W_{1}, \ldots, W_{n} (say) \& performance measure $\phi\left(W_{1}, \ldots, W_{n}\right)$ (e.g., power, delay, area)
- two designs: $W_{i}^{(a)} \& W_{i}^{(b)}$, with performance $\phi^{(a)} \& \phi^{(b)}$
- form geometric mean compromise design with $W_{i}^{(c)}=\sqrt{W_{i}^{(a)} W_{i}^{(b)}}$, performance $\phi^{(c)}$
- if ϕ is generalized posynomial, then we have $\phi^{(c)} \leq \sqrt{\phi^{(a)} \phi^{(b)}}$
- this is not obvious

Monomial/posynomial approximation: Theory

when can a function f be approximated by a monomial or generalized posynomial?

- form function $F(y)=\log f\left(e^{y}\right)$
- f can be approximated by a monomial if and only if F is nearly affine (linear plus constant)
- f can be approximated by a generalized posynomial if and only if F is nearly convex

Examples

- $\tanh (x)$ can be reasonably well fit by a monomial
- $0.5 /(1.5-x)$ can be fit by a generalized posynomial
- $(2 / \sqrt{\pi}) \int_{x}^{\infty} e^{-t^{2}} d t$ cannot be fit very well by a generalized posynomial

What problems can be approximated by GGPs?

```
minimize }\quad\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq1,\quadi=1,\ldots,
    gi}(x)=1,\quadi=1,\ldots,
```

- transformed objective and inequality constraint functions $F_{i}(y)=\log f_{i}\left(e^{y}\right)$ must be nearly convex
- transformed equality constraint functions $G_{i}(y)=\log G_{i}\left(e^{y}\right)$ must be nearly affine

Monomial fitting via log-regression

find coefficient $c>0$ and exponents a_{1}, \ldots, a_{n} of monomial f so that

$$
f\left(x^{(i)}\right) \approx f^{(i)}, \quad i=1, \ldots, N
$$

- rewrite as

$$
\begin{aligned}
\log f\left(x^{(i)}\right) & =\log c+a_{1} \log x_{1}^{(i)}+\cdots+a_{n} \log x_{n}^{(i)} \\
& \approx \log f^{(i)}, \quad i=1, \ldots, N
\end{aligned}
$$

- use least-squares (regression) to find $\log c, a_{1}, \ldots, a_{n}$ that minimize

$$
\sum_{i=1}^{N}\left(\log c+a_{1} \log x_{1}^{(i)}+\cdots+a_{n} \log x_{n}^{(i)}-\log f^{(i)}\right)^{2}
$$

Posynomial fitting via Gauss-Newton

find coefficients and exponents of posynomial f so that

$$
f\left(x^{(i)}\right) \approx f^{(i)}, \quad i=1, \ldots, N
$$

- minimize sum of squared fractional errors

$$
\sum_{i=1}^{N}\left(\frac{f^{(i)}-f\left(x^{(i)}\right)}{f^{(i)}}\right)^{2}
$$

can be (locally) solved by Gauss-Newton method

- needs starting guess for coefficients, exponents

Posynomial fitting example

- 1000 data points from $f(x)=\left(1-0.5\left(x_{1}^{2}+x_{2}+x_{3}^{-1}-1\right)^{2}\right)^{1 / 2}$ over $0.1 \leq x_{i} \leq 1$
- cumulative error distribution for 3 -, 5 -, and 10 -term posynomial fits

Conclusions

Conclusions

(generalized) geometric programming

- comes up in a variety of circuit sizing contexts
- can be used to formulate a variety of problems
- admits fast, reliable solution of large-scale problems
- is good at concurrently balancing lots of coupled constraints and objectives
- is useful even when problem has discrete constraints

Approach

- most problems don't come naturally in GP form; be prepared to reformulate and/or approximate
- GP modeling is not a "try my software" method; it requires thinking
- our approach:
- start with simple analytical models (RC, square-law, Pelgrom, ...) to verify GP might apply
- then fit GP-compatible models to simulation or measured data
- for highest accuracy, revert to local method for final polishing
- looking for keys under street light (not where keys were lost, but lighting is good)
- forcing problems into GP-compatible form (problems aren't GPs, but solving is good)

References

- A tutorial on geometric programming
- Digital circuit sizing via geometric programming
- Analog circuit design via geometric programming
- Convex optimization, Cambridge Univ. Press 2004
(these include hundreds of references)
available at www.stanford.edu/~boyd/research.html

