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Abstract
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then, as is proven, the nonlinear system will be asymptotically stable. The
main stability theorem is developed using a combination of passivity, Lya-
punov, and Popov stability theories to show that the state describing the
linear system dynamics must converge to an equilibrium position of the non-
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equilibrium points are described in detail for several common types of hys-
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1 Introduction

The Popov stability criteria [Popov, 1961] has long been the standard analytical tool for systems

having memoryless, sector bounded nonlinearities. Details of Popov's analytical approach can

be found in the standard texts by Desoer, Vidyasagar and Khalil [Desoer and Vidyasagar, 1975,

Vidyasagar, 1993, Khalil, 1996]. When nonlinearities, in addition to being sector bounded, are

also monotonic and slope restricted, Zames and Falb [Zames and Falb, 1968] proved that the

Popov analysis can be further sharpened by employing a more general type of multiplier, of-

ten called the Zames-Falb multiplier. Subsequently, Cho and Narendra [Cho and Narendra, 1968]

found that the existence of such multipliers could be established with an o�-axis circle test in the

Nyquist plane. While this early work was limited to a scalar nonlinearity, an extension by Sa-

fonov [Safonov, 1984] considered multiple nonlinearities and established criteria through loop shift-

ing and diagonal frequency dependent matrix multipliers, as is now common in the �=Km-analysis

approach, introduced by Doyle and Safonov [Doyle, 1982, Safonov, 1982]. An alternate approach

for the slope restricted case pursued by Singh [Singh, 1984] and Rasvan [Rasvan, 1988] utilized a

multiplier �rst introduced by Yakubovich [Yakubovich, 1965] for systems with di�erentiable nonlin-

earities. Although not as general as the Zames-Falb multiplier, the simple form of the Yakubovich

multiplier makes it a valuable complement to the Popov analysis. More recently, Haddad and

Kapila [Haddad and Kapila, 1995], and Park [Park et al., 1998] have attempted to generalize the

results in [Singh, 1984, Rasvan, 1988] to the case of multiple slope restricted nonlinearities. The

resulting criteria o�ered, however, restrict the value of the linear system transfer matrix, G(s), in

a variety of ways. In both papers, for instance, the systems are restricted to be strictly proper

(i.e., the feedthrough term D = 0). Also, in [Haddad and Kapila, 1995], the value of the system

matrix at s = 0, G(0) must be either nonsingular or identically zero, while in [Park et al., 1998]

the stability guarantee requires that G(0) = G(0)T > 0. In this paper we generalize the analysis

for multiple nonlinearities in several ways. First we provide the extension to non-strictly proper

systems D 6= 0 and relax the positivity requirement to G(0) = G(0)T > �M�1, where M > 0 is

the diagonal matrix of the maximum slopes occurring in the vector of nonlinearities. More impor-

tantly, we show that the same analysis that applies to the slope restricted case is valid for a class of

multiple hysteresis nonlinearities as well. This is a rather signi�cant generalization since hysteresis

is not sector bounded and has memory, and thus is functionally very di�erent than a memoryless,

slope restricted nonlinearity. With this result we, in e�ect, generalize the early scalar hysteresis
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analysis by Yakubovich and Barabanov [Yakubovich, 1967, Barabanov and Yakubovich, 1979] and

more recent LMI analysis by the authors [Par�e and How, 1998b, Par�e and How, 1998a], to the case

of multiple hysteresis nonlinearities.

Using an approach similar to Park [Park et al., 1998], we present a linear matrix inequality

which, if feasible in a set of free matrix variables, will prove the asymptotic stability of the system.

For the slope restricted nonlinearity, asymptotic stability means the state converges to the origin,

which is assumed to be the unique equilibrium point of the nonlinear system. Since a typical

hysteresis is in general multivalued, convergence is not to a single point, but rather to an stationary

set, de�ned by the intersection of the nonlinearity and the DC value of the system matrix. We de�ne

these sets explicitly for some commonly occurring types of hystereses. In contrast to the previous

work of Haddad, Kapila [Haddad and Kapila, 1995] and Park [Park et al., 1998], our Lyapunov

function will be a function of the system state, and not its time derivative. This di�erence results

in a more straightforward conclusion of asymptotic stability.

1.1 Approach Overview

The original general form of Popov's stability criterion [Popov, 1961] requires the linear portion of

the system to be stable and strictly proper. However, the general form does allow for a single pure

integrator in the system. This is sometimes referred to as the indirect form or the indirect control

form of Popov's criteria (see texts [Aizerman and Gantmacher, 1964, Narendra and Taylor, 1973,

Vidyasagar, 1993] for scalar versions), and it commonly has associated with it a three term Lya-

punov function. In this paper we will extend this form to the vector case using, as a guide, the

procedure of Narendra and Taylor [Narendra and Taylor, 1973, p. 100] for the single nonlinearity,

which we summarize in three simple steps. First, we apply a loop transformation that changes

the slope sector bounds, di�erentiates the output of the nonlinearity, and results in an integrator

state in the transformed linear subsystem, ~G(s). Provided the original linear subsystem G(s) is

stable, ~G(s) is then cast in Popov's indirect control form. Secondly, we form a three part Lyapunov

functional, V (t) that is quadratic in the state of ~G(s) and includes a particular integral of the

nonlinearity. When the nonlinearity is a hysteresis, having memory, the value of the integral is path

dependent; while in the memoryless case, it is not. Lastly, the requirement that _V � 0 is enforced

by the existence of a certain LMI, and, subsequently, this condition is used to conclude asymptotic

stability of certain stationary sets.

The outline of the paper is as follows. First, we characterize the class of nonlinearities in the
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next section, and in particular, limit the hysteresis class to multi-valued functions having an input-

output relationship with characteristic loops that circulate in a strict direction. Following that,

in x3, the nonlinear system is de�ned and the loop transform used for the analysis is given. The

stationary, or equilibrium sets, for the various nonlinear systems are in general polytopic regions of

state space, and are detailed in x4. This leads directly to the main stability theorem, which is proved

in x5. Frequency domain and passivity interpretations of the Lyapunov result are discussed in x6.

Simple numerical examples are then presented in x7 which con�rm the bene�ts of our approach

with respect to prior stability criteria and give a graphical illustration of the asymptotic stability

to the stationary sets.

2 Nonlinearities and Sector Transformations

2.1 Memoryless, Slope Restricted

Following the de�nition given by Haddad and Kapila [Haddad and Kapila, 1995], we de�ne the

class of nonlinearities as

� =

8>>>>>>><
>>>>>>>:

� : Rm ! Rm

�(y) = [�1(y1); : : : ; �m(ym)]
T

� is di�erentiable a.e. 2 Rm

0 � �0i < �i; i = 1; : : : ;m

�(0) = 0

9>>>>>>>=
>>>>>>>;

(1)

The set � consists of m decoupled scalar nonlinearities, with each scalar component locally slope

sector bounded obeying the slope restriction:

0 �
�i(y

a
i )� �i(y

b
i )

yai � ybi
� �i; (2)

for any yai ; y
b
i 2 R. This sector property is sometimes denoted as �0i 2 sector[0; �i), or given the

discrete representation [Narendra and Taylor, 1973]:

��i(yi)=�yi 2 sector[0; �i): (3)

The slope restriction (3) on a function is a stronger than the standard sector bound condition on

a function. This idea is formalized with the following proposition.
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Proposition 2.1 (Sector Bound Property) A function �i : R! R satisfying the conditions �(0) =

0 and (3) is necessarily sector bounded, with the same bounds. That is, �i 2 sector[0; �i).

Proof: Simply set ybi = 0 in (2) and multiply through by (yai )
2 to get the relation:

0 � �i(y
a
i )y

a
i < �i(y

a
i )

2;

and thus �i 2 sector[0; �i), which is the standard sector bound condition on �i. 2

Using the approach of [Narendra and Taylor, 1973] and [Zames and Falb, 1968], we note that a

nonlinearity with local slope con�ned to a �nite sector can be converted to a nonlinearity with

in�nite sector width. The transformation requires a positive feedback around the nonlinearity, as

depicted in Figure 1.

+

� yi
�i

1=�i

�i(yi)

Fig. 1: Sector Transformation ~� 2 sector[0;1)

Lemma 2.2 (Finite/In�nite Sector Transform) A slope restricted function �i : R ! R with

��i(yi)=�yi 2 sector[0; �i) under positive feedback with gain 1=�i, as depicted in Figure 1, is

is converted to a nonlinearity ~�i : R ! R with the in�nite slope bounds satisfying �~�i(�)=�� 2

sector[0;1).

Proof: See [Narendra and Taylor, 1973, pp. 108{109]1 . 2

A consequence of Lemma 2.2 is that the scalar slope functions are nonnegative:

0 � ~�0i(�) <1; (4)

1Note that the sector is half-open, and essentially does not include in�nity. More precisely, the transformation
should have positive feedback of 1=(���), where 0 < �� �: This is the approach taken in Ref. [Zames and Falb, 1968],
and likewise, we assume this adjustment is included in the sector transform, but for simplicity this will not be expressed
explicitly.
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�

~�

M�1

sI
�

Fig. 2: Sector Transformation ~� 2 sector[0;1)

which is equivalent to the sector condition between the time derivatives of the input-output pair:

0 �
_~�i _� <1: (5)

Returning to the vector case, we now apply the same sector transform to each scalar component

of � and de�ne a new operator by di�erentiating the vector output, as depicted in Figure 2, where

M = diag(�1; : : : ; �m) > 0 is the diagonal matrix of maximum slopes occurring in �. The input-

output relation from � to �, as de�ned in Figure 2, is passive, as detailed by the following lemma.

Lemma 2.3 (Passive Operator) Consider a slope restricted nonlinearity ~� : Rm ! Rm with decou-

pled scalar components satisfying 0 � ~�0i(�) <1. Then the input-output relation de�ned with �(t)

as the input to ~� and output �(t) = d
dt
~�(�), the time derivative of ~�(�) (as depicted in Figure 2)

is passive.

Proof: For all T � 0 we have

Z T

0
�T � dt =

mX
i=0

Z T

0
�i�i dt (6a)

=
mX
i=0

Z T

0
�i

d

dt
~�i(�i) dt (6b)

=
mX
i=0

Z T

0
�i ~�

0
i(�i) _�i dt (6c)

=
mX
i=0

Z �i(T )

�i(0)
�i ~�

0
i(�i) d�i(t) (6d)

=
mX
i=0

(
�

Z �i(0)

0
�i ~�

0
i(�i) d�i(t) +

Z �i(T )

0
�i ~�

0
i(�i) d�i(t)

)
(6e)

� ��(�(0)) (6f)
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where

�(�(0)) =
mX
i=0

Z �i(0)

0
�i ~�

0
i(�i) d�i(t) � 0; (7)

since each scalar kernel, ki(�i) = �i ~�
0
i(�i), is a memoryless, sector bounded function, with ki 2

sector[0;1): Therefore, the input-output relation is passive, by the de�nition given in reference

[Desoer and Vidyasagar, 1975, p. 173]. 2

Having now de�ned the passive transformation for the memoryless class of slope restricted non-

linearities, we consider the hysteresis case. In the next section we describe the properties of the

hysteresis class and show the very same transformation used for the memoryless case will also

convert a vector hysteresis into a passive operator.

2.2 Hysteresis

Hysteresis is a property of a wide range of physical systems and devices, such as electro-magnetic

�elds, mechanical stress-strain elements, and electronic relay circuits. The term hysteresis typi-

cally refers to the input-output relation between two time-dependent quantities that can not be

expressed as a single-valued function. Instead, the relationship usually takes the form of loops

that are traversed either in a clockwise or counter-clockwise direction. A hysteresis with counter-

clockwise loops is sometimes referred to as a passive hysteresis (see [Hsu and Meyer, 1968, p. 366],

for example). In general, the output at any given time is a function of the entire past history of

the input, and thus unlike the preceding case, hysteresis nonlinearities have memory. The memory

and loop characteristics of hysteresis complicate the analysis to some extent, especially since in

practice hysteresis loops can take many forms [Brokate and Sprekels, 1996]. To simplify matters

in this section, we assume some additional hysteresis characteristics and thus limit the scope of

nonlinearities we consider. The class we de�ne, however, still includes many models that occur in

practice, such as the hysteretic relay, backlash, and Preisach hysteresis [Mayergoyz, 1991], which

are depicted in Figures 3, 4 and 5, respectively. A characteristic common among these nonlineari-

ties is counter-clockwise circulation of the input-output relation2. In the next section, the assumed

characteristics of the scalar nonlinearities are detailed, and an example using backlash is given to

illustrate the application of the properties. Following that, the vector class of multiple hysteresis

nonlinearities is de�ned using the scalar properties.

2While counter-clockwise circulation is an assumed property of the class, it is possible to include clock-
wise behaviour by employing a coordinate transformation that e�ectively reverses the circulation, as discussed
in [Hsu and Meyer, 1968, p. 366].
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-1

�D
D x

�(x)

Fig. 3: Relay: switch width = 2D.

x

�(x)

r
�r

�

Fig. 4: Backlash: deadzone width = 2r.

2.2.1 Properties of Hysteresis

Prop. 1 Non-local memory. Unlike memoryless nonlinearities, hysteresis output at any given time is

a function of the entire history of the input, and the initial condition of the output, �0. So

we de�ne the output w(t) as

w(t) = �(�0; x([0; t)) (8)

= �[x; �0](t) (9)

At times we will drop the dependence on �0 for simplicity.

Prop. 2 Causality, time invariance and rate independence. The hystereses considered are causal and

time-invariant operators, as given by the standard de�nitions [Desoer and Vidyasagar, 1975].

They are also rate-independent, which essentially means that the input-output relation, as

depicted on a graph such as Figure 5, is unchanged for an arbitrary time scaling of the input

function. For instance, the input-output relation describe by the relation (x; y) is invariant

for changes of the input rate, such as changes in the frequency of cycling. This assumption

precludes rate-dependent hysteresis such as the Chua-Stromsmoe model, considered by Sa-

fonov and Karimlou [Safonov and Karimlou, 1983], for which the local slope varies with the

frequency of the input signal.

Prop. 3 Counterclockwise circulation. Closed loops that occur on the input-output characteristic are

strictly counterclockwise. That is, a periodic input x(t), with period T > 0, will result in a
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SATURATION
ZONE

Minor Loop

1st Order
Transition

Major Loop

A

�(x)

x

�+

��

x+

x�
�

Fig. 5: Typical Preisach hysteresis characteristic.

closed curve relation

Z T

0
x(s)�[x]0(s)ds =

Z t+T

t
x(s)w0(s) ds =

I w(t+T )

w(t)
x(s) dw(s) � 0; (10)

with equality achieved, for the backlash example, when x(t) remains in the backlash deadzone.

The value of the integral (10), when the path is closed, is equal to the area enclosed by the

hysteresis loop. For partial, unclosed loops, the integral represents the area between the path

traversed and the hysteresis output axis (cf. �-axis in Figs. 3{5).

Prop. 4 Positive Path Integral. Let 	 be the intersection of the output �-axis and the hysteresis

characteristic curves3. Any input-output path � = f(x(t); w(t)) j t 2 [0; T ]g ; originating in 	,

the path integral
R
� x dw is non-negative. That is, if x(t); t 2 [0; T ] with x(0) = 0 generates

the path �, joining points p 2 	 and some arbitrary b, we have

Z T

0
x(s)�[x]0(s) ds =

Z T

0
x(s)w0(s) ds =

Z
�p!b

x dw � 0: (11)

3For the unit relay, Fig. 3, this set consists of two points: 	 = f(0; 1); (0;�1)g, for the backlash and Preisach
models, 	 is the corresponding line segment on the �-axis.
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Similarly, now let � denote the path joining any two points on the hysteresis graph, and

note that this path may involve many complete cycles, as in (10) above. Let �ab denote the

shortest path joining the two points a and b, not containing any complete cycles. Assuming

� results from input x(t); t 2 [0; T ] and taking a third point p 2 	, we have that

Z T

0
x�[x]0(t) dt =

Z T

0
x(t)w0(t) dt (12a)

=

Z
�
x(t) dw(t) (12b)

�

Z
�ab

x(t) dw(t) (12c)

= �

Z
�p!a

x(t) dw(t) +

Z
�p!b

x(t) dw(t) (12d)

� ��(x(0); �0) (12e)

where

�(x(0); �0) =

Z
�p!a

x(t) dw(t) � 0: (13)

The �rst inequality (12c) holds from the circulation condition (10), while the second inequality

(12e), and the positivity of � is a result of (11).

Prop. 5 Finally, we require the property that the above Properties 3 and 4 hold when the nonlinearity

is sector transformed in accordance with Lemma 2.2. In essence it is required that, under

this transformation, the new hysteresis maintains the circulation and positivity properties,

but has in�nite slope sector bound: 0 � ~�0(�) <1.

Remarks: The constant � in (21) has the interpretation of the maximum energy that can

be extracted (available energy) from the nonlinear operator with a given set of initial condi-

tions [Willems, 1972]. While the properties we assume may appear overly restrictive, many common

hysteresis have these properties. It can be seen by inspection that the simple relay has properties 1{

4, and, in a trivial manner, it satis�es property 5 since it is una�ected by the sector transformation.

Under the transformation, the Preisach model is re-shaped, with the saturation region maintained

and the region of maximum slope � (see Fig. 5) becoming vertical; but the circulation and posi-

tivity properties still hold. The backlash is a simple analytical model useful to demonstrate these

properties, as shown in the following section.
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2.2.2 Energy storage and dissipation for the Backlash hysteresis

Here we show the common backlash nonlinearity conforms to the properties 1{5 given in the previous

section. In particular, we give a simple mathematical representation for the nonlinearity, and

then show that the positivity constraint (12) holds under the sector transformation indicated by

property 5.

The input-output behaviour of a backlash (Fig. 4) can be described by two modes of operation,

as either tracking or in the deadzone, for which we de�ne:

Tracking: _w = � _y

8><
>:

_y > 0; w = �(y � r) or

_y < 0; w = �(y + r);

Deadzone: _w = 0 jw � �yj � �r;

(14)

where 2r is the deadzone width and � is the slope of the tracking region, as indicated in Fig. 4.

Applying the sector transformation, shown in Fig. 1, we have, when tracking with positive velocity

� _� = � _w = (y �
1

�
w) _w = �r _y (15)

and, similarly for negative tracking: � _w = ��r _y. This quantity is then expressed for all times as

� _w =

8><
>:

�rj _yj when tracking;

0 in deadzone.
(16)

De�ning the interval I = [0; T ], for some T � 0, and Ttrk � I encompassing all the subintervals in

I for which tracking occurs, the integral (12) for the backlash becomes

Z T

0
�(t)w0(t) dt = �r

Z
t2Ttrk

j _y(t)j dt � 0: (17)

Thus, � = 0, which means that the sector transformed nonlinearity has zero stored (or available)

energy. In this case, it can be shown that the transformation induces a dissipation equality. In

particular, the energy balance, as noted by Brokate and Sprekels [Brokate and Sprekels, 1996, p. 69],

is given as

M0(t)� U 0(t) = jD0(t)j (18)

where the terms from (15{16) are identi�ed with: M0(t) = _wy as the mechanical work rate;
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U 0(t) = 1
�
w _w, the rate of hysteresis potential [Brokate and Sprekels, 1996] energy storage; and

D0(t) = �r _y as the energy dissipation into the hysteretic element. The transformation (Fig. 2) strips

the energy potential and leaves only the energy dissipation term in the integrand in (17). Expressed

this way, we can exactly account for all energy components associated with the nonlinear operator.

Explicit potential, work and dissipation expressions for more complicated hysteresis operators, such

as the Preisach and Prandtl models, is discussed in [Brokate and Sprekels, 1996]. While being very

powerful analytical tools, they are not pursued further herein.

2.2.3 Multiple Hysteresis Nonlinearities

Having de�ned all the properties of the scalar hysteresis nonlinearities, de�ning the class for the

vector case is straightforward. We de�ne �h, the multiple hysteresis class as:

�h =

8>>>>>>><
>>>>>>>:

� : Rm ! Rm

�(y) = [�1(y1); : : : ; �m(ym)]
T

�i is di�erentiable a.e. in R

0 � �0i < �i; i = 1; : : : ;m

�i has Properties 1{5

9>>>>>>>=
>>>>>>>;
: (19)

The set �h consists of m decoupled scalar nonlinearities, with each scalar component locally slope

bounded (wherever the nonlinearity is di�erentiable) and conforming to the properties detailed in

the previous section.

Lemma 2.4 (Passive Operator, Hysteresis case) Consider a vector hysteresis nonlinearity �h :

Rm ! Rm in the class de�ned (19). Then the input-output relation of the sector transformed

operator ~�h de�ned with �(t) as the input to ~�h and output �(t) = d
dt
~�h(�), the time derivative of

~�h(�) (as depicted in Figure 2) is passive.

Proof: For all T � 0

Z T

0
�T � dt =

mX
i=0

Z T

0
�i
d

dt
~�i(�i) dt (20a)

=
mX
i=0

Z T

0
�iw

0
i(t) dt (20b)

=
mX
i=0

Z
�i

�i(t) dw
0
i(t) (20c)

�
mX
i=0

Z
�abi

�i(t) dw
0
i(t) (20d)
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Fig. 6: Nonlinear system and loop transformation.

=
mX
i=0

(
�

Z
�pi!ai

�i(t) dw
0
i(t) +

Z
�pi!bi

�i(t) dw
0
i(t)

)
(20e)

� ��(�(0)) (20f)

where

�(�(0); w(0)) = �(y(0); �0) =
mX
i=0

Z
�pi!ai

�i(t) dw
0
i(t) � 0; (21)

according to properties 4{5 of the class. Hence, the input-output relation is passive, by the de�nition

given in [Desoer and Vidyasagar, 1975, p. 173]. 2

Note, that the proof is structured in a way analogous to the memoryless case. Instead of positive

(sector bounded, path independent) line integrals, the corresponding steps here involve positive

path integrals.

3 System Description and Loop Transformation

As in the standard absolute stability analysis framework, it is assumed that the nonlinearity can be

isolated from the linear dynamics and placed into a feedback path, as is shown in Fig. 6a. Assuming
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the linear dynamics G(s) has a minimal state space representation (A;B;C;D), with A Hurwitz,

the nonlinear (Lur'e) system is described as

_x = Ax+Be

y = Cx+De

pi(t) = �i(yi(t)); i = 1; : : : ;m;

(22)

where p(t) 2 Rm and � 2 �, as de�ned by either the multiple memoryless or hysteresis class, as

before. In order to convert the nonlinearity into a passive operator, in accordance with Lemma 2.3-

4, we introduce the loop transform, as described in Fig. 2, to give the equivalent system shown in

Fig. 6b. Note that ~� is now passive, and that the transformed linear system:

~G(s) = (G(s) +M�1)(s�1I); (23)

has the state space representation:

~G
s
=

2
666664

2
64 A 0

C 0

3
75

2
64 B

D +M�1

3
75

�
0 I

�
0

3
777775 : (24)

By the Hurwitz assumption, we have that A is invertible, and thus by introducing the similarity

transform:

T =

2
64 I 0

CA�1 I

3
75 ;

the augmented system ~G(s) can be decomposed into its stable and constant dynamic components

as:

~G(s) = ~Gr(s) + s�1R; (25)

where R = G(0) +M�1 with G(0) = �CA�1B +D; and the stable component Gr is reduced by

the integrator states and has the state space description:

~Gr
s
=

2
64 A B

CA�1 0

3
75 : (26)

With the linear dynamics decomposed in this way, the nonlinear, closed loop system can then be
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expressed in the vector version of Popov's indirect control form (see [Vidyasagar, 1993, p. 231], for

example), as is depicted in Fig. 7. The dynamics of the original Lur'e system (22) corresponding

now to the Popov form are equivalently given as:

_x = Ax+Bu = Ax�B�

_� = ��; �(0) = ��M (0)

� = CA�1x+R�

� = _�M (t)

(27)

Proper initialization of the integral state �, as shown in Fig. 7, leads to the identities:

�(t) = ��M (t) (28a)

_�(t) = �� = � _�M (t): (28b)

The stable (equilibrium) conditions for the hysteresis case di�ers from the memoryless, slope-

restricted because the hysteresis is multivalued. As a result, while the equilibrium point for the

memoryless nonlinear system is unique, convergence for the hysteresis system is to an invariant set,

which may consist of an in�nite number of points. The next section provides explicit descriptions

of these stability sets.
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4 Stationary Sets and Stability De�nitions

Stability theory is often used to determine whether or not an autonomous system will achieve some

sort of steady state condition. Generally speaking, in steady state, the system state may be at an

equilibrium point (at rest with _x = 0), or in a limit cycle. In either case, the state x(t) belongs to

an invariant set [Hahn, 1963, Vidyasagar, 1993]. The largest invariant set M � Rn, for a particular

system, is the union of all equilibrium points and the sets containing all possible limit cycles. The

equilibrium, or stationary, set E � M, for the nonlinear system (22) is de�ned as:

E =

�
x 2 Rn such that (30) is satis�ed

�
; (29)

where (30) is the set of algebraic conditions:

yss = [�CA�1B +D]ess = G(0)ess (30a)

ess = ��(yss) (30b)

xss = �A�1Bess: (30c)

Naturally, E is unique to each system (22) and, in particular, depends on the type of nonlinearity

present. Various stationary sets are given below.

4.1 Stationary Set for Memoryless Nonlinearity

For the slope-restricted nonlinearity, we assume there exists a unique equilibrium point x = 0, for

the closed loop system (22). That is, Em is a singleton:

Em = f0g : (31)

This result is consistent with the sector bounded property of the class �, and the assumption

G(0) > M�1. Geometrically, this condition means that the graph of i-th nonlinearity �i(yi) and

the line �i = �yi=Gii(0) intersect only once, at the origin. This intersection is necessarily non-

unique in the hysteresis case, and as a result, Eh is comprised of �nite regions in state space. These

sets are de�ned below for various special cases.
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4.2 Stationary Sets for Hysteresis Nonlinearities

The stationary sets for multiple hysteresis can be de�ned with a simple extension of the graphical

technique for the scalar case originally detailed by [Barabanov and Yakubovich, 1979]4. To proceed,

consider a generic Preisach nonlinearity, and note that conditions (30a{b) together can be depicted

graphically, as shown in Fig. 8, as the intersection of the line �i = �yi=Gii(0) and the graph of

the hysteresis. This intersection de�nes the range of outputs for each nonlinearity �i 2 [�
i
; �i]

�i

yi

�i

�
i

�i =
�1

Gii(0)
yi

Fig. 8: Graphical criteria for determining E.

which must be satis�ed simultaneously for each �i; i = 1; : : : ;m: Then letting each �i vary over

the allowed range maps out the invariant set E, according to the condition (30c) x = �A�1Be,

where e = ��: Note that if Gii(0) = 0, then the corresponding limits �
i
; �i are simply the extreme

values of intersection of the hysteresis with the �{axis. The stationary sets for the relay, backlash,

and Preisach hysteresis nonlinearities are given next.

4.2.1 Hysteretic Relay

For a system with a bank of m unit relays, as shown in Fig. 3, the stationary set is given by:

Erelay =

8><
>: x 2 Rn

x = �A�1Be

e 2 Rm; ei 2 f�1; 1g; i = 1; : : : ;m

9>=
>; (32)

4A similar de�nition for (29) is given in Ref. [J�onsson, 1998].
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Erelay consists of 2
m discrete points in Rn. Each point is essentially the steady state solution of the

open loop system G(s) in response to a particular constant input vector e consisting of elements

ei = +1; or � 1:

4.2.2 Backlash and Preisach Nonlinearities

The equilibrium sets for these two types of nonlinearities are de�ned in the same way, since both

operators admit outputs that range continuously over a prescribed interval. Once the output limits

are de�ned, the stationary set is completely determined.

Ebacklash; EPreisach =

8><
>: x 2 Rn

x = �A�1Be

e 2 Rm; ei 2 [�
i
; �i]; i = 1; : : : ;m

9>=
>; (33)

Note that these sets are polytopic regions, and are equivalently de�ned as the convex hull of the

corresponding set of limiting vectors:

Ebacklash; EPreisach = Co fvi; vi; : : : ; vm; vmg ; (34)

where vi; vi 2 Rn, with

vi = �A�1Bz; where zj =

8><
>:

�
i
; j = i

0; else,

and vi de�ned similarly.

The de�nitions for the stationary sets E provide a clear idea of the position of x 2 Rn should the

system achieve the equilibrium condition de�ned by _x = 0: Before providing the stability criteria

that guarantees the system is indeed stable, we give precise de�nitions of what it means for a system

to be stable with respect to an invariant set.

4.3 De�nitions of Stability

Using standard notation (as by [Hahn, 1963], for example), de�ne the trajectory of motion for an

initial condition x(0) = x0 of some arbitrary system as q(x0; t). For an invariant set M of the

system, the distance to the set from any arbitrary point is given by:

dist(x;M) = inf jx� yj; y 2 M;
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with dist(x;M) = 0 for x 2 M. A closed invariant set M is called stable, if for every � > 0 a number

� > 0 can be found such that for all t > 0,

dist(q(x0; t);M) < �

provided

dist(x0;M) < �:

If in addition,

dist(q(x0; t);M)! 0; as t! 0;

then M is said to be asymptotically stable.

5 Stability Theorem

This section provides a Lyapunov-based asymptotic stability theory for the systems with either

slope-restricted (memoryless) or hysteresis nonlinearities. The Lyapunov function used refers to

the transformed system de�ned in x3 and includes the integral of the nonlinearity that is positive,

as a result of the passive properties de�ned in x2. Negativity of the Lyapunov derivative is enforced

by a certain matrix inequality of a form similar to that associated with the well-known KYP

lemma (see [Boyd et al., 1994, p. 120], for one treatment). The theorem then concludes asymptotic

stability of the origin in the case of the memoryless, slope-restricted nonlinearities, and for the

equilibrium sets given x4.2 in the hysteresis case by using the Lyapunov conditions and employing

basic analytical results.

Theorem 5.1 (Asymptotic Stability) If there exists constants P;N;�, with

P 2 Rn�n; P = P T > 0

� 2 Rm�m; � = �T > 0

N = diag(n1; : : : ; nm); ni > 0; i = 1; : : : ;m

(35)

such that 2
64 �ATP � PA CTN +A�TCT � PB

(�)T12 ND +DTN + 2NM�1 ��

3
75 � 0; (36)

and R = RT > 0; R = G(0) +M�1, then the closed loop system (27) is asymptotically stable. In
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this case, the Lyapunov functional:

V (x(t); �(t); t) = x(t)TPx(t) + 2

Z t

0
�T (�)�(�) d� + �(�0; �0) + �T (t)R�(t) (37)

proves stability.

Proof: Choosing � as (7) for the slope-restricted nonlinearity, or as (21) when the nonlinearity

is a multiple hysteresis5, then V � 0; and since P;R > 0, V ! 1 whenever (x; �) ! 1, so V is

positive de�nite and hence, a valid Lyapunov candidate. In order to assert _V � 0, �rst note that

matrix inequality (36) implies, for all x 2 Rn; u 2 Rm

xTPx � 2xT (CTN +A�TCT � PB)u+ uT (ND +DTN + 2NM�1 ��)u

= 2xT (CTN +A�TCT � PB)u+ uTM22u;

where M22 is the (2; 2) entry of the LMI (36). Using this fact, and (28) we have

_V (x; �) = xT (PA+ATP )x� 2xTPB _�M + 2�T _�M + 2�TR _�

� �2xT (CTN +A�TCT ) _�M + 2�T _�M + 2�TMR _�M + _�TMM22
_�M (39a)

= �2( _� + (D +M�1) _�M )TN _�M � 2(� +R�M )T _�M + 2�T _�M

+ 2�TMR _�M + _�TMM22
_�M

= �2 _�TN _�M � _�TM� _�M

� � _�TM� _�M (39b)

� ��j _�M j
2 (39c)

� 0; (39d)

where the �rst inequality (39a) is due to the LMI condition, the second (39b) a result of the time-

derivative sector condition (5), and the last two (39c-39d) follow from the constraint � > 0 (35),

and the assumption that � is the minimum eigenvalue of �. Now since V is positive de�nite in x; �

and _V � 0, we conclude the closed loop system is stable, or, simply that x and � are bounded. To

�nd asymptotic stability, �rst note that,

_V � ��j _�M j
2 ) _�M (t)! 0 as t!1; (40)

5In the particular case when the nonlinearity is of the multiple backlash type, � = 0, as discussed in x2.2.2.
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since V (t) is bounded below. Further, using (39c), we have

V (t)� V (0) � ��

Z t

0
j _�M j

2 dt; (41)

which, can be rewritten as

Z t

0
j _�M j

2 dt �
1

�
(V (0)� V (t)) � V (0)=�; (42)

which implies _� 2 L2, and as a result y(t) 2 L2 as well since ~Gr is L2-stable (i.e., A Hurwitz).

Using the system dynamics (27), the signal y and its derivative are expressed as

y(t) = CA�1
�
exp(At)x(0) +

Z t

0
exp(A(t� �))Bu(�) d�

�
(43a)

_y(t) = CA�1
h
Aexp(At)x(0) � exp(At) _�M (t)

i
: (43b)

Assuming Lipschitz continuous nonlinearities so that _�M (t) exists, we have that _y 2 L1.6 In

this case, the two conditions y(t) 2 L2, _y 2 L1 imply that y(t) ! 0 as t ! 1 (see, for exam-

ple, [Narendra and Annaswamy, 1989, Lemma 2.1.2]). The asymptotic conditions y(t); _�(t) ! 0

together require that the closed loop system must approach an equilibrium condition as t ! 0.

To see this, note that the conditions � = _�M ! 0 and y ! 0 imply that all signals of the Popov

system (27) contained in the shaded region of the block diagram in Fig. 9a approach zero asymptot-

ically. Recall that the initialization of variable �(0) = ��M(0) implies that �(t) = ��M(t)8t � 0,

as given by Eqn. (28). Thus, in the limit, the zero signals can be eliminated and the system reduced

to that shown in Fig. 9b, where the signal equivalence mentioned above is indicated by the dashed

line. Reversing the sector transformation further simpli�es the diagram to that in Fig. 9c, which

corresponds to the equivalent algebraic conditions:

yss = G(0)uss (44a)

uss = ��(yss) (44b)

�x = �A�1Buss; (44c)

6See Remark 2 below concerning continuous approximations for discontinuous nonlinearities such as the relay
hysteresis.
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Fig. 9: The condition _V � 0 implies steady state condition on the Popov system.

which are identical to the conditions (30) that describe the stationary set E. Therefore, in the

hysteresis case, we conclude global asymptotic stability of the set E. In the special case of the

system with multiple slope-restricted nonlinearities, the set E is simply the origin, as noted by

Eqn. (31). 2

Remarks:

1. This proof utilizes a combination of Lyapunov and input-output stability theories. Of course,

connections between Lyapunov and input-output stability concepts have been well estab-

lished [Willems, 1971b, Hill and Moylan, 1980, Boyd and Yang, 1989]. In this case, passivity

conditions are used to establish Lyapunov stability arguments for slope restricted/hysteresis

nonlinear systems, all within the analytical framework of Popov's indirect control form. An

alternate approach could proceed using passivity (as is done in [Par�e and How, 1998b]) or

Popov's hyperstability theorem [Popov, 1973], exclusively. However, the Lyapunov compo-
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nent included here enables the additional conclusion of asymptotic stability of the set E.

Positive real and passivity interpretations of the analysis are further explored in the following

section.

2. Note that the hysteresis set �h (19) includes the hysteretic relay, which has a discontin-

uous input-output mapping. Strictly speaking, the proof given does not apply to such

nonlinearities directly. In order to maintain simplicity, we will assume in these cases that

discontinuities can be replaced with a reasonably smooth approximations so that Lipschitz

conditions are satis�ed (see [Visintin, 1988] for a similar approximation for the hysteretic

relay). A more rigorous approach, could be developed for these discontinuous nonlinear-

ities using Filippov [Filippov, 1988] state solutions, one-sided Lyapunov derivatives as de-

scribed by [Hahn, 1963, Clarke, 1983], and the generalized version of LaSalles Invariance

Principle [LaSalle, 1976].

3. The condition R = RT > 0 is not overly restrictive. For instance, the o�-diagonal elements

G(s) can often be arbitrarily scaled using diagonal scaling matrices. In this way the matrix

G(0) can be made symmetric with the necessary gain adjustments incorporated into the

nonlinearity. The condition R = RT > 0 is less restrictive than the condition G(0) =

0 given by [Haddad and Kapila, 1995], and the criterion G(0) = G(0)T > 0 required by

[Park et al., 1998], whenever the nonlinearity has �nite maximum slope. The criteria in Ref.

[Park et al., 1998] includes the additional constraint that NG(0) = G(0)TN , which limits N

to a scalar quantity in the case when G(0) is a full matrix. This can further restrict the

analysis, as is illustrated with a simple example in x7.

6 Passivity and Frequency Domain Interpretations

The LMI (36) is recognized as a strict passivity condition on the linear system:

~Gra =

2
64 A B

NC + CA�1 N(D +M�1)

3
75 (45)

which is an augmented version of the reduced system ~Gr. Strict passivity of this augmented system

is a requirement for stability that could have been derived with an equivalent analysis of the system
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Fig. 10: Augmented, passive system.

in Fig. 6 that employs noncausal multipliers, as is detailed in Ref. [Willems, 1971a, Ch. 6]. A robust

stability analysis using passivity and multipliers for speci�c case of systems with a single hysteresis

was recently done by the authors [Par�e and How, 1998b]. To proceed, introduce the multiplier

W (s) = Ns+ I (with N as de�ned in (35)) into the transformed system, as shown in Fig. 10a. In

this case, premultiplying the hysteresis �M with W�1 as shown results in a new nonlinearity ~� in

the feedback path which is passive. This passivity condition is ascertained using the steps in the

proofs of Lemma 2.3{4 and using the additional time derivative constraint (5). Introducing the

multiplier similarly leads to the transformed linear system:

~Ga(s) =W (s)(G(s) +M�1)(s�1I) = (Ns+ I)(G(s) +M�1)(s�1I): (46)

This decomposes, as was done in Eqs. (23-25), to

~Ga(s) = ~Gra(s) + s�1R; (47)

where again R = G(0) +M�1, and Gra(s) is the augmented system (46) reduced by the integrator

states and has the state space representation (45). This leads directly to the Popov indirect

form, with a parallel combination of the augmented system ~Gra and the constant dynamics s�1R,

as depicted in Fig. 10b. In the passivity framework, stability requires either the feedforward or

feedback operator be strictly passive. In this case, strict passivity is achieved by conditions on the

reduced system ~Gra and strict positivity of R, as detailed in the following corollary.

Corollary 6.1 (Strict Passivity) If there exists N = diag(n1; : : : ; nm) � 0; � = �T > 0 such that
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the following two conditions:

1. R = RT ; R = G(0) +M�1 > 0

2. The reduced system Gra, given by (45) is dissipative with respect to the

supply rate:

r(p; q) = pT q � pT�p; (48)

are satis�ed, then the system ~Ga(s) is strictly passive. In this case, the closed loop system (22) is

asymptotically stable.

Proof: Let � : R+ ! Rm represent the integrator state with �(0) = �0, V : Rn ! R+ be a storage

function for Gr and qI ; qr be the outputs of the integrator and Gr, respectively, as depicted in

Fig. 10b. Then for any T � 0 we have

Z
T

0

qT p dt =

Z
T

0

(qI + qr)
T p dt

=

Z
T

0

�T (t)RT
d

dt
�(t) dt+

Z
T

0

qT
r
p dt

�
1

2
(�TTR�T � �T

0
R�0) + V (xT )� V (x0) + hp;�pi2T

� ��(�0; x0) + �kpT k
2

2
;

where �(�0; x0) = �T0 R�0=2 + V (x0) � 0 and � > 0 is the minimum eigenvalue of �. Thus, ~Ga

is strictly passive by the de�nition given in [Desoer and Vidyasagar, 1975]. Then, since the loop

transformed system consists of a passive (transformed) nonlinearity in feedback with a strictly

passive linear system, we thus conclude the closed loop system will converge asymptotically to the

equilibrium conditions. 2

Corollary 6.1 essentially uses the idea that an operator consisting of the parallel combination of

passive (nonstrict) and a strictly passive operators is strictly passive. Condition 1 ensures the

passivity (nonstrict) of the integrator component, while condition 2 enforces the strict passivity of

the reduced system ~Gra. The necessary dissipation for the parallel system is ultimately guaranteed

by the existence of some � > 0. Naturally, the scalar analogy for the positivity condition: R =

RT > 0 on the integrator term is the simple capacitor, which is passive7 provided the capacitance

value is positive. The notion that a linear system can be strictly passive even though it has

zero eigenvalues is not intuitive, but similar results are available in the literature, and usually

7Assuming the input/output relation across the capacitor terminals is current/voltage.
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involve decomposing the system into its stable and constant dynamic components, as is done

here for the indirect Popov criterion. In Ref. [Anderson and Vongpanitlerd, 1973, p. 216], for

example, it is shown that systems with purely imaginary poles are positive real only if the associated

residue matrices are nonnegative de�nite Hermitian. A similar state space diagonalization is used to

establish Lyapunov stability criteria in [Boyd et al., 1994, pp. 20{22] for systems having eigenvalues

with a zero real part. In essence, Thm. 4.1 is an extension of these ideas to a particular version of

the KYP Lemma, and in e�ect could be called the Indirect Control KYP Lemma, for the historical

reasons cited in x1.

Of course, as is well known, a linear system is strictly passive if and only if its Hermitian form is

strictly positive de�nite for all frequencies [Desoer and Vidyasagar, 1975, p. 174]; that is, a system

H(s) is strictly passive if and only if, for some � > 0,

H(j!) +H�(j!) > �I; 8! � 0: (49)

Hence, the stability question can be addressed by asking the equivalent question: When is a

square, linear system having zero eigenvalues strictly passive? Note that, unlike the approach

taken in [Haddad and Kapila, 1995, Park et al., 1998], we do not require the linear system to be

strictly positive real (SPR) [Khalil, 1996, Wen, 1988], which is a stronger condition than strict

passivity. In fact, the transformed system ~Ga in general can not be SPR since the multiplierW (s)

introduces a zero eigenvalue (see [Khalil, 1996, pp 404-405]); however, it is clear that ~Ga satisfying

the conditions of Thm 4.1 are strictly passive. This follows since,

~Ga(j!) + ~G�
a(j!) = ~Gra(j!) + ~G�

ra(j!) +
1

j!
(R�RT ) (50a)

= ~Gra(j!) + ~G�
ra(j!) (50b)

> � (50c)

� �I; (50d)

where � is the minimum eigenvalue of �. Therefore the strict passivity condition (49) is achieved.

Here again, as in the Corollary 5.1, the role of symmetric R is apparent, this time in the frequency

domain.
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7 Numerical Examples

7.1 Computing the Maximum Allowed Slope for Nonlinearities

A common engineering problem that often arises is that of �nding the maximum sloped nonlinearity

that a given system can tolerate before going unstable. This problem was posed in [Park et al., 1998],

and an LMI solution was suggested based on the analysis given in that paper. The same problem

in terms of the conditions of Theorem 4.1 is stated as:

max � subject to:

8><
>:

(35), (36)

R = RT > 0
(51)

where M = �Im. Solving (51) for the arbitrary 2� 2 system G(s) given as

G1(s) =

2
64 s2�0:2s+0:1

s3+2s2+2s+1
s2�0:4s+0:75
s3+3s2+3s+1

0:1s2+5s+0:75
s3+1:33s2+2s+1

0:15(s2+s+0:75)
s3+s2+1:1s+1

3
75 ; (52)

by using the LMI solver [Gahinet et al., 1995], yields a maximum allowed slope value of � = 0:940.

By comparison, the equivalent problem using the stability criteria from [Park et al., 1998] results

in a maximum slope of 0:392, approximately a factor of 2 smaller. Obviously, Theorem 4.1 is less

conservative in guaranteeing stability for this system. The reason for this is that while G(0) is

symmetric, and thus satis�es the criteria in [Park et al., 1998], G(0) is a full matrix. As a result

of Park's additional constraint, NG(0) � G(0)TN = 0, the multiplier N must reduce to a scalar,

positive number. By contrast, our Theorem 4.1 poses no such condition on G(0), and allows N to

remain a diagonal matrix with two degrees of freedom, and is thus able to give less conservative

stability guarantees. This relative advantage is likely to increase as the number of nonlinearities

increases in the case of non-diagonal G(0). This follows since Theorem 4.1 will allow one additional

degree of freedom for each nonlinearity, while the criteria from [Park et al., 1998] restricts the

multiplier to a single scalar number (i.e., N = nIm) regardless of the problem size.

As a second example, consider

G2(s) =

2
64 s�0:2

s3+2s2+2s+1
0:1s2+1
s2+3s+1

0:1s2+5s+1
s2+1:33s+1

0:2(s2+s+0:75)
s3+s2+1:1s+1

3
75 ; (53)

and note the state space version of this system has a non-zero feedthrough term, D 6= 0, and the
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system matrix at s = 0:

G2(0) =

2
64 �0:2 1:0

1:0 0:15

3
75

has a negative eigenvalue. For either of these reasons, the recent results of [Park et al., 1998] and

[Haddad and Kapila, 1995] do not apply in this case. Within the context of absolute stability then,

it is fair to conclude the criteria in [Park et al., 1998, Haddad and Kapila, 1995] can guarantee

stability only for nonlinearities having zero maximum slope (i.e., only when nonlinearities are not

present). However, Theorem 4.1 does apply and guarantees stability for all nonlinearities in the

classes described in x2 that have a maximum slope less than 0:996: The corresponding stability

multiplier is N = diag(25:327; 11:134):

7.2 Asymptotic Stability with Single Hysteretic Relay

As a simple example of an application of Theorem 4.1 for a system with a single nonlinearity,

consider a third order system:

G(s) =
s2 + 0:01s + 0:25

(s+ 1)(s2 + s+ 1)
(54)

that is attached in negative feedback with a hysteretic relay (Fig. 3). A simple graphical check, as

described in x4.2 shows that the line � = �y=G(0) intersects the nonlinearity in two stable points,

� = �1, and does not intersect the discontinuous portion of the characteristic. In this case the

stationary set is well de�ned and, according to de�nition (32), is simply two discrete points in state

space:

E =

8>>>><
>>>>:
�

2
66664
0

0

2

3
77775

9>>>>=
>>>>;
: (55)

To prove asymptotic stability of E, we solve the LMI (36) by approximating the in�nite slope of

the relay with the value � = 1 � 106. Using the LMI toolbox [Gahinet et al., 1995], the stability

parameters are found to be

P =

2
66664

5:0826 �0:02149 0:16304

�0:02149 4:7911 �0:02991

0:16304 �0:02991 3:038

3
77775 ;
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Fig. 11: All solutions converge to the two points in the set E.

N = 4:7078, and � = 4:77 � 10�6, which proves the global asymptotic stability of the set E. Note

that in this case G(s) is not positive real, and thus an analysis of this hysteretic relay system based

on the circle criteria, such as the IQC technique given by [Rantzer and Megretski, 1996], would fail.

However, the graph of G(j!); w � 0 does not enter the third quadrant of the Nyquist plane and

therefore satis�es less restrictive stability criteria for systems with scalar hysteresis nonlinearities, as

detailed in [Par�e and How, 1998b]. Several simulations of the nonlinear system con�rm this result.

The set is clearly visible in Fig. 11, as initial conditions at various locations in state space converge

to either of the two discrete points. The nonlinear behaviour of the system is evident in Fig. 12,

which shows nonsmooth trajectories of the state that result at times when the relay switches. The

nonlinear switching is also the cause of the asymmetric pattern of the state trajectories, as seen in

the x1-x3 plane.
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Fig. 12: Trajectories are nonsmooth as a result of relay switching.

7.3 Asymptotic Stability with Multiple Backlash Nonlinearities

Here we investigate the stability of the two-input, two-output system:

G
s
=

2
64 A B

C D

3
75 =

2
666666666664

�2 �1 �0:5 0:19365 0:41312

2 0 0 0 �0:41312

0 1 0 0 0

1:875 �0:1875 0:09375 0 0

1 0:75 1 0 0

3
777777777775

(56)

that is attached in feedback with two backlash nonlinearities, described in Fig. 4, each having unit

slope and deadband width (�;D = 1). The system matrix at s = 0:

G(0) =

2
64 0:0363 0:3873

0:3873 0:20656

3
75
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Fig. 13: The stationary set E for a multiple backlash nonlinearity is a rectangular region in the
x1-x3 plane.

is symmetric, and has eigenvalues � = �0:275; 0:518, so that the criteria R = RT > 0, where

R = G(0) + I is satis�ed. Solving the LMI (36) yields the stability parameters

P =

2
66664

4:2914 �1:921 �3:7638

�1:921 7:6573 �2:3389

�3:7638 �2:3389 18:354

3
77775

and

N =

2
64 1:7292 0

0 1:6253

3
75 � =

2
64 0:75697 �0:18976

�0:18976 0:69497

3
75 :
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Positivity of these matrices proves global asymptotic stability for the set E, as per Theorem 4.1. In

this case, E is a polytopic region, as described for the backlash nonlinearity by Eqn. (34), given by:

E = Co

8>>>><
>>>>:
�

2
66664
0:1712

0

0

3
77775 ; �

2
66664

0

0

0:3737

3
77775

9>>>>=
>>>>;
: (57)

The stationary set E (57) is shown dashed in Fig. 13. Simulation of the nonlinear system with

six di�erent initial conditions con�rms the stability of the set. All trajectories terminate in E, as

shown in Fig. 13. The perspective looking down onto the x2-x3 plane, given in Fig. 14, con�rms

that the second component of the state indeed converges to zero, since the various trajectories all

end in the corresponding segment of the x3-axis.
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All solutions converge to x2 = 0.
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Fig. 14: As viewed in the x2-x3 plane, the set E appears as a segment of the x3-axis.
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8 Conclusions

This paper establishes absolute stability criteria for systems with multiple hysteresis and slope-

restricted nonlinearities. Using Popov's indirect control form as an analytical framework, a Lya-

punov stability proof is developed to guarantee stability for these two classes of nonlinear systems.

The analysis for the two di�erent cases is e�ectively uni�ed by introducing a transformation that

converts either nonlinearity into a passive operator. In the hysteresis case, the Lyapunov func-

tion includes a integral term that is dependent on the nonlinearity input-output path, while the

corresponding Lyapunov term for the memoryless nonlinearity is not. As a result of the new anal-

ysis, early work performed by Yakubovich for a scalar hysteresis is extended to handle multiple

nonlinearities, and recent work on multiple slope-restricted nonlinearities is further generalized.

The stability guarantee is presented in terms of a simple linear matrix inequality (LMI) in the

given system matrices, and a certain residue matrix condition that must be satis�ed. Asymptotic

stability is with respect to a subset of state space that contains all equilibrium positions of the non-

linear system. Descriptions of these stationary sets for several common hysteresis types are given

in detail. Simple numerical examples are then used to demonstrate the e�ectiveness of the new

analysis in comparison to other recent results, and graphically illustrate state asymptotic stability.

By contrast to the previous work, our analysis allows for non-strictly proper systems and, except

for trivial cases such as a diagonal system matrix, the stability multiplier is allowed to be more

general and leads to less conservative stability predictions.
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