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Abstract—In this paper, we introduce a new class of Lyapunov
functionals for analyzing hybrid dynamical systems. This class can
be thought of as a generalization of the Lyapunov functional in-
troduced by Yakubovich for systems with hysteresis nonlinearities
which incorporates path integrals that account for the energy loss or
gain every time a hysteresis loop is traversed. Hence, these Lyapunov
functionals capture the path-dependence of the “stored energy” in
hybrid dynamical systems and are therefore less conservative over
previously published approaches in analyzing such systems. More
importantly, we show that searching over the proposed class of Lya-
punov functionals to prove some specification (e.g., stability) can be
cast as a semidefinite program (SDP), which can then be efficiently
solved (globally) using widely available software. Examples are pre-
sented to show the effectiveness of this class of Lyapunov functionals
in analyzing hybrid dynamical systems.

1 Introduction

The development and analysis of hybrid systems is an ac-
tive area of research, both in computer science and in the
control community. Roughly speaking, hybrid dynamical sys-
tems are systems that incorporate both discrete and continu-
ous dynamics, with the discrete dynamics governed by finite
automata and the continuous dynamics represented by ordi-
nary differential equations. The two interact at “event times”
determined by the continuous state hitting certain event sets
in the continuous state-space. Hybrid systems can model a
vast array of important practical systems including piecewise-
linear systems, systems with hysteresis or backlash nonlinear-
ities, systems with sliding mode controllers, multi-modal sys-
tems, systems with logic, timing circuits, and computer disk
drives. For formal definitions of hybrid systems in the control
and dynamical systems literature refer to [1, 2].

Hybrid systems can have very complex behavior, even those
with very simple continuous dynamics (e.g., a second order
linear system with hysteresis feedback can exhibit chaotic be-
havior [3]). Naturally, it is not surprising that, as in robust
control, many problems in hybrid systems are known to be
computationally intractable (NP-hard) or even undecidable [4].
Therefore, we do not expect to formulate such problems ez-
actly as computationally efficient (polynomial-time) optimiza-
tion problems. We do expect, however, to develop some semi-
heuristic methods that are very effective on certain types of
problems. By semi-heuristic we mean a method that guaran-
tees its results when it works, but is not guaranteed to work
for all input data. Such a method results, for example, when
we search over a fixed, finite-dimensional class of Lyapunov
functions that guarantee some specification for a given hybrid
system—it may not be possible to find such a function, but if
one is found, the result is unambiguous. This research is an
effort in this direction.

In this paper, we introduce a new class of Lyapunov func-
tionals for analyzing hybrid dynamical systems. This class can
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be thought of as a generalization of the Lyapunov functional
introduced by Yakubovich [5] for systems with hysteresis non-
linearities, which incorporates path integrals that account for
the energy loss or gain every time a hysteresis loop is traversed.
Moreover, we will show that searching over the proposed class
of Lyapunov functionals to prove some specification (e.g., sta-
bility) can be cast as a semidefinite program (SDP), which can
then be efficiently solved (globally) using widely available soft-
ware (see, e.g., [6, 7, 8]). Previous work in hybrid systems in
the context of control theory includes [9, 10, 11, 12].

2 Linear hybrid dynamical systems

In what follows, linear hybrid dynamical systems (LHDS)
are systems that incorporate both discrete and continuous
dynamics, with the discrete dynamics governed by finite au-
tomata and the continuous dynamics represented by a set
of ordinary linear differential equations at each discrete state
s €{1,...,N}. The two interact at “event times” determined
by the continuous state x € R" hitting certain event sets,
which are assumed to be hyperplanes in R".

More formally, a linear hybrid dynamical system H is a
tuple

H=(Ri {1, NL R, (R), T, (A) s, (0)E) (1)

where Ry is time, {1,..., N} is the discrete state-space, R™
is the continuous state-space, (Ri,...,Ra) are the invariant
regions, Z : {1,...,N} — {1,..., M} is the invariant region
function, and (Ai1,...,An) and (b1,...,bn) are the system
matrices. Below is a brief description of each of these and
other related concepts used in this paper.

Time. This is the set R4. Time is denoted by t.

e Discrete state, continuous state, state-space. The dis-
crete and continuous states at time ¢ are denoted by
s(t) and z(t) respectively. For all ¢, s(t) € {1,...,N}
and z(t) € R". The state-space of H is the set
{1,...,N} x R™

e System matrices. A; € R"™™ and b; € R" for i =
1,...,N. These matrices determine the dynamics of =
at each discrete state s =i (more below).

e [nvariant regions. It is assumed that each invariant re-
gion R; is polytopic, i.e., fori=1,..., M

Ri:{xeR” | hizj<gi]-, jzl,...,Ji}.
Moreover the sets R; partition R”™ such that
UY, R =R", RiNR;=0,i#j.
(R; denotes the closure of R;.)
e [nvariant region for a discrete state. The function

Z:{1,...,N} —{1,..., M} assigns an invariant region
to each discrete state (we assume M > N'). In other

IFor M = N the LHDS becomes a piecewise-linear system.



words, Rz(;) is the invariant region for discrete state i.
The invariant region sets a condition under which s(t)
remains unchanged—if s(to) = ¢, as long as z(t) € Rz
for t > to, we have s(t) =i (more below).

e State dynamics. The evolution of the continuous state x
over time is given by the integral equation

o) = [ (o) + 1) dr +a(0).

In other words, at discrete state s, the continuous dy-
namics are governed by the affine dynamical equation
T = Asx + bs.

The evolution of the discrete state s is as follows.
Assuming s(t) = ¢ and z(t) = A;z(t) + bs

sy=4" " =) € Rr,
j if x(tJr) (S RI(i) nRI(j)~
Hence, the discrete state s(t) remains unchanged until
2(t) hits the boundary of the invariant region for the
current discrete state ¢ and another discrete state j. At
that point s(t) changes to j.

e Trajectory. Roughly speaking, a trajectory of H is any
function (s,z) : Ry — {1,..., N} x R™ where s and =
satisfy the discrete and continuous state dynamics of ‘H
respectively.

o Transition diagram. It is possible to associate to H a
directed graph G(H) called a transition diagram. In this
graph the nodes correspond to the discrete states and the
arcs between nodes correspond to an existing boundary
between the invariant regions of those nodes or discrete
states. The nodes are labeled with the discrete state
number and the arcs are labeled with the hyperplane
equation of the boundary between invariant regions of
those nodes (see example below). Any trajectory of the
discrete state corresponds to the sequence of nodes along
some forward path in G(H).

e Set of transition vectors. This is the set 7 defined as

there is an arc labeled

Note that it is sometimes preferred to label the arcs as
cl'z < d; (with inequality instead of equality) to show
that ¢fx > d; before the transition.

The linear system with piecewise-linear hysteresis nonlin-
earity of Figure 1 is a simple example of an LHDS. The tran-
sition diagram is given in Figure 2. It is easy to verify that

Ri={z|clz<1}, Re={z|1<c 2 <2}

Ry ={z|c"z>2}, T={(1,3),(2,2),(3,1),(4,2)},
Al=Ars=A3=A4=A, bi=bs=b, ba=0b3=0.
Other examples include sliding mode controllers [13] (with hys-
teresis switching to reduce “chattering”) and multi-modal sys-

tems such as computer disk drives (cf. §6).

Note that in our definition of LHDS we have skipped some
details and omitted many subtleties (e.g., uniqueness and ex-
istence of trajectories, motion on discontinuity surfaces or slid-
ing modes, etc.). Also it should be mentioned that there is no
standard definition for LHDS. For example, in the computer
science literature a linear hybrid dynamical system is usually
referred to a hybrid dynamical system in which, at each dis-
crete state, the continuous trajectory is linear (or has constant
slope). Here, on the other hand, the definition is more general
and by linear we mean that, at each discrete state, the contin-
uous dynamics is linear. This definition of LHDS encompasses
many systems of practical interest.

T=Ax+bp | O
oc=clx 1’) f
o
1 2
¢ }I_I_

Figure 2: Transition diagram G(H) of LHDS H of Figure 1.

3 Motivation

As seen in the previous section, the feedback intercon-
nection of a linear system with a hysteresis nonlinearity is a
hybrid dynamical system. Yakubovich [5] introduced a class
of Lyapunov functionals for analyzing such systems when the
hysteresis nonlinearity is sector-bounded and passive (roughly
meaning that the hysteresis loop is clockwise as in Figure 1).
Specifically, for the system

i(t) = Az(t) + bo(c" x),

o(t)(¢(0) — a(t)) <0, / 6(0) do > -3 for all o,

Yakubovich proposed the candidate Lyapunov functional
V(z) = z(t)" Px(t) + / ¢(o)do, P =0, (3)
r

(parameterized by P) where I' is the path traversed in the
(c"x,¢) plane. The path integral in V captures the energy
applied to the hysteresis element, and takes into account the
fact that every time a hysteresis loop is traversed, a certain
amount of energy (equal to the area of the hysteresis loop) is
dissipated. This Lyapunov functional has the usual property of
becoming unbounded as ||z(t)|| becomes unbounded. However,
the Lyapunov functional can also become unbounded if the
hysteresis loop is traversed an infinite number of times, which
can easily happen for bounded ||z(t)]|.

Since the Lyapunov functional V' proposed by Yakubovich
has proven to be very effective in analyzing systems with hys-
teresis nonlinearities (see, e.g., [5, 14, 15]), and that such sys-
tems are special cases of hybrid dynamical systems, it is nat-
ural to believe that any useful class of Lyapunov functionals
for general hybrid systems should include V in (3) as a special
case.

Piecewise-quadratic Lyapunov functions have already been
proposed for analyzing hybrid dynamical systems [11]. How-
ever, piecewise-quadratic Lyapunov functions do not possess
the property of becoming unbounded for bounded ||z(t)|| and
therefore do not include V' in (3) as a special case. In fact, as
shown in §6, piecewise-quadratic Lyapunov functions can be
very conservative in analyzing hybrid systems, because for ex-
ample, they cannot distinguish between a clockwise or counter-
clockwise hysteresis nonlinearity. (Piecewise-quadratic Lya-



punov functions are very effective for analyzing piecewise-linear
systems [16] however, since they can be thought of as a gener-
alization of the “quadratic plus integral of nonlinearity” Lya-
punov function for the Luré system in robust control [17].)

By using the Lyapunov functional of Yakubovich as a
guideline, it is possible to come up with a numerically com-
putable class of Lyapunov functionals for analyzing general
LHDS effectively. The key observation is that going around
the hysteresis loop of the system (Figure 1) is equivalent to
going around the (1,2,3,4,1) loop of the corresponding transi-
tion diagram G(H) (Figure 2). Each time the loop is traversed,
V' is increased by a net amount equal to the area of the hys-
teresis loop (due to the path integral term). Therefore, any
Lyapunov functional that generalizes V for LHDS must have
this property of increasing by a net amount every time a loop
(or forward cycle) in G(H) is traversed.

4 Lagrange stability

The focus of this paper is the analysis of Lagrange stabil-
ity for LHDS. A dynamical system is Lagrange stable if the
continuous state remains bounded from any initial condition.
For example, if the continuous state converges to a stationary
set, the dynamical system is Lagrange stable. Stable hybrid
systems typically converge to stationary sets. For example,
hysteresis nonlinearities are multi-valued, so systems with such
nonlinearities have a stationary set defined by the intersection
of the nonlinearity and the DC value of the linear part (see,
e.g., [15]). Piecewise-linear systems, which are another sub-
class of hybrid systems, can also easily have more than one
stationary point [16]. The Lyapunov theorem for Lagrange
stability is as follows [18].

Theorem 1 (Lagrange stability) Suppose the functional V
maps the trajectories of a dynamical system into R such that
V(t) — oo as ||z(t)|| — oo (z is the continuous state) and V
is bounded below, i.e., there exists B > 0 such that V> —3. V
becomes a function of time t along trajectories of the dynamical
system. The dynamical system is stable in the Lagrange sense
if along every trajectory we have %V(t) <0.

5 Lyapunov functional for LHDS

In this subsection we introduce a class of Lyapunov func-
tionals for analyzing LHDS and we show how they can be com-
puted using SDP and basic network optimization.

Consider the candidate Lyapunov functional V' such that
along any trajectory of H

V(t) = z(t)” Pypyx(t) + 2q% n2(t) + roe+

a t
23" / (ai(T)c?m(THﬂi(T)) Tirydr. Y

i=170
(¢;’s and a defined in (2)). Hence, V consists of a piecewise-
quadratic term (depending on the discrete state s) parameter-
ized by Ps, qs, s for s = 1,..., N, and an integral term pa-
rameterized by the functions «;,0; : Ry - Rfori=1,...,a
as explained below.

Let

S; = {(k,m,a)

and define P1S; = {(k,m) | (k,m, o) € Si} (P is a projection).
a; and (; are piecewise-constant functions of time satisfying

Oéi(t+) = { Qikm (S(t),s(t"’)) = (k7m) € PlSi,

a;(t) otherwise,

node m of G(H) has an incoming
arc labeled ¢!z = o from node k.

. B Bikms (s(t),s(t+)) = (k,m) € P15,
) _{ Bi(t)  otherwise,

where Qikm, Bikm € R. In other words, «; and [3; only change
when the discrete state changes by the continuous state hitting
a hyperplane ¢!z = constant. a; and §; are fully determined
once the values for the parameters a;r, and Bikm are given
for all (k,m) € P1S;. (Note that a;(0) and 3;(0) can always
be consistently chosen to be equal to one of the a;rm,’s and
Bikm's, respectively, depending on the value for s(0).)

In what follows, we give conditions on the (design) param-
eters Ps, s, Ts, Qikm, Bikm for V to be a valid Lyapunov
functional. In particular, we show that a;km and Bikm can be
chosen such that V is increased by a net amount around loops
in G(H) (as discussed in §3).

5.1 Continuity of V
For V' to be continuous we must have TPz +2¢Fx+r; =
2" Pjz + 2¢] x +r; for © € Rz () Rz(j) (the integral term in
V is already continuous). Since the invariant regions are poly-
topic, their intersections are hyperplanes, and we can assume
that these hyperplanes are parameterized by matrices Fz(;)z(;)
and Iz(i)z(j) so that Rz Rz(;) = {Friyz(hz +lzize) | 2 €
R"'}. Then V is continuous if and only if
FLyz() (Pi = P Fr(iyz(y) =0,
Fl oz P = Plzayzey + Ffiyz) (@ — 45) =0,
l'f(i)z(j)(Pi — P)lzyziy + 2@ — a5)Tlzyzy + (i —5) =0,
(5)
for all ¢, j such that Rz (\Rzy) # 0. (5) is a set of linear
equality constraints in the design parameters Ps, gs, and rs.

5.2 Positivity of V
First we require the quadratic part of V' to be positive.
This will also guarantee that V() — oo as ||z(t)|| — oco. Using
the S-procedure, a sufficient condition for this is the existence
of Z; for i =1,..., N such that
P, — HiyyZiHziy  q + HiyZigz — g7
T T T =0, Zi=1Z;,
@G + 97wy ZiHzey T — 9706 Zi9105)
(Zi)khy =0, (Zi)gyny, 20, kika=1,...,Jz70)
(6)

where
0 -1
hg(i)l 9z(i)1
Hzgy = . y 91() =
T
hz(i)JI(i) 9T(8) Iz (1)

(6) is a linear matrix inequality (LMI) constraint in the design
parameters Ps, gs, and 7.

Second we require the integral terms of V' to be bounded
below. Equivalently, 1) the net amount of the integral terms
around any loop in the transition diagram G(H) should be
non-negative, and 2) the integral terms should remain bounded
below in any node of G(H) (since any trajectory of H corre-
sponds to a simple path and possibly infinite number of loops
in G(H)).

Suppose that £; denotes the sequence of nodes in the jth
loop of G(H) for j =1,..., L. Given S; and ¢; it is easy to con-
struct the sequence of nodes £;; = (k{}’,m{}, ..., kz(-;-”ﬁ, mz(-;”j))
such that «; and (; remain constant between the nodes
(mﬁ?, kf;+ V) along £;. In other words, there is an arc labeled
cl'z = constant entering node mﬁ? from node kf;) and there is



no arc labeled ¢} « = constant along £; from node mi? to node
kD (k. [19]). If s(t) = my) and s(tiy1) = m{;" " we have

1,

/ttz+1 (ai(T)CiTx(T) + ﬁz(T)) CZi’(T) dr —

oD
ij

o (w00t B0 o) do =

o
ij
1 (1+1)2 (12 (1+1) 1)
Eaik%)mﬁ.) (Uij — 05 ) + ﬁ’kv(;)mv(? (Gij — 0y ) :
where (k" m{" ") € S;. Therefore, the net amount of the

5 LY RN
integral terms of V around /¢; is non-negative if and only if

a Mij 1
14+1)2 12
33 (Gownnn (47 - 007 +

=1 1=1 (7)
1+1 l
B (747 = o)) 20
ij g

(i) — () in the summation).

(Note that we define o ij
To guarantee that the integral terms remain bounded below
in any node m, if not all arcs exiting m are labeled ¢z =

constant we require that

(8)

for all such (k,m,o) € S; and i = 1,...,a. Roughly, aitm
results in a quadratic term ciigmz” cic]  in V and condition (8)
ensures that it can never become —co as ||z (¢)|| — oo for s(t) =
m. No constraint is required on [;rn since it corresponds to
a first order term in = and is therefore “overwhelmed” by the
quadratic part of V for large ||z(t)]|.

(7) and (8) are linear inequality constraints in the design
parameters Qirm and Bikm.

o >0 ifciTx>UforxeRI(m),
ihm <0 ifcfz<oforze Rz(m),

5.3 Negativity of V
For each node s € {1,..., N} define

w is a forward walk of G(H) ending at
Ts = { w | node s and traversing all arcs, with at
least one arc traversed only once.

(Ts can be computed using basic network optimization.) Now
suppose that for a given w € Ts, nsyw is the closest node to s
along w satisfying (Ksw,nsw) € S; for some ks,. This means
that qikgyne, and Bikgwne, are possible values for o; and 3;
in V when the discrete state is equal to s.

Now using the continuous dynamics equation & = Az +bs
at discrete state s, it is possible to find expressions for V at
discrete state s depending on the possible values for a; and 5.
It can be shown that V < 0 if (cf. [19])

i AZPS + P@As Psbs + A’;rqg i
FAT Y, QikenewCici | | + 20 Qikaunewcicd bs
+ 3, QiksunewCici As | |+, Bikewnew Al ci
+HZT(5)A5HI(S) _HZT(S)ASQI(s)

bI P + g As

+ 3, Qikwnow bleiel <2qubs + gg(s)/\s )
+ 3, Bikswnsw T A, 2% Bikswnsw cl'v,
—97 (5 AsHz(s)

As = AT, (A iy =05 (As)py 20, kiyko =1, 5,
(9)
for s =1,...,N and w € Ts. (9) is an LMI in the variables
Ps, gs, Ts, Qikm, and Bigm.

5.4 Summary and remarks

To summarize, (5)-(9) are the conditions for V in (4) to
be a Lyapunov functional that proves Lagrange stability for H
according to Theorem 1. These conditions are linear equality,
linear inequality, or linear matrix inequality constraints in the
design parameters Ps, qs, T's, Qikm, and Gikm. Therefore, a fea-
sible V, if any, can be computed efficiently using SDP and basic
network optimization [20] (to compute the sets S; and T%). If H
is given by a labeled transition diagram instead of the tuple (1),
the invariant regions R; and invariant region function Z can be
computed using linear programming (cf. [19]). Note that when
discrete states and transitions (events) have hierarchy, the sets
Ri, Si, and Ts can be computed much easier, often by inspec-
tion (cf. §6.2). Hierarchical organization of states such that
states can exist within other states produces neat, manageable
diagrams, and are encouraged whenever possible.

In this paper we have assumed that a; and (3; only change
when z hits a ¢/ =const. hyperplane and are functions of
the previous and current discrete state. It is possible to con-
sider more general cases in which, for example, «; and §; are
functions of the previous, current and next states or loops in
the transition diagram (corresponding to a non-causal V). In
many practical cases, however, it may not be necessary to as-
sume this extra degree of freedom in choosing «; and ;. To
make things even simpler we may assume Ps = P, qs = q,
and rs = r to be constant throughout the state-space, which
results in a significant reduction in the number of variables in
the SDP for computing V', and hopefully would not sacrifice
much performance (cf. §6).

The equilibrium points of H correspond to the stationary
points of the Lyapunov functional V. Hence if xcq,s is an equi-
librium point of H at discrete state s we have

(Ps 4+ 3, qtinsCic] )Tequs + (gs + 32, Birsci) = 0.
If a stationary point of V is a minimum, maximum, or sad-
dle point, the corresponding equilibrium point will be a stable
node, unstable node, or saddle point respectively.

To see how the class of Lyapunov functionals introduced
generalizes the Lyapunov functional of Yakubovich (3) for
(piecewise-linear) hysteresis nonlinearities consider the system
of Figure 1. The Lyapunov functional V' in (4) coincides with
that of Yakubovich with the values

a=1, ec1=¢, Ps=P, ¢ =0, rs=0,
Bi21 = Biza = Brar = 1/2;,  Priz = Pizs = P13a = 0.

Finally, note that the proposed class of Lyapunov func-
tionals includes piecewise-quadratic Lyapunov functions as a
special case, and as shown in §6.1 it performs strictly better
than piecewise-quadratic Lyapunov functions.

6 Examples

6.1 Linear system with hysteresis element
Consider the linear system with hysteresis of Figure 1 and
Figure 2 with

[0 2L ] ] =]

The goal is to construct a Lyapunov functional to prove sta-
bility for this system using the method of this paper.
We consider the Lyapunov functional

t
V(z) = a(t)" Pa(t) + 2 / (a(r)e"2(r) + B(r)) " i(r) dr
0
as described in §5 (here P € SR?*? is assumed to be constant).

Conditions (7) and (8) become

1.5(azs — a12) + P34 — P12 > 0,
a3 < 0, ay3 < 0, Q41 > 07 Q21 > 07



pos_error < €

pos_error > l.1e

Figure 3: Transition diagram for disk drive controller.

Yr Ye +1 u 100 |V 1 Y
5 S

) —= T

Figure 4: Time-optimal controller for double integrator plant.

These with P > 0 and the LMI (9) are conditions for stability
of the system using the Lyapunov functional given above. Solv-
ing the corresponding SDP for a P with minimum condition
number (using the SDP parser/solver sdpsol [7]) we get

43 = (X3 = —0.6747 34 = —0.242, Q12 = —0.5217
41 = (X1 = 0, ﬁ43 = ﬁ23 = 0, ﬁ34 = 11.614,

B2 = 0.0141, (B4 = 10.397, (21 = 10.397,

p— 1.137 —1.264

| —1.264 12,636 |°

It should be noted that a piecewise-quadratic Lyapunov
function cannot prove stability for this example (the result-
ing SDP is infeasible). This is not unexpected of course, be-
cause a piecewise-quadratic Lyapunov function cannot distin-
guish between a clockwise (passive) or counter-clockwise (ac-
tive) hysteresis nonlinearity since it does not take into account
the direction of loops in the transition diagram. Therefore,
piecewise-quadratic Lyapunov functions are very conservative
in dealing with such problems.

6.2 Simplified disk drive controller

In this section we briefly sketch how the method of this
paper can be used to prove stability for a simplified disk drive
controller.

In our simplified version, the disk drive controller operates
in two modes. In seek mode, the controller needs to bring the
head to (the vicinity of) any desired position or track as fast as
possible. In on-track mode, the controller needs to maintain
some level of disturbance rejection for read/write at that de-
sired position or track. This is shown by the transition diagram
in Figure 3 where the controller switches to on-track mode
whenever the head position error is less than € and switches
back whenever the position error exceeds 1.1e.

A very simple model for the dynamics of a disk drive head
is the double integrator plant with bounded input

[Z]:[g éHi; ]+{180]u’ fu(®l < 1.

The (“bang-bang”) control law that steers the state to
[y 0] in minimum time is shown in Figure 4 where f(y.) =
sgn(ye)1/200]ye| (see, e.g., [21]). This control law, although
time-optimal, can cause difficulties due to “chattering” and
robustness issues. Even the smallest system process or mea-
surement noise will cause the control to chatter between the
maximum and minimum values resulting in a very wide-band
controller. In practice, one could replace the hard-limiter by a
hysteresis or saturation to reduce the chatter. Figure 5 shows

Figure 5: Control input and state trajectories for time-optimal
controller when state is steered from [1 0]7 to [0 0]T.

the control input w, and state trajectories v and y when the
state is steered from [1 0] to [0 0]*. Note the significant
amount of chatter in u for ¢ > 0.2 when the state is in the
vicinity of [1 0]7.

For the simplified disk drive controller of this example, we
assume that in seek mode the control law is similar to that
of Figure 4 but with f(ye) = 16.9ye. (which is a linear ap-
proximation to f(ye) = sgn(ye)4/200|ye|) and the hard-limiter
replaced by a hysteresis switch of width 2§ = 0.2. In on-track
mode, we assume that the control law is u = sat(Kxz) where
K =[-1 —1.4] (K is designed using an LQR approach to re-
ject sensor noise). The transition diagram of the system in seek
and on-track modes are shown in Figure 6. We also assume
that e = 0.1 in Figure 3. A typical trajectory of this controller
is shown in Figure 7. Note that for ¢ > 0.2 the position of
the head y lies in the acceptable on-track region |y — y:| < e.
However, it is not clear how the system will perform for other
arbitrary initial conditions. In particular, it is necessary to
verify stability for this system.

Figures 3 and 6 give a two-level hierarchical description for
the transition diagram of the LHDS representing the disk drive
controller which has N = 25 discrete states. At the superlevel
there are the superstates ‘seek’ and ‘on-track’ (Figure 3). At
the sublevel there are 2 and 3 substates within the superst-
states ‘seek’ and ‘on-track’ respectively (Figure 6). Due to the
hierarchical structure of the design it is easy to read out the
sets R;, Si, Ti, and system matrices A; and b;.

For example, the invariant regions R, are easily found by
intersecting the invariance regions for the superstates and the
substates within the superstates. The superlevel defines the
transition vector ¢; = [1 0]7 (since transitions occur when
x1 = const. hyperplanes are hit), and the sublevel defines the
transition vectors c2 = [0 1]7 and ¢z = K7 (since transitions
occur when z2 = const. and Kz = const. hyperplanes are
hit). Hence a1, 81 only change when the superstates change,
and as,3, (2,3 only change when the corresponding substates
in each superstate change. Therefore it is easy to construct
S; for ¢ = 1,2,3. The hierarchical structure of the controller
defines 4 loops around which the net value of the integral terms
should be non-negative. One loop is at the superlevel (‘seek’,
‘on-track’, ‘seek’) and three are at the sublevel (1,21 in ‘seek’,
and 1,2,1 and 2,3,2 in ‘on-track’). T;, A;, and b; can also be
found easily using the hierarchical structure of the controller.
For details refer to [19].

Once the sets R;, Si, T;, and system matrices A; and b;
are found, we can search for a Lyapunov functional V' over the
class of Lyapunov functionals (4) using SDP to prove stability
of the disk drive system. In fact we were able to find such a
Lyapunov functional so the system is proved stable. Note that
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Figure 6: Transition diagram in seek and on-track modes.
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Figure 7: Control input and state trajectories for simplified disk
drive controller when state is steered from [1 0] to [0 0]7.

the quadratic part of V' was assumed to be a simple constant
quadratic 7 Pz with P > 0, so the continuity and positivity
equations (5) and (6) were not needed in the optimization.

A more realistic disk drive controller would include more
discrete states at the superlevel, an observer to estimate x,
higher order modes in the head dynamics, and stiction. It
is still straightforward to analyze such a controller using the
method of this paper as long as the nonlinearities (stiction in
this case) are approximated by piecewise-linear functions.

7 Conclusions and further remarks

In this paper we introduced a class of Lyapunov function-
als for analyzing linear hybrid dynamical systems which can be
thought of as a generalization of the Lyapunov functional of
Yakubovich for analyzing linear systems with hysteresis non-
linearities. This class of Lyapunov functionals is very effective
in analyzing linear hybrid dynamical systems as demonstrated
in §6, and performs strictly better than piecewise-quadratic
Lyapunov functions. These Lyapunov functionals can be com-
puted efficiently by solving semidefinite programs and basic
network optimization.

This paper only concentrated on the question of stability in
the Lagrange sense. Lagrange stability is more relevant from
a practical point of view for linear hybrid dynamical systems
that can easily have more than one equilibrium point. Using
dissipation theory and adding inputs/outputs to the system
it is straightforward to analyze performance measures other
than stability. Computing reachable and invariant sets is also
possible.

The ideas presented here for analyzing linear hybrid dy-
namical systems can also be generalized to handle nondeter-
ministic transitions. In such cases, for example, the transition

label 1 > ¢f'2 > 1+ 6 means that the transition can happen
nondeterministically for any z satisfying 1 > ¢fz > 1+ 6.
Nondeterministic transitions are very useful for modeling un-
certainty in a hybrid dynamical system.

References

[1] N. Nerode and W. Kohn. Models for hybrid systems. In
R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors,
Hybrid Systems, volume 736 of Lecture Notes in Computer Science.
Springer-Verlag, New York, 1993.

2] M. S. Branicky. General hybrid dynamical systems: Mod-
eling, analysis, and control. In R. Alur, T. Henzinger, and E. D.
Sontag, editors, Hybrid Systems III — Verification and Control, vol-
ume 1066 of LNCS, pages 186—200. Springer-Verlag, Berlin, 1996.
3] P. A. Cook. Nonlinear Dynamical Systems. Prentice-Hall
International, UK, 1986.

[4] V. D. Blondel and J. N. Tsitsiklis. Complexity of elementary
hybrid systems. In Proc. European Control Conf., July 1997.

[5] V. A. Yakubovich. The method of matrix inequalities in the
theory of stability of non-linear controlled systems, Part III: Abso-
lute stability of systems with hysteresis nonlinearities. Avtomatika
1 Telemekhanika, 26(5):753-63, May 1965.

(6] L. Vandenberghe and S. Boyd. SP: Software
for Semidefinite Programming. User’s Guide, Beta Ver-
ston. Stanford University, October 1994. Available at

http://www-isl.stanford.edu/people/boyd.

7] S.-P. Wu and S. Boyd. sppsoL: A Parser/Solver for Semidef-
inite Programming and Determinant Mazximization Problems with
Matriz Structure. User’s Guide, Version Beta. Stanford University,
June 1996.

8] P. Gahinet and A. Nemirovskii. LMI Lab: A Package for
Manipulating and Solving LMIs. INRIA, 1993.

9] J. Lygeros, D.N. Godbole, and S. Sastry. A game-theoretic
approach to hybrid system design. In Hybrid Systems III, volume
1066 of LNCS, pages 1-12. Springer-Verlag, 1995.

[10]  Claire Tomlin, John Lygeros, and Shankar Sastry. Synthe-
sizing controllers for nonlinear hybrid systems. In T.A. Henzinger
and S. Sastry, editors, Hybrid Systems: Computation and Control,
LNCS. Springer-Verlag, 1998.

[11] M. Johansson and A. Rantzer. Computation of piecewise
quadratic Lyapunov functions for hybrid systems. IEEE Trans. on
Automatic Control, 43(4):555-9, 1998.

[12] J. A. Stiver, P. J. Antsaklis, and M. D. Lemmon. A logical
DES approach to the design of hybrid control systems. Mathematical
and Computer Modelling, 23(11-12):55-76, 1996.

[13] V. I. Utkin. Sliding modes in control optimization. Springer-
Verlag, Heidelberg, 1992.

[14] T. Paré, A. Hassibi, and J. How. Stability for systems with
multiple hysteresis and slope-restricted nonlinearities using path-
dependent lyapunov functions. In Proc. American Control Conf.,
San Diego, CA, 1999.

[15] N. E. Barabanov and V. A. Yakubovich. Absolute stability
of control systems with one hysterisis nonlinearity. Avtomatika 1
Telemekhanika, (12):753-63, December 1979.

[16]  A. Hassibi and S. Boyd. Quadratic stabilization and control
of piecewise-linear systems. In Proc. American Control Conf., pages
3659-64, Philadelphia, PA, 1998.

[17] V. A. Yakubovich. The solution of certain matrix inequalities
in automatic control theory. Soviet Math. Dokl., 3:620-623, 1962.
In Russian, 1961.

[18]  J. P. LaSalle. Some extensions of Liapunov’s second method.
IRE Trans. Circuit Theory, CT-7(4):520-527, 1960.

[19] A. Hassibi, S. Boyd, and J. How. A class of lyapunov func-
tionals for analyzing hybrid dynamical system. IEEE Trans. Aut.
Control, To be submitted.

[20] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows
Theory, Algorithms, and Applications. Prentice-Hall, Inc., 1993.
[21] A.E. Bryson and Y. C. Ho. Applied Optimal Control. Hemi-
sphere Publishing, New York, 1975.



