
Global Optimization in Control System

Analysis and Design

Venkataramanan Balakrishnan

Stephen Boyd

Information Systems Laboratory

Department of Electrical Engineering

Stanford University

Stanford, CA 94305

U. S. A.

I. INTRODUCTION

Many problems in control system analysis and design can be posed in a

setting where a system with a �xed model structure and nominal param-

eter values is a�ected by parameter variations. An example is parametric

robustness analysis, where the parameters might represent physical quan-

tities that are known only to within a certain accuracy, or vary depending

on operating conditions etc. Frequently asked questions here deal with

performance issues: \How bad can a certain performance measure of the

system be over all possible values of the parameters?" Another example

is parametric controller design, where the parameters represent degrees of

freedom available to the control system designer. A typical question here

would be: \What is the best choice of parameters, one that optimizes a

certain design objective?"

Many of the questions above may be directly restated as optimization

1

problems: If q denotes the vector of parameters, Qinit the set of values that

q might assume and f(q) an objective function, then the questions above

translate into solving one of the following optimization problems:

P1: min
q2Qinit

f(q);

or

P2: max
q2Qinit

f(q):

In general, (P1) and (P2) are non-convex optimization problems, and are

much harder1 to solve than say, convex optimization problems, for which

there exist a number of e�ective algorithms. Solving (P1) or (P2) where

Qinit is a set with �nite or countably in�nite elements is the well-studied

combinatorial optimization problem [2].

Since solving (P1) or (P2) is hard in general, it is worth discussing the

costs and bene�ts associated with approximate or suboptimal solutions such

as local optimization methods, Monte Carlo methods, gridding etc. The

attractiveness of such methods stems from the ease with which they may

be performed | they typically require much less computation than global

optimization methods. The cost associated with a suboptimal solution

depends upon the underlying physical problem. For example, suppose that

problem (P1) arises from robustness analysis, where one seeks the worst

(smallest) possible value of a certain performance measure f(q). Then

con�dence misplaced on the local minimumreturned by a local optimization

procedure might be potentially disastrous, that is, local optimization might

not �nd the worst-case parameter which might, for example, render the

system unstable. In this case, the cost associated with not �nding the global

minimum would be high. (In such situations, methods that yield lower

bounds are of greater value, evidenced by the vast research into conservative

analytical techniques for robustness analysis.) On the other hand, if (P1)

arises from a design problem, where one seeks the parameters that yield

the smallest value of a design objective, a local minimizationmethod would

yield a possibly conservative upper bound for the global minimum. In this

case, the cost associated with not �nding the global minimumwould usually

be acceptable.

1For a quantitative description of the term \hard", see for example, [1].

2

There exist several popular methods for solving global optimization

problems (P1) or (P2) (see [3], for example). Simulated Annealing (see [4]

and the references therein) describes a family of iterative methods where

every iteration consists of taking a step in parameter space with a proba-

bility that decays exponentially with an \energy" function associated with

the new parameter value. This technique reportedly performs well and has

been applied widely to computer-aided design of electronic integrated cir-

cuits, design of error-correcting codes etc. It must be mentioned, however,

that simulated annealing does not maintain both upper and lower bounds

of the global optimum that it seeks. As a result, the algorithm has no

stopping criterion; and its termination, at any time, does not yield any

bounds for the optimum. This is not a serious drawback in the many appli-

cations where it has been successfully used, since it has led to designs that

are signi�cantly better than any found before; the cost associated with not

�nding the globally optimal design in these cases is acceptable. However,

since annealing does not yield any guarantees about the solutions it yields

| though some probabilistic statements can be made about the conver-

gence to the global optimum | it cannot be used for problems such as

robustness analysis where the cost associated with not �nding the global

optimum is usually high. Another approach to global optimization is to ap-

ply interior point algorithms [5], which have been reported to perform well

on some integer programming problems. Here again, as with annealing,

there are no guaranteed bounds on the optimum.

In contrast with the above techniques for global optimization, branch

and bound algorithms, as they progress, do maintain upper and lower

bounds for the global optimum; thus termination at any time yields guar-

anteed bounds for the optimum. These algorithms derive their name from

the way they proceed: They break up the parameter region into subregions

(\branching") to derive bounds for the global optimum over the original

region (\bounding"). The branching is done based on some heuristic rules.

Though these heuristics often work well, it must be emphasized that these

algorithms are worst-case combinatoric. Thus they may require unaccept-

ably long computation times on some simple problems.

Traditionally, branch and bound algorithms have been used in discrete

programming problems (see [6, 7] for early articles, [8, 9] for surveys and

[10, 11, 3] for texts). In [12], Hansen combines interval analysis with a

3

branch and bound scheme very similar to ours for global optimization. A

more recent application of a branch and bound algorithm on a parametric

robustness problem arising in control systems analysis is in [13], where De

Gaston and Safonov use a branch and bound algorithm for computing the

robust stability margin for systems with uncorrelated uncertain parameters.

Sideris and Pe~na [14] extend this algorithm to the case when the parameters

are real and may be correlated. In [15], Chang et al. describe a similar

branch and bound algorithm for computing the real structured singular

value and the real multivariable stability margin. Vicino et al. [16] use a

branch and bound algorithmwith geometric programming ideas to compute

the robust stability margin. Demarco et al. [17] use a branch and bound

algorithm to study stability problems arising in power systems.

In this chapter, we restrict our attention to following setup: We con-

sider linear systems with a number of constant, unknown parameters that

lie in intervals. Thus, the parameter region Qinit is a rectangle. For such

systems, we consider problems of parameter robustness analysis and param-

eter selection (that is, design). We show how a branch and bound technique

may be used to solve these problems.

The organization of the chapter is as follows. Section II describes the

basic branch and bound algorithm, its convergence properties and a simple

extension. Section III discusses some problems that arise in parameter de-

pendent linear systems, Section IV discusses the computation of bounds for

these problems and Section V presents some simple examples that illustrate

the performance of the branch and bound algorithm on these problems.

Section VI makes some closing remarks.

Some Notation

R (C) denotes the set of real (complex) numbers. For c 2 C, Re c is the real
part of c. The set of m� n matrices with real (complex) entries is denoted

Rm�n (Cm�n). PT stands for the transpose of P , and P �, the complex

conjugate transpose. I denotes the identity matrix, with size determined

from context.

For a matrix P 2 Rn�n (or Cn�n), �i(P); 1 � i � n denotes the ith

eigenvalue of P (with no particular ordering). Tr(P) stands for the trace

(sum of the diagonal entries) of P . �(P) denotes the maximum singular

4

value of P , de�ned as

�(P) = max
1�i�n

p
�i(P �P);

and �(P) the minimum singular value of P , de�ned as

�(P) = min
1�i�n

p
�i(P �P):

The condition number of a matrix P with positive minimum singular value

is the ratio �(P)=�(P) (it is de�ned to be 1 if �(P) = 0). kPkF is the

Frobenius norm of P , given by
p
Tr(P �P). The de�nitions for �(P) and

kPkF hold also for P 2 Rm�n (or Cm�n).

II. A BRANCH AND BOUND ALGORITHM

Most of the material (Subsections A and B) in this section is from [18]. We

reproduce it here for completeness.

The branch and bound algorithm we present here �nds the global mini-

mum of a function f : Rm ! R over an m-dimensional rectangle Qinit . (Of

course, by replacing f by �f , the algorithm can also be used to �nd the

global maximum.)

For a rectangle Q � Qinit we de�ne

�min(Q) = min
q2Q

f(q):

Then, the algorithm computes �min(Qinit) to within an absolute accuracy of

� > 0, using two functions �lb(Q) and �ub(Q) de�ned over fQjQ � Qinitg
(which, presumably, are easier to compute than �min(Q)). These two func-
tions satisfy the following conditions.

(R1) �lb(Q) � �min(Q) � �ub(Q):
Thus, the functions �lb and �ub compute a lower and upper bound

on �min(Q), respectively.

(R2) As the maximum half-length of the sides of Q, denoted by size(Q),
goes to zero, the di�erence between upper and lower bounds uniformly

converges to zero, i.e.,

8 � > 0 9 � > 0 such that

8 Q � Qinit; size(Q) � � =) �ub(Q)� �lb(Q) � �:

5

Roughly speaking, then, the bounds �lb and �ub become sharper as

the rectangle shrinks to a point.

We now describe the algorithm. We start by computing �lb(Qinit) and

�ub(Qinit). If �ub(Qinit) � �lb(Qinit) � �, the algorithm terminates. Oth-

erwise we partition Qinit as a union of subrectangles as Qinit = Q1 [Q2 [
: : : [QN , and compute �lb(Qi) and �ub(Qi), i = 1; 2; :::; N . Then

min
1�i�N

�lb(Qi) � �min(Qinit) � min
1�i�N

�ub(Qi);

so we have new bounds on �min(Qinit). If the di�erence between the new

bounds is less than or equal to �, the algorithm terminates. Otherwise, the

partition of Qinit is further re�ned and the bounds updated.

If a partition Qinit = [Ni=1Qi satis�es size(Qi) � �; i = 1; 2; :::; N , then

by condition (R2) above,

min
1�i�N

�ub(Qi)� min
1�i�N

�lb(Qi) � �;

thus a \�-grid" ensures that �min(Qinit) is determined to within an abso-

lute accuracy of �. However, for the \�-grid", the number of rectangles

forming the partition (and therefore the number of upper and lower bound

calculations) grows exponentially with 1=�. The branch and bound algo-

rithm applies a heuristic rule for partitioning Qinit , which in most cases

leads to a reduction of the number of calculations required to solve the

problem compared to the �-grid. The heuristic is this: Given any partition

Qinit = [Ni=1Qi that is to be re�ned, pick a rectangle Q from the partition

such that �lb(Q) = min1�i�N �lb(Qi), and split it into two halves. The

rationale behind this rule is that since we are trying to �nd the minimumof

a function, we should concentrate on the \most promising" rectangle. We

must emphasize that this is a heuristic, and in the worst case will result in

a �-grid.

A. The general branch and bound algorithm

In the following description, k stands for the iteration index. Lk denotes

the list of rectangles, Lk the lower bound and Uk the upper bound for

�min(Qinit), at the end of k iterations.

6

Algorithm I

k = 0;

L0 = fQinitg;
L0 = �lb(Qinit);

U0 = �ub(Qinit);

while Uk � Lk > �, f
pick Q 2 Lk such that �lb(Q) = Lk;

split Q along one of its longest edges into QI and QII ;

Lk+1 := (Lk � fQg) [fQI;QIIg;
Lk+1 := minQ2Lk+1 �lb(Q);
Uk+1 := minQ2Lk+1 �ub(Q);
k := k + 1;

g

The requirement that we split the chosen rectangle along a longest edge may

seem mysterious at this point. This splitting rule controls the condition

number of the rectangles in the partition; see the proof of convergence in

Subsection B.

At the end of k iterations, Uk and Lk are upper and lower bounds re-

spectively for �min(Qinit). We prove in Subsection B that if the bounds

�lb(Q) and �ub(Q) satisfy condition (R2), Uk � Lk is guaranteed to con-

verge to zero, and therefore the branch and bound algorithm will terminate

in a �nite number of steps.

It is clear that in the branching process described above, the number of

rectangles is equal to the number of iterations N . However, we can often

eliminate some rectangles from consideration; they may be pruned since

�min(Qinit) cannot be achieved in them. This is done as follows. At each

iteration:

Eliminate from list Lk the rectangles Q 2 Lk that satisfy

�lb(Q) > Uk:

If a rectangle Q 2 Lk satis�es this condition, then q 2 Q) f(q) > Uk;

however the minimum of f(q) over Qinit is guaranteed to be less then Uk,

and therefore cannot be found in Q.
Though pruning is not necessary for the algorithm to work, it does

reduce storage requirements. The algorithm often quickly prunes a large

7

portion of Qinit, and works with only a small remaining subset. The set

Lk, the union of the rectangles in the pruned list, acts as an approximation

of the set of minimizers of f . In fact, every minimizer of f is guaranteed

to be in Lk.
The term pruning comes from the following. The algorithm can be

viewed as growing a binary tree of rectangles representing the current par-

tition Lk, with the nodes corresponding to rectangles and the children of a

given node representing the two halves obtained by splitting it. By remov-

ing a rectangle from consideration, we prune the tree.

As we noted at the beginning of this section, the above algorithm can

also be used for global maximization, merely by minimizing �f . However,
we will �nd it convenient to have a version of the algorithm for directly

�nding 	max(Qinit) = maxq2Qinit
f(q). Here, for Q � Qinit, 	lb(Q) and

	ub(Q) denote lower and upper bounds for 	max(Q), and are required to

satisfy

(R10) 	lb(Q) � 	max(Q) � 	ub(Q):
(R20)

8 � > 0 9 � > 0 such that

8 Q � Qinit ; size(Q) � � =) 	ub(Q)� 	lb(Q) � �:

In the following, Lk and Uk give lower and upper bounds for 	max(Qinit)

at the end of k iterations.

Algorithm II

k = 0;

L0 = fQinitg;
L0 = 	lb(Qinit);

U0 = 	ub(Qinit);

while Uk � Lk > �, f
pick Q 2 Lk such that 	ub(Q) = Uk;

split Q into QI and QII along the longest edge;

Lk+1 := (Lk � fQg) [fQI;QIIg;
Lk+1 := maxQ2Lk+1 	lb(Q);
Uk+1 := maxQ2Lk+1 	ub(Q);
k := k + 1;

g

8

The corresponding pruning step is

Eliminate from list Lk, the rectangles Q 2 Lk that satisfy

	ub(Q) < Lk:

B. Analysis of Convergence of the Branch and Bound

Algorithm

We now show that the branch and bound algorithm converges in a �nite

number of steps, provided the bound functions �lb(�) and �ub(�) satisfy
conditions (R1) and (R2) listed at the beginning of this section. (We will

only consider Algorithm I, since the proof for Algorithm II then follows

analogously.)

An upper bound on the number of branch and bound iterations

The derivation of an upper bound on the number of iterations of the branch

and bound algorithm involves the following steps. We �rst show that after

a large number of iterations k, the partition Lk must contain a rectangle

of small volume. (The volume of a rectangle is de�ned as the product of

the lengths of its sides.) We then show that this rectangle has a small size,

and this in turn implies that Uk � Lk is small.

First, we observe that the number of rectangles in the partition Lk is

just k (without pruning, which in any case does not a�ect the number of

iterations). The total volume of these rectangles is vol(Qinit), and therefore

min
Q2Lk

vol(Q) � vol(Qinit)

k
: (1)

Thus, after a large number of iterations, at least one rectangle in the par-

tition has small volume.

Next, we show that small volume implies small size for a rectangle in

any partition. We de�ne the condition number of a rectangle Q =
Q
i[li; ui]

as

cond(Q) = maxi(ui � li)

mini(ui � li)
:

We then observe that our splitting rule, which requires that we split

rectangles along a longest edge, results in an upper bound on the condition

number of rectangles in our partition.

9

Lemma 1 For any k and any rectangle Q 2 Lk,

cond(Q) � maxfcond(Qinit); 2g: (2)

Proof

It is enough to show that when a rectangle Q is split into rectangles Q1

and Q2,

cond(Q1) � maxfcond(Q); 2g; cond(Q2) � maxfcond(Q); 2g:

Let �max be the maximum edge length of Q, and �min, the minimum.

Then cond(Q) = �max=�min. When Q is split into Q1 and Q2, our splitting

rule requires that Q be split along an edge of length �max. Thus, the

maximum edge length of Q1 or Q2 can be no larger than �max. Their

minimum edge length could be no smaller than the minimum of �max=2

and �min, and the result follows.

We note that there are other splitting rules that also result in a uniform

bound on the condition number of the rectangles in any partition generated.

One such rule is to cycle through the index on which we split the rectangle.

If Q was formed by splitting its parent along the ith coordinate, then when

we split Q, we split it along the (i + 1) modulom coordinate.

We can bound the size of a rectangle Q in terms of its volume and

condition number, since

vol(Q) =
Y
i

(ui � li)

� max
i
(ui � li)

�
min
i
(ui � li)

�m�1
=

(2 size(Q))m
cond(Q)m�1

�
�
2 size(Q)
cond(Q)

�m
:

Thus,

size(Q) � 1

2
cond(Q)vol(Q)1=m: (3)

Combining equations (1), (2) and (3) we get

min
Q2Lk

size(Q) � 1

2
maxfcond(Qinit); 2g

�
vol(Qinit)

k

�1=m

: (4)

10

Thus, for large k, the partition Lk must contain a rectangle of small size.

Finally, we show that if a partition has a rectangle of small size, the

upper and lower bounds cannot be too far apart. More precisely, we show

that given some � > 0, there is some N such that UN � LN � � for some

N � k.

First, let � be small enough such that if size(Q) � 2� then �ub(Q) �
�lb(Q) � � (recall requirement (R2) at the beginning of this section). Let

k be large enough such that

maxfcond(Qinit); 2g
�
vol(Qinit)

k

�1=m
� 2 �: (5)

Then from equation (4), some Q 2 Lk satis�es size(Q) � �. Then the

rectangle ~Q, one of whose halves is Q, must satisfy size(~Q) � 2�, and

therefore

�ub(~Q)� �lb(~Q) � �:

However, since ~Q was split at some previous iteration, it must have

satis�ed �lb(~Q) = LN for some N � k. Thus

UN � LN � �ub(~Q)� LN � �;

or we have an upper bound on the number of branch and bound iterations.

C. Simultaneous maximization of multiple objectives

In many cases, the maximization (or minimization) of several objectives

at the same time and over the same parameter rectangle Qinit may be of

interest. In this setting, we haveM objective functions f (1), f (2), : : : , f (M),

de�ned over the same parameter region Qinit, and we seek to maximize

each of these objectives over Qinit. One way to do this is to simply apply

the Algorithm II M times, maximizing one objective function each time.

However, if the functions f (i), i = 1; : : : ;M are \correlated" | this is

often the case in robustness analysis where the same set of parameters

leads to the worst possible performance with several di�erent objectives, or

in controller design where the same set of parameters is optimal for more

than one performance measure | this sequential approach would prove

wasteful. We now present a heuristic method that exploits any correlation

11

between the objectives; in the worst-case, this method behaves like the

branch and bound algorithm applied M times, without pruning.

We use 	
(j)
lb (Q) and 	(j)

ub (Q) respectively, to denote the lower and upper
bounds of the maximum 	

(j)
max(Q) of the jth objective function f (j) over

the parameter rectangle Q. Then our heuristic algorithm for simultaneous

maximization runs as follows: We start by computing the M upper and

lower bounds over the initial parameter rectangle, that is, we compute

	
(j)
lb (Qinit) and 	

(j)
ub (Qinit) for i = 1; : : : ;M . If 	

(j)
ub (Qinit)�	(j)

lb (Qinit) � �,

for every j, the algorithm terminates. Otherwise, we partition Qinit and

proceed to re�ne the bounds.

The major di�erence between the multiple objective maximization and

the single objective maximization is this: In the maximization of a single

objective, given any partitionQinit = [Ni=1Qi that is to be re�ned, we pick a

rectangleQ from the partition such that 	ub(Q) = max1�i�N 	ub(Qi), and

split it into two halves. However, in the multiple objective case, there might

be no such candidate rectangle to be split, since in general there is no rect-

angle Q all of whose upper bounds satisfy 	
(j)
ub (Q) = max1�i�N 	

(j)
ub (Qi),

j = 1; : : : ;M . To address this issue, we propose the following heuristic

rule: We cycle through the objective functions to determine which rect-

angle to split. More precisely, if at some iteration, we split a rectangle Q
that satis�es 	

(j)
ub (Q) = max1�i�N 	

(j)
ub (Qi), then at the next iteration, we

split a rectangle Q that satis�es 	
(jnew)
ub (Q) = max1�i�N 	

(jnew)
ub (Qi), where

jnew = (j + 1) mod M . The iterations continue till the di�erence between

the upper and lower bounds for every objective is less than or equal to �.

Since the original branch and bound algorithm converges, so does this

new algorithm. In the following description of the algorithm, Lk and Uk

now denote vectors of length m. The jth component of Lk, denoted L
(j)
k ,

is the lower bound of 	
(j)
max(Qinit) at the end of k iterations, and similarly

for Uk.

12

Algorithm III

k = 0; L0 = fQinitg;
for j=1,...,M f

L
(j)
0 = 	

(j)
lb (Qinit);

U
(j)
0 = 	

(j)
ub (Qinit);

g
until maxjfU (j)

k � L
(j)
k g � �, f

jnew = k mod M ;

pick Q 2 Lk such that 	
(jnew)
ub (Q) = U

(jnew)
k ;

split Q along one of its longest edges into QI and QII ;

Lk+1 := (Lk � fQg) [fQI;QIIg;
for j = 1; :::;M , f

L
(j)
k+1 := maxQ2Lk+1 	

(j)
lb (Q);

U
(j)
k+1 := maxQ2Lk+1 	

(j)
ub (Q);

g
k := k + 1;

g

The pruning step needs to modi�ed, so that the rectangles that are

eliminated from the rectangle list are those where none of the functions

f (j) can achieve their maximum:

Eliminate from list Lk the rectangles Q 2 Lk that satisfy

	
(j)
ub (Q) < L

(j)
k ; for every j = 1; 2; :::;M:

III. SOME PARAMETER PROBLEMS IN LTI

CONTROLLER ANALYSIS AND DESIGN

A. Our Framework

We now apply the branch and bound algorithms of Section II to the compu-

tation of some quantities that arise in the analysis and design of parameter-

dependent linear systems. Our framework consists of a family of linear

13

time-invariant systems described by

_x = Ax + Buu + Bww; x(0) = x0;

y = Cyx + Dyuu + Dyww;

z = Czx + Dzuu + Dzww;

u = � y;

(6)

where x(t) 2 Rn, w(t) 2 Rni , z(t) 2 Rno, u(t); y(t) 2 Rp, and A, Bu,

Bw, Cy, Cz, Dyu, Dyw, Dzu and Dzw are real matrices of appropriate

sizes. � is a diagonal matrix, parametrized by a vector of parameters

q = [q1; q2; : : : ; qm], and is given by

� = diag(q1I1; q2I2; : : : ; qmIm); (7)

where Ii is an identity matrix of size pi. Of course,
Pm

i pi = p. The

rectangle in which q lies is given by Qinit = [l1; u1]� [l2; u2]�� � �� [lm; um].

Figure 1 shows a block diagram of our setup.

--

P (s)
-

��

u y

zw

Fig. 1. System in standard form.

We also de�ne

Pyu = Cy(sI �A)�1Bu +Dyu;

Pyw = Cy(sI �A)�1Bw +Dyw;

Pzu = Cz(sI �A)�1Bu +Dzu;

Pzw = Cz(sI �A)�1Bw +Dzw :

(8)

Pyu is the (open-loop, i.e. � = 0) transfer matrix from u to y and so on.

Eliminating u and y from equations (6) yields the closed-loop system

14

equations:

_x =
�
A+ Bu�(I �Dyu�)

�1Cy
�
x +�

Bu�(I �Dyu�)
�1Dyw +Bw

�
w;

z =
�
Cz +Dzu�(I �Dyu�)

�1Cy
�
x +�

Dzu�(I �Dyu�)
�1Dyw +Dzw

�
w:

(9)

For convenience, we let

A(q) = A+ Bu�(I �Dyu�)
�1Cy;

B(q) = Bu�(I �Dyu�)
�1Dyw +Bw;

C(q) = Cz +Dzu�(I �Dyu�)
�1Cy;

D(q) = Dzu�(I �Dyu�)
�1Dyw +Dzw:

We note that the entries of A(q), B(q), C(q) and D(q) are rational functions
of the parameter vector q.

The closed-loop transfer matrix from w to z is denoted Pcl(q) and is

given by

Pcl(q) = Pzw + Pzu�(I � Pyu�)
�1Pyw: (10)

Loosely speaking, the above framework describes linear systems with

�xed, unknown gains that lie in intervals. P (s) is often called the open-loop

system, and corresponds to the case when all the gains are set to zero. �,

on one hand, might represent unknown parameters, in which case it has

the interpretation of a perturbation to a linear system; on the other hand,

the entries of � might represent gains which a designer may choose at will,

in which case � has the interpretation of a design variable. w consists of

the inputs to the system and z the outputs, and the closed loop transfer

matrix Pcl(q) consists of all transfer functions of interest.

A number of parameter problems in control can be addressed in this

setting: study of Kharitonov polynomials and interval matrices, parametric

controller design etc. (We refer the reader to [18] for how the �rst two

problems can be cast into our setup.) Roughly speaking, any system with

state-space matrices whose entries are rational functions of the uncertain

parameters can be considered in our framework2. However, we wish to

emphasize the restriction that the uncertain parameters lie in a rectangle;

2The precise condition is that none of the rational functions that make up the state

space entries have a singularity at q = 0.

15

we cannot, for example, directly consider a situation where the uncertain

parameters lie in a general polytope or an ellipsoid.

There are a number of important quantities associated with systems

described by (6). We describe some of them below.

B. Well-posedness

One of the most fundamental properties of the feedback system in Figure 1

is well-posedness: We say that the system is well-posed if it is well-de�ned

for all q 2 Qinit, that is, if

det(I �Dyu�) 6= 0 for all q 2 Qinit: (11)

Condition (11) is necessary and su�cient for equations (9) to be well-de�ned

for all q 2 Qinit. Obviously, this condition is equivalent to none of the

rational matrices A(q), B(q), C(q) and D(q) having singularities in Qinit.

If � has the interpretation of an uncertainty, then the question of well-

posedness is one of robustness analysis, where one asks if there is any choice

of parameters that makes I � Dyu� singular. If �, on the other hand,

contains design parameters, then the question is whether there is any choice

of parameters that makes I �Dyu� nonsingular. Of course, this question

has a particularly simple answer: I�Dyu� is either nonsingular for almost

all values of q or it is singular for every q | this follows from the fact

that det(I �Dyu�) is a rational function of q | and therefore very simple

algorithms can be devised to answer the design question.

The answer to the question of well-posedness is a Boolean \yes" or

\no". One may also de�ne a quantitative measure of well-posedness as, say,

the condition number of I � Dyu�. In that case, the robustness analysis

question is the worst (i.e. largest) possible condition number of I �Dyu�

over all possible �. The corresponding design problem would seek the

choice of parameters that minimizes the condition number of I �Dyu�.

For simplicity, we will henceforth assume that the system in Figure 1 is

well-posed over Qinit.

16

C. Stability degree

The stability degree of an LTI system _x = Fx where F 2 Rn�n is denoted

�sd(F) and de�ned as

�sd(F) = � max
1�i�n

Re �i(F):

The stability degree gives the slowest possible decay rate of the solutions of

the system and thus may be regarded as a stability measure for the system:

�sd(F) = sup
n
�
��� lim
t!1

e�tx(t) = 0 whenever _x = Fx
o
:

We note that the stability degree equals the negative of the largest Lya-

punov exponent of the system [19].

For a linear system, a \large" stability degree means that the solutions

decay \fast". Based on this observation, the stability degree may be used

to de�ne a robustness measure for an uncertain system, or a design goal for

parametric design. We describe these below.

1. Minimum Stability Degree (Dmin)

A robustness measure for the parameter-dependent system in Figure 1 is

the minimum stability degree (Dmin), the smallest or worst-case stability

degree of the system over all possible value of the parameters:

Dmin(Qinit) = min
q2Qinit

�sdA(q):

Dmin and other quantities that we describe below are functions of the system

given by equations (6); we will not show this dependence explicitly for

convenience.

The system in Figure 1 is robustly stable, i.e. the eigenvalues of the

system have negative real parts for all � if and only if its Dmin is positive.

Moreover, Dmin gives the worst-case decay rate of the solutions x(t) of the

state equations:

Dmin(Qinit) = min
q2Qinit

sup
n
�
��� lim
t!1

x(t)e�t = 0 whenever _x = A(q)x
o
:

From the point of view of robustness analysis, it is desirable to have a

large, positive Dmin. This ensures that the states decay fast, irrespective

of the uncertain parameter vector q and the initial condition.

17

2. Maximum Stability Degree (Dmax)

Treating the stability degree of the system as a design objective, one may

de�ne the maximum stability degree (Dmax) as

Dmax(Qinit) = max
q2Qinit

�sdA(q):

Thus, with the components of q regarded as design parameters, the problem

is one of �nding the set of parameters that maximizes the slowest possible

decay rate of the solutions to the system, that is,

Dmax(Qinit) = max
q2Qinit

sup
n
�
��� lim
t!1

x(t)e�t = 0 whenever _x = A(q)x
o
:

Computing Dmax checks stabilizability : There exists a choice of parameters

that stabilizes the system if and only if Dmax is positive.

D. H1 norm

For the system in Figure 1, another quantity of interest is kPclk1, the

closed-loop H1 norm from w to z (see equation (10)), where k � k1 refers

to the H1 norm:

kGk1 = sup
Re s>0

�(G(s)):

kPclk1 is just the root mean square gain (RMS-gain) of the system between

the input w and the output z, i.e.,

kPclk1 = max
w(t)6=0

kzkrms

kwkrms

;

where the RMS value of a signal w(t) is de�ned as

kwkrms =

lim
T!1

1

T

Z T

0

w(t)2 dt

!1=2

;

provided the limit exists.

Often w has the interpretation of a disturbance and z, that of some

error signal; it is then desirable to have kPclk1 small.

18

1. Maximum H1 norm (H1;max)

With q regarded as an uncertain parameter vector, we de�ne the maximum

H1 norm from w to z (denoted H1;max) for the system in Figure 1 as

H1;max(Qinit) = max
q2Qinit

kPcl(q)k1:

Thus H1;max is the worst-case RMS gain of the system from w to z over

all possible parameters.

We note that system in Figure 1 is robustly stable if and only if H1;max

is �nite; if the system is unstable for some choice of parameters q, then

kPcl(q)k1 = 1. Moreover, H1;max then serves as a measure of robust

stability: A smaller H1;max means a \more robustly stable" system.

2. Minimum H1 norm (H1;min)

In contrast with H1;max, we may regard q as a design parameter and ask

what choice of parameters yields the smallest possible RMS-gain between w

and z. This is the the minimum H1 norm from w to z (denoted H1;min)

in Figure 1:

H1;min(Qinit) = min
q2Qinit

kPcl(q)k1:

Clearly, the system is stabilizable if and only if H1;min is �nite.

E. H2 norm

We consider �nally the H2 norm of the closed-loop transfer matrix from w

to z, which, for a stable, strictly proper3 transfer matrix Pcl is de�ned as

kPclk2 =
�
Tr

1

2�

Z 1

�1

Pcl(j!)Pcl(j!)
� d!

�1=2
:

kPclk2 = 1 if Pcl is either unstable or not strictly proper. kPclk2 has the
interpretation of the RMS value of the output z when the components of

the input w are independent white noises with unit power spectral density.

3Pcl is said to be strictly proper if Pcl(1) = 0.

19

1. Maximum H2 norm (H2;max)

When q represents uncertainties, we de�ne the maximum H2 norm from w

to z (denoted H2;max) in Figure 1 as

H2;max(Qinit) = max
q2Qinit

kPcl(q)k2:

Thus H2;max is the worst-case RMS value of z when w is driven by white

noise whose power spectral density is the identity.

We note that H2;max is �nite if and only if the system in Figure 1 is

robustly stable and strictly proper for all q 2 Qinit. Moreover, a smaller

H2;max means that the output is less susceptible to noises at the input; thus

H2;max serves a measure of robust performance.

We also note that the computation of the maximum total state co-

variance of a system driven by white noise can be cast as a problem of

computing H2;min [20].

2. Minimum H2 norm (H2;min)

The design problem corresponding to the H2 norm measuring the size of

the closed-loop transfer matrix is that of �nding the minimum H2 norm

(H2;min). This is the choice of parameters q that minimizes the closed-loop

H2 norm:

H2;min(Qinit) = min
q2Qinit

kPcl(q)k2:

F. Remarks on Complexity

We now make some general observations regarding the computation of the

quantities de�ned so far. First, we note that the fundamental problem of

well-posedness (cf. equation (11)) is NP-hard in general [21, 22, 23, 24];

roughly speaking, in the worst case, the number of computations required to

establish well-posedness increases more than polynomiallywith the problem

size m (which is the size of Dyu and �). This makes it likely that any

algorithm that computes any of the six quantities above to within some

�xed accuracy also requires, in the worst case, computations that increase

more than polynomially with the problem size. This conjecture is especially

interesting in light of the fact that maximum number of branch and bound

algorithm iterations increases exponentially with m for a given accuracy

20

(see Subsection II B); therefore, if the conjecture were true, no algorithm

would perform substantially better than a branch and bound algorithm on

these problems.

We know of no existing algorithms that compute any of the quantities

Dmin, Dmax, H1;max, H1;min, H2;max or H2;min for the general framework

in equations (6). However, much work has been done in special cases.

Kharitonov's theorem [25, 26] gives a very e�cient method for determining

robust stability for the special case when the coe�cients of the characteristic

polynomial of A(q) are just the uncertain parameters qi. Kharitonov's

theorem has been extended to cover the case in which the characteristic

polynomial is an a�ne function of q [27, 28]. Another problem that may

be considered in our setup is the study of interval matrices [29, 30, 31].

In [32], Anderson et al. observe that the robust stability question is

decidable, which means that by evaluating a �nite number of polynomial

functions of the input data (the entries of the state-space matrices, and the

li, ui), we can determine whether the system is robustly stable. It turns

out, however, that these decision procedures involve an extraordinarily large

number of polynomials, even for small systems with few parameters. More-

over the number of polynomials that need to be checked grows very rapidly

(more than exponentially) with system size and number of parameters (see

also [33]).

Though most of the methods described above do not directly consider

the computation of the six quantities described in our framework, they do

provide useful bounds for these quantities. Local optimization procedures

provide lower (upper) bounds for the maximization (minimization) prob-

lems; there exist many analytical techniques (small gain theorem, Lyapunov

theory based methods etc.) that yield bounds in the other direction. We

will use some of these techniques to derive bounds for Dmin, Dmax, H1;max,

H1;min, H2;max and H2;min in the next section.

IV. COMPUTATION OF BOUNDS

A. A Loop Transformation

Before we go on to describing the computation of bounds, we describe a

loop transformation that converts the problem of �nding bounds over an

21

arbitrary rectangle to that of �nding bounds over the cube U = [�1; 1]m.
We refer the reader to [34] for a complete discussion of loop transformations.

The loop transformation is best explained through Figure 2, where the

symbols ~H(s) and ~� refer to the \new" system and the \normalized" per-

turbation.

The loop transformation can be interpreted as translating Q to the

origin, and then scaling it to the cube [�1; 1]m.

K = diag(
u1 + l1

2
I1;

u2 + l2

2
I2; : : : ;

um + lm

2
Im);

F = diag(
u1 � l1

2
I1;

u2 � l2

2
I2; : : : ;

um � lm

2
Im)

are the matrices that accomplish this.

A state-space representation of the loop-transformed system ~P (s) is

given by f ~A; ~B; ~C; ~Dg, where

~A = A+BuTKCy; ~B =

"
Bw+BuTKDyw| {z }

~Bz

BuTF
1
2| {z }

~Bu

#
;

~C =

2
666664

~Czz }| {
Cz+DzuTKCy

F
1
2 (I+DyuTK)Cy| {z }

~Cy

3
777775 ; (12)

~D =

2
6666664

~Dzwz }| {
Dzw+DzuTKDyw

~Dzuz }| {
DzuTKF

1
2

F
1
2 (I+DyuTK)Dyw| {z }

~Dyw

F
1
2DyuTF

1
2| {z }

~Dyu

3
7777775
:

T = (I � KDyu)
�1, and I is the identity matrix of appropriate size. We

remind the reader of the assumption that the system is well-posed, which

guarantees that (I �KDyu) is invertible.

We make the obvious but important remark that all the six quantities

we have de�ned in the previous subsection remain invariant under the loop

transformation. Thus any bounds for these quantities computed with the

loop transformed system in Figure 2 are valid for the system in Figure 1.

22

-

�

6

?

�

- -

-

�

-

� ���
��

��
����

��
��
�� ��

��
��
��

K

K

F
1
2 F

1
2

F
�
1
2 F

�
1
2�

P (s)

zw

~�

~P (s)

�

+

Fig. 2. Loop Transformation.

B. Bounds for Dmin

Computation ofDmin is a global minimizationproblem and we will therefore

use Algorithm I of Section II. In the notation used to describe Algorithm

I, we have f(q) = �sd(A(q)) and �min(U) = Dmin(U). We now need to

compute a lower bound �lb(U) and an upper bound �ub(U) for Dmin(U).

Upper bounds

One simple upper bound on Dmin over the cube U is just the stability degree

of the system evaluated at the midpoint of the cube. Thus:

�ub(U) = �sd(A(0)) = �sd(A): (13)

This upper bound can be improved quite easily by local optimization

methods such as a gradient search (see any text on optimization, [35] for

example). Another heuristic is to set the upper bound over U to be equal

to the minimum of the stability degrees over the vertices and the center:

�ub(U) = min
q2fvertices of Ug[f0g

�sd(A(q)): (14)

There are two justi�cations for this heuristic: First, in many special cases,

Dmin is always achieved at a vertex; secondly, since the number of local

minima for Dmin is �nite, as the size of Q (before loop-transformation)

23

becomes small, Dmin is more likely to be achieved on the boundary of Q
than in the interior; therefore the vertices are more likely to yield better

bounds on Dmin than the center.

Lower bounds

Computation of lower bounds is a little more involved. It is based on the

application of a generalized small gain theorem (SGT) which states that for

every q 2 U , the (closed-loop) system in Figure 1 has the same number of

stable poles as P (s), the open-loop system, provided kPyukL1 < 1, where

kHkL1 = sup
!2R

�(H(j!))

is the L1 norm of the transfer matrixH. This theorem is a simple extension

of the conventional small gain theorem which can be found, for example, in

[34]. Thus, if kPyukL1 < 1,

A stable =) Dmin(U) > 0; (15)

and

A unstable =) Dmax(U) < 0: (16)

Thus, if A is stable and kPyukL1 < 1, (15) gives a lower bound of zero

for Dmin(U). Otherwise, we may conclude nothing.

In order to derive a better lower bound on Dmin(U), we consider the

exponentially time-weighted system

_xe = (A+ �I)xe + Buu + Bww; xe(0) = x0;

y = Cyxe + Dyuu + Dyww;

z = Czxe + Dzuu + Dzww;

u = � y;

(17)

where � < �sd(A). Note that (A + �I) is guaranteed to be stable. The

solutions of equations (17) and (6) are simply related by xe(t) = e�tx(t),

and therefore we conclude that

Dmin(U) > �; whenever kPyuk1;� < 1;

where

kHk1;� = sup
fs=��+j! j !2Rg

�(H(s))

24

is the �-shifted L1 norm of H [36]. Therefore, we de�ne �lb(U) as

�lb(U) = sup
�
�
�� � < �sd(A); kPyuk1;� < 1

	
: (18)

Note that if kPyuk1;� � 1 for all �, then �lb(U) = �1. (This occurs only

if �(Dyu) � 1.)

The condition in (18) is readily checked by forming an appropriate

Hamiltonian matrix and checking its eigenvalues (see [37, 38]); a simple

bisection can be used to compute �lb.

We note that our procedure for computing �lb(U) is just an application
of the \shifted circle criterion" (Anderson and Moore [39]).

Very often, the lower bound above turns out to be too conservative;

the reason for this lies in the application of the SGT in (15) (and (16)).

The very special structure of � (real, diagonal, and with possibly many

repeated entries) has been ignored, and this means that the SGT may be

extremely conservative in guaranteeing the robust stability of the exponen-

tially weighted closed-loop system. Eliminating or reducing this conser-

vatism of the SGT that arises due to \structured perturbations" is a major

area of research in itself (structured singular value [40], scaling or the scaled

singular value [41]). The scaled singular value (which we will abbreviate

as SSV) is directly relevant to our problem, and we will give a brief and

informal discussion here.

The motivation for the SSV arises from the following simple observation:

The system shown in Figure 3 is equivalent to the system in Figure 1 (in

the sense that the solution to the closed-loop state equations as well as the

closed-loop transfer matrices from w to z are equal) for all nonzero � 2 C
and invertible matrices4 S� 2 Cp�p such that S�� = �S�. In other

words, the structure of � makes the closed-loop system invariant under the

scaling of the open loop transfer matrix described by

"
Pzw Pzu

Pyw Pyu

#
�!

"
�I1 0

0 S�

#"
Pzw Pzu

Pyw Pyu

#"
�I2 0

0 S�

#�1
;

where � 2 C, I1 and I2 are identity matrices of sizes no and ni respectively,

and S� 2 Cp�p is an invertible matrix that commutes with �.

4Both � and S� can be functions of s rather than simply constants, but we will not

consider this more general setting here.

25

We let

Sleft =

"
�I1 0

0 S�

#
and Sright =

"
�I2 0

0 S�

#
:

Sleft and Sright are referred to as the left and right scalings.

The set of matrices that commute with � is denoted S�:

S� =
�
S� j S�� = �S�; S� 2 Cp�p

	
:

S� determines the set of left and right scalings, denoted Sleft and Sright

respectively, that leave the closed-loop system invariant:

Sleft =

(
Sleft

���� Sleft =
"
�I1

S�

#
; � 2 C; S� 2 S�

)
; (19)

Sright =

(
Sright

���� Sright =
"
�I2

S�

#
; � 2 C; S� 2 S�

)
: (20)

It is not hard to see that for our case, every S� 2 S� is of the form

S� =

2
66664
D1

D2

. . .

Dp

3
77775 ;

where Di 2 Cpi�pi and invertible, i = 1; 2; :::; p.

In the computation of a lower bound for Dmin through equation (18),

the transfer matrix from u to y is the only one of interest. The scaling

of P (s) to SleftP (s)S
�1
right results in the scaling of Pyu(s) to S�Pyu(s)S

�1
� .

Then we may de�ne a new, possibly improved lower bound as

�lb(U) = sup

�
�

���� � < �sd(A); inf
S�2S�

kS�PyuS�1� k1;� < 1

�
: (21)

There are many heuristics for performing the optimization in equa-

tion (21). We will not describe any of them here. However, we note that for

a �xed �, computation of the scaling that minimizes kS�PyuS�1� k1;� can

be formulated as a quasi-convex optimization problem (see [36], chapters

13 and 14), and therefore can be performed by e�ective methods. Scal-

ing a constant matrix (as opposed to a transfer matrix) optimally is a

26

��
��
�I1��

��
1

�
I2

��
��
S�1� ��

��
S�

-- --

P (s)

-

� � ��

zw

u y

Fig. 3. The standard form with scaling. � 2 C, I1 and I2 are identity

matrices of sizes ni and no respectively, S� 2 Cp�p is invertible

and commutes with �.

well studied problem. A (by no means exhaustive) list of references is

[42, 43, 44, 45, 46, 47, 48].

Note that the SSV has ignored the fact that � is real. This aspect has

been addressed in a recent work that accounts for real perturbations [49].

The results therein may be incorporated into the bounds in (18) to improve

the lower bound further.

For more details, including a proof that the bounds we have described for

Dmin satisfy conditions (R1) and (R2) stated at the beginning of Section II,

see [18].

C. Bounds for Dmax

Computation of Dmax is a global maximization problem, so we will use

Algorithm II of Section II. Our notation is then f(q) = �sd(A(q)) and
	max(U) = Dmax(U); we now describe the computation of a lower bound

	lb(U) and an upper bound 	ub(U) for Dmax(U).

Lower bounds

A simple lower bound on Dmax over the cube U is just the stability degree

of the system evaluated at the midpoint of the cube. Thus:

	lb(U) = �sd(A(0)) = �sd(A): (22)

27

The above lower bound can be improved by the same heuristic as in

equation (14):

	lb(U) = max
q2fvertices of Ug[f0g

�sd(A(q)): (23)

Upper bounds

Our upper bound for Dmax(U) is

	ub(U) = inf
�
�
�� � > �sd(A); kPyuk1;� < 1

	
: (24)

Note that if kPyuk1;� � 1 for all �, then �lb(U) =1.

This bound can be established using a derivation identical to that lead-

ing to the bound in equation (18). Instead, let us give a brief intuitive

explanation of this bound.

The bound in equation (18) is just the largest amount of \anti-damping"

�we may add to system in Figure (1) with the SGT proving robust stability.

In contrast, the bound in equation (24) is just the smallest anti-damping �

we must add to system in Figure (1) for the SGT to prove robust instability ,

i.e. to guarantee that the closed-loop system in Figure 1 is unstable for all

q 2 U ; the negative of the maximum real part of the eigenvalues of the

closed-loop system can be no larger than this anti-damping.

This upper bound can be improved using the same scaling techniques

as in equation (21):

	ub(U) = inf

�
�

���� � > �sd(A); inf
S�2S�

kS�PyuS�1� k1;� < 1

�
: (25)

It can be shown that the bounds for Dmax satisfy conditions (R10) and

(R20) stated in Section II.

D. Bounds for H1;max

We next describe the computation of a lower bound 	lb(U) and an upper

bound 	ub(U) for H1;max.

Lower Bounds

A simple lower bound for H1;max(U) is just the H1 norm of the closed-

loop system with the parameter vector set to the midpoint of the parameter

28

region U :
	lb(U) = kPcl(0)k1 = kPzwk1: (26)

This bound may be improved using the same heuristic as in in equa-

tions (14) and (23), by setting the lower bound of H1;max over U to be

equal to the maximum of the H1 norm from w to z computed with the

parameters assuming the values at the vertices and the center:

	lb(U) = max
q2fvertices of Ug[f0g

kPcl(q)k1: (27)

Lower bounds

We now describe a simple scheme for computing an upper bound that is

based on a small gain based robust stability condition due to Doyle [40]

and Safonov [45] (see [36, p239-241]).

We de�ne

P� =

2
664

Pzw

�

Pzup
�

Pywp
�

Pyu

3
775 ; (28)

where � > 0. Then

kP�k1 < 1 =) sup
k�k1�1

�Pzw + Pzu�(I � Pyu�)
�1Pyw

�

1
< �:

Our upper bound is:

	ub(U) = inf f� j kP�k1 < 1g ; (29)

with the convention that the in�mum of a function over the empty set is

in�nity.

As with the lower bounds for Dmin, 	ub may be rapidly computed using

a bisection on Hamiltonian matrices [37, 38]. We may also use scaling

the improve the upper bound for H1;max in equation (29). The possibly

improved upper bound is then given by

	ub(U) = inf

(
�

���� inf
Sleft2Sleft;Sright2Sright

kSleftP�S�1rightk1 < 1

)
; (30)

where Sleft and Sright are given by equations (20) and (19).

We refer the reader to [50] for a proof that the bounds for H1;max

satisfy conditions (R10) and (R20) stated in Section II.

29

E. Bounds for H1;min

We describe next the computation of an upper bound �ub(U) and a lower

bound �lb(U) for �min(U) = H1;min(U). The bounds we present here

make the possibly unrealistic assumption that system in Figure 1 is robustly

stable. In terms of design, this requires the designer to apply the algorithm

only over parameter ranges where the system is guaranteed to be stable.

Upper bounds

A simple upper bound for H1;min(U) is just the H1 norm of the closed-

loop system with the parameter vector set to the midpoint of the parameter

region U :
�lb(U) = kPcl(0)k1 = kPzwk1: (31)

This upper bound may be improved by employing the same heuristic as

in equations (14), (23) and (27):

�lb(U) = min
q2fvertices of Ug[f0g

kPcl(q)k1: (32)

Lower bound

If kPyuk1 < 1, we may compute a lower bound based on simple norm

inequalities:

kPcl(q)k1 = kPzw + Pzu�(I � Pyu�)
�1Pywk1

� kPzwk1 � kPzuk1kPywk1
1� kPyuk1

: (33)

If kPyuk1 � 1, our lower bound is merely 0.

We refer the reader to [50] for more details, including a proof that the

bounds for H1;min satisfy conditions (R1) and (R2) stated in Section II. .

F. Bounds for H2;max

We describe next the computation of an upper bound 	ub(U) and a lower

bound 	lb(U) for 	max(U) = H2;max(U). The bounds are based on the

observation that H2 norms can be computed by solving Lyapunov equa-

tions (see for example, [36]). More precisely, if the stable, strictly proper

transfer function G(s) has a state-space realization fA;B;Cg, then kGk2 =

30

p
Tr(CWcCT), whereWc = WT

c > 0 is the unique solution of the Lyapunov

equation

AWc +WcA
T +BBT = 0: (34)

(kGk2 =1 if A is unstable or if G is not strictly proper.)

Lower bounds

A simple lower bound 	lb(U) for H2;max is given by the H2 norm of the

system evaluated with parameters assuming values at the center of U :

	lb(U) = kPcl(0)k2: (35)

This lower bound may be improved by simple heuristics as in equation (14)

or by local optimization methods; in fact, there is a whole body of research

on this problem. We refer the reader to the survey by Toivonen and M�akil�a

[51].

Upper bound

Noting that (34) is just a system of linear equations, we may compute an

upper bound 	ub(U) based on a simple perturbation analysis. We present

the bound below, omitting tedious details.

In what follows, LA is the Lyapunov operator associated with A, given

by A
 I + I
 A (\
" is the Kronecker product, see for example, [52]),

N1 = minfni; ng, N2 = minfno; ng. For convenience, we let

a =
�(Bu)�(Cy)

1� �(Dyu)
;

b =
�(Bu)�(Dyw)

1� �(Dyu)
;

c =
�(Cy)�(Dzu)

1� �(Dyu)
;

d =
1

�(LA)� 2a

�
2akWckF + b2

p
N1 + 2bkBwkF

�
;

e =
�
2c
p
N2kCzWckF + c2N2kWckF + dN2 (�(Cz) + c)

2
�1=2

:

(36)

Wc is the controllability Gramian of the system with � = 0 and satis�es

AWT
c +WcA+ BwB

T
w = 0.

31

Then, if �(Dyu) < 1 and �(LA) > 2a,

	ub(U) =
�
(lb(U))2 + e2

�1=2
: (37)

If �(Dyu) � 1 or �(LA) � 2a, the upper bound is only 1.

It can be shown that the bounds for H2;max satisfy conditions (R1
0) and

(R20) of Section II.

G. Bounds for H2;min

An upper bound �ub(U) and a lower bound �lb(U) for �min(U) = H2;min(U)
can be derived analogously to those for H2;max.

Upper bounds

An upper bound �ub(U) for H2;min is given by the H2 norm of the system

evaluated with parameters assuming values at the center of U :

�ub(U) = kPcl(0)k2: (38)

This upper bound may be improved by local optimization methods.

Lower bound

If �(Dyu) < 1, �(LA) > 2a and �ub(U) > e,

�lb(U) = max
n
0;
�
(�ub(U))2 � e2

�1=2o
; (39)

where a, b, c, d and e are given by equations (36). If �(Dyu) � 1 or

�(LA) � 2a or �ub(U) � e, the lower bound is merely 0. As with the lower

bound for H1;min, this bound requires that the system (6) be robustly

stable.

It can be shown that the bounds for H2;max satisfy conditions (R1) and

(R2) of Section II.

V. EXAMPLES

We consider a mechanical plant consisting of two masses connected by a

spring with the left-hand mass driven by a force, as shown in Figure 4.

32

-

--

m1 m2
F

x2x1

k

Fig. 4. The plant consisting of two masses connected by a spring.

We note that this example is so simple that many of the quantities asso-

ciated with robustness analysis and design could be computed by hand; of

course, the value of the methods that we present is in solving more complex

problems that cannot be solved by hand or simple ad hoc procedures.

A. Examples for Analysis

We will �rst study the robustness properties of this system under varia-

tions of m2 and k. More speci�cally, we will examine the common percep-

tion that an LQR-optimal state-feedback is \robust". To this end, we let

[x1 _x1 x2 _x2]
T be the state vector, and employ a state-feedback law F =

�kLQRx which is LQR optimal for the parameter values m1 = m2 = k = 1

(with weights Q = I, � = 1). In other words, F (t) = �kLQRx(t) is the
input that minimizes the cost functionZ 1

0

�
x(t)Tx(t) + (F (t))2

�
dt;

(irrespective of the initial condition) where the state equations are those of

the system in Figure 4.

We will now study the robustness of this LQR-optimal closed-loop sys-

tem with respect to variations in the parameters m2 and k in a range

between 2=3 and 3=2:

2=3 � m2 � 3=2; 2=3 � k � 3=2: (40)

Thus, these physical parameters can vary over a range exceeding 2 : 1. The

closed-loop transfer function Pcl that we will examine is the closed-loop

33

m2m1

-

-

--

w

F = �KLQRx

x2x1 = z

k

Fig. 5. The closed-loop system with LQR-optimal state feedback.

x = [x1 _x1 x2 _x2]
T is the state vector. m1 = 1 is �xed, and m2

and k are uncertain parameters known to lie in [2=3; 3=2]. w is

the force on the second mass and z is the position of the �rst

mass.

transfer function from the force on the second mass to the position of the

�rst mass (see Figure 5).

1. Dmin of the system with the LQR-optimal controller

For this nominally LQR-optimal system, we compute the �rst measure of

robustness, i.e. Dmin over the parameter ranges in (40).

Figure 6 shows the results obtained from applying the branch and bound

algorithm to this problem. The solid lines correspond to the bounds in (18)

and (13), and the dashed lines to the \improved" bounds5 in (21) and (14).

We note the following:

� The system is robustly stable. The system is robustly stable if and

only if Dmin is positive. The lower bound for Dmin is positive at

the end of 8 iterations using the lower bound (18) and at the end

of 6 iterations using the lower bound (21), which establishes robust

stability in each case.

� 0:1853 � Dmin � 0:1862. Thus the algorithm can prove that the

decay rate of the state x(t) is at least 0:1853, irrespective of the

initial state x0 and q. (For reference, the stability degree (�sd) of the

5The optimization problem to perform the scaling in equation (21) was not solved

exactly; instead, a lower bound to the optimum was used.

34

nominal system is 0:3738. Thus the parameter variations can degrade

the stability degree by a factor of about 2.)

� With the bounds in (18) and (13), the algorithm takes 307 iterations

to determine Dmin to within an absolute accuracy of 0:001, whereas

with the improved bounds in (21) and (14), it takes only 176 itera-

tions; this is o�set by the increased computation accompanying the

improved bounds.

� The algorithm returns the worst-case parameters m2 = 2=3 and k =

3=2, which happen to lie on a vertex of the parameter box. This is

not the case in general.

� Figure 6 also shows the number of rectangles in the partition as well

as the pruned volume percentage as a function of iterations, for the

two di�erent sets of bounds. It is clear that the \improved" bounds

do show improved performance.

� Figure 7 shows the parameter region under consideration at various

stages of the algorithm. The algorithm can prove that Dmin cannot

be achieved outside the shaded region.

2. H1;max of the system with the LQR-optimal controller

We now turn to our second measure of robustness: We will compute the

largest possible H1 norm of the closed-loop transfer function Pcl due to

the parameter variations in (40).

Figure 8 shows the results from the branch and bound algorithmapplied

to the computation of H1;max. The solid lines correspond to the bounds

in (26) and (29), and the dashed lines once again to the \improved" bounds6

(in (27) and in (30)). We note the following:

� The system is robustly stable. Either upper bound (from (29) or (30))

is �nite only if the system is robustly stable. The upper bound on

H1;max from (29) is �nite at the end of 8 iterations, (and the upper

6The optimal scaling problem in (30) was again not solved exactly; instead, an upper

bound to the optimum was used.

35

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 50 100 150 200 250 300 350

Bo
un

ds

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350

N
o.

 o
f r

ec
ta

ng
le

s

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

Iterations

Pr
un

ed
 v

ol
. p

ct
.

Fig. 6. Results from the branch and bound algorithm for Dmin. Solid

lines correspond to bounds from equations (18) and (13). Dotted

lines correspond to bounds from equations (21) and (14).

36

After 50 iterations After 100 iterations

After 150 iterations After 200 iterations

After 250 iterations After 300 iterations

Fig. 7. The unpruned parameter region at various stages of the

algorithm during the computation of Dmin. The x- and

y-coordinates are k and 1=m2 respectively. The algorithm can

guarantee that Dmin cannot be achieved outside the shaded

region.

37

bound from (30) by 6 iterations), indicating that the system is ro-

bustly stable. Note that this is consistent with our observations from

Dmin computation.

� With bounds from (26) and (29), at the end of 122 iterations, the

algorithm guarantees that 2:499 � H1;max � 2:500.

The performance with the bounds from (27) and (30) is considerably

better; at the the end of only 40 iterations, the algorithm guarantees

that 2:499 � H1;max � 2:500. For reference, the H1 norm from w

to z for the nominal system is 1:008.

� The algorithm returns worst-case parameters m2 = 3=2 and k = 2=3,

which are di�erent than the worst-case parameters for Dmin ; thus,

Dmin and H1;max are inequivalent measures of robustness for our

problem.

� Figure 8 also shows the number of rectangles in the partition as well as

the pruned volume percentage as a function of iterations. It is again

clear that the \improved" bounds do show improved performance.

3. H2;max of the system with the LQR-optimal controller

We �nally consider the worst-case H2 norm of the closed-loop transfer

function, our third measure of robustness.

The results from the branch and bound algorithm are shown in Figure 9

corresponding to the bounds in (35) and (37). We note that:

� The system is robustly stable. The upper bound from (37) is �nite

only if the system is robustly stable. The upper bound on H2;max

from (37) is �nite at the end of 467 iterations, indicating that the

system is robustly stable.

The branch and bound algorithm applied towards computing Dmin

andH1;max establishes robust stability at the end of just 8 iterations,

while it takes 467 iterations with H2;max. The reason is that the

bounds for Dmin and H1;max use the same test for robust stability

while the bound for H2;max uses a di�erent, more conservative test.

38

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100 120 140

Bo
un

ds

0

5

10

15

20

25

0 20 40 60 80 100 120 140

N
o.

 o
f r

ec
ta

ng
le

s

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

Iterations

Pr
un

ed
 v

ol
. p

ct
.

Fig. 8. Results from the branch and bound algorithm for H1;max. Solid

lines correspond to bounds from equations (26) and (29). Dotted

lines correspond to bounds from equations (27) and (30).

39

� The algorithm takes 15,000 iterations to return 1:1304 � H2;max �
1:1404. (For reference, the nominalH2 norm from w to z is 0:6922.)

Clearly, the progress here is much slower than with Dmin or H1;max.

This is because the upper bound for H2;max is rather poor.

This illustrates an important point about the branch and bound al-

gorithm: If the bounds are bad, the algorithm may take a very long

time to converge.

� The algorithm returns the same set of worst-case parameters (m2 =

3=2 and k = 2=3) as with H1;max.

B. Examples for Design

We consider the system shown in Figure 4 with the parameters assuming

the nominal values m1 = 1, m2 = 1 and k = 1; for this system, we consider

the problem of designing a state feedback that does not use the position or

velocity of the second mass m2, that is, we design a state feedback of the

form F = �(k1x1+ k2 _x1). The closed-loop transfer function Pcl of interest

is the transfer function from the force on the second mass w to the position

of the �rst mass x1 (see Figure 10).

We will restrict the state feedback gains k1 and k2 to satisfy

1=2 � k1 � 1; 1=2 � k2 � 1; (41)

The above parameter range has been chosen so that the system is stable

for all values of k1 and k2 lying in it.

1. Dmax-optimal incomplete state feedback

Our �rst design objective is to maximize Dmax: We design an incomplete

state feedback that maximizes the slowest decay rate of the system, with

the gains restricted to lie in (41).

Figure 11 shows the result from the branch and bound algorithmapplied

to the computation of Dmax. The solid lines correspond to the bounds

in (22) and (24), and the dashed lines once again to the \improved" bounds7

(in (23) and in (25)). We note that:

7The optimal scaling problem in (25) was again not solved exactly; instead, an upper

bound to the optimum was used.

40

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2000 4000 6000 8000 10000 12000 14000 16000

Bo
un

ds

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2000 4000 6000 8000 10000 12000 14000 16000

N
o.

 o
f r

ec
ta

ng
le

s

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000 14000 16000

Iterations

Pr
un

ed
 v

ol
. p

ct
.

Fig. 9. Results from the branch and bound algorithm for H2;max.

41

m2m1

-

-

--

w

F = �k1x1 � k2 _x1

x2x1 = z

k

Fig. 10. The closed-loop system with incomplete state feedback

F = �k1x1 � k2 _x1, where k1 and k2 are the design parameters,

each constrained to lie in [1=2; 1]. [x1 _x1 x2 _x2]
T is the state

vector. m1 = 1, m2 = 1 and k = 1 are �xed, w is the force on

the second mass and z is the position of the �rst mass.

� Using the bounds from from (22) and (24), the branch and bound al-

gorithm returns 0:2133 � Dmax � 0:2141 after 52 iterations. The al-

gorithm takes 43 iterations to yield the same result using bounds (23)

and (25).

� The upper bound from (25) performs only marginally better than the

bound from (24). Thus, scaling does not help the upper bound much

in this particular example.

� The algorithm returns the optimal gains k1 = 0:5 and k2 = 1:0, which

corresponds to a vertex of the rectangle in (41).

2. H1;min-optimal incomplete state feedback

We next compute the optimal values of the gains k1 and k2 that yield the

smallest possible H1 norm of the closed-loop transfer function between w,

the force on the second mass and z, the position of the �rst mass, with the

gains restricted as in (41).

Figure 12 shows the result from the branch and bound algorithmapplied

to the computation of H1;min. We note the following:

� After 275 iterations, the algorithm returns 2:5928� H2;min � 2:6006.

42

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60

Bo
un

ds

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60

N
o.

 o
f r

ec
ta

ng
le

s

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Iterations

Pr
un

ed
 v

ol
. p

ct
.

Fig. 11. Results from the branch and bound algorithm for Dmax.

43

� The algorithm returns optimal gains k1 = 0:831, k2 = 0:999, which

does not correspond to a vertex of the parameter rectangle. In fact,

the minimum value among the H1 norms at the vertices is 2:6225,

which is slightly worse than H1;min returned by the algorithm.

� Not only does the algorithm return a set of parameters that achieves

the upper bound (2:6006) on H1;min, but it also can prove that the

smallest achievable H1;min must be at least 2:5928.

3. H2;min-optimal incomplete state feedback

We �nally compute the optimal feedback gains k1 and k2 that minimize the

H2 norm of the transfer function from w to z with the gains restricted as

in (41).

The results from the branch and bound algorithm are shown in Fig-

ure 13. We note that:

� After 17,500 iterations, the algorithm returns 0:9900 � H2;min �
1:0002. Thus, the performance of the algorithm, as with the case of

H2;max, is rather slow. This can be traced once again to the poor

quality of the bounds (39) and (38) for H2;min.

� The optimal set of gains for H2;min is k1 = 1 and k2 = 1, which is

di�erent than the gains returned for either Dmax or H1;min. Almost

all of the work done by the algorithm has gone towards establishing

the lower bound of 0:9900. The algorithm can guarantee that for

every choice of parameters in (41), the H2 norm from w to z is at

least 0:9900.

C. Simultaneous maximization of multiple objectives

Finally, we present an example that illustrates the branch and bound algo-

rithm applied towards maximization of several objectives at the same time.

We consider a robustness analysis problem and will use the same setup as in

subsection A (see Figure 5). For this system, we consider the simultaneous

maximization of the H1 norms from w to x1 and w to _x1.

44

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300

Bo
un

ds

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

N
o.

 o
f r

ec
ta

ng
le

s

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Iterations

Pr
un

ed
 v

ol
. p

ct
.

Fig. 12. Results from the branch and bound algorithm for H1;min

45

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x104

Bo
un

ds

0

1000

2000

3000

4000

5000

6000

7000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x104

N
o.

 o
f r

ec
ta

ng
le

s

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x104Iterations

Pr
un

ed
 v

ol
. p

ct
.

Fig. 13. Results from the branch and bound algorithm for H2;min.

46

Figure 14 shows the result from the branch and bound algorithm ap-

plied to this problem using the bounds (26) and (29). The solid lines show

the bounds H1;max between w and x1 and the dashed lines, the bounds

between w and _x1. It is clear that the algorithm takes quite a few iterations

more compared to the maximization of just H1;max between w and x1 (see

Figure 8). The reason for this is clear from Figure 15, which shows the

parameter region under consideration. The two objective functions that

we seek to maximize achieve their maxima at two opposite corners of the

parameter region. Thus, in e�ect, the simultaneous maximization algo-

rithm has to do two separate individual branch and bound maximizations,

interlaced.

VI. CONCLUSION

We have described some parameter problems in control systems analysis

and design which may be cast as global optimization problems, and how

a branch and bound algorithm may be used to solve them. Our main

point is that we may combine recent (and continuing) gains in computing

power with advances in theory to answer questions that were previously

unanswerable. We know of no existing methods that compute exactly any

of the six quantities that we have described in this chapter.

We must emphasize that branch and bound algorithm can be computa-

tion intensive (worst-case combinatoric), and requires much more compu-

tation than most local optimization methods, which, in many instances, do

yield the global optimum. The main strength of the branch and bound al-

gorithm, however, is in yielding guaranteed bounds for the global optimum.

These bounds may be used, in turn, to inspire con�dence in corresponding

local optimization methods. For instance, if for a certain class of problems,

a local minimization procedure consistently returns objective values that

are not much larger than the lower bound on the minimum returned by the

branch and bound algorithm, we may conclude that the local minimization

method is \good enough", especially if it involves far less computation.

Clearly, there is a trade-o� between the computational e�ort spent on

the branch and bound iterations and that spent on computing upper and

lower bounds during each iteration: If the bounds are very good, they most

likely require some computational e�ort; however, fewer branch and bound

47

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800 1000 1200 1400

Bo
un

ds

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

N
o.

 o
f r

ec
ta

ng
le

s

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

Iterations

Pr
un

ed
 v

ol
. p

ct
.

Fig. 14. Results from the branch and bound algorithm for multiple

H1;max computations. The solid lines show bounds on H1;max

between w and x1 and the dashed lines, the bounds between w

and _x1.
48

After 100 iterations After 100 iterations

After 500 iterations After 500 iterations

After 1300 iterations After 1300 iterations

Fig. 15. The unpruned parameter region for either objective at various

stages of the algorithm during the computation of H1;max.

The left hand side corresponds to H1;max between w and x1

and the right hand side to H1;max between w and _x1. The x-

and y-coordinates are k and 1=m2 respectively.

49

iterations will be needed. On the other hand, if the bounds are loose, the

branch and bound algorithm may take a very long time to converge.

The basic branch and bound algorithm is easily extended to other prob-

lems, with the bound computation being the problem-speci�c task. We

must mention, however, that the robust synthesis problem, which involves

�nding the design parameters that minimize the maximum of the objective

over the uncertain parameters | the so-called \minimax" problem | can-

not be handled in our setting. We refer the reader to [50] for work on this

topic.

In conclusion,

� A number of global optimization problems in control systems analy-

sis and design can be solved within a reasonable amount of time on

present day computers.

� With advances in computing power and theory, the list of problems

that can be solved using these methods is likely to grow.

� There will always be problems which will take inordinate amounts of

time to solve with these methods.

VII. ACKNOWLEDGEMENTS

We would like to thank Silvano Balemi, coauthor of [18] and [50], with

whom major parts of this work were completed. This research supported

in part by NSF under ECS-85-52465 and by AFOSR under 89-0228.

VIII. REFERENCES

1. A. Nemirovsky and D. Yudin, Problem Complexity and Method E�-

ciency in Optimization, John Wiley & Sons, (1983).

2. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:

Algorithms and Complexity, Prentice Hall, (1982).

3. P. M. Pardalos and J. B. Rosen, Constrained Global Optimization:

Algorithms and Applications, Springer-Verlag, (1987).

50

4. R. H. J. M. Otten and L. P. P. P. van Ginneken, The Annealing

Algorithm, Kluwer Academic Publishers, (1989).

5. Y. Ye, \Interior-point algorithms for global optimization", Annals of

Operations Research, 25, pp. 59{74, (1990).

6. A. H. Land and A. G. Doig, \An automatic method for solving discrete

programming problems", Econometrica, 28, pp. 497{520, (1960).

7. R. J. Dakin, \A tree search algorithm for mixed integer programming

problems", The Computer Journal, 8, pp. 250{255, (1965).

8. E. L. Lawler and D.E.Wood, \Branch-and-bound methods: A survey",

Operations Research, 14, pp. 699{719, (1966).

9. K. Spielberg, \Enumerative methods in integer programming", Annals

of Discrete Mathematics, 5, pp. 139{183, (1979).

10. A. Schrijver, Theory of Linear and Integer Programming, Wiley-

Interscience series in discrete mathematics. John Wiley & Sons, (1986).

11. M. Gr�otschel, L. Lov�asz, and A. Schrijver, Geometric Algorithms and

Combinatorial Optimization, volume 2, Springer-Verlag, (1988).

12. E. Hansen, \Global optimization using interval analysis { the multi-

dimensional case", Numerische Mathematik, 34, pp. 247{270, (1980).

13. R. R. E. De Gaston and M. G. Safonov, \Exact calculation of the

multiloop stability margin", IEEE Trans. Aut. Control, 33(2), pp.

156{171, (1988).

14. A. Sideris and R. S. S. Pe~na, \Fast computation of the multivariable

stability margin for real interrelated uncertain parameters", IEEE

Trans. Aut. Control, 34(12), pp. 1272{1276, (1989).

15. B. C. Chang, O. Ekdal, H. H. Yeh, and S. S. Banda, \Computation

of the real structured singular value via polytopic polynomials", J. of

Guidance, 14(1), pp. 140{147, (1991).

16. A. Vicino, A. Tesi, and M. Milanese, \Computation of nonconservative

stability perturbation bounds for systems with nonlinearly correlated

uncertainties", IEEE Trans. Aut. Control, 35(7), pp. 835{841, (1990).

51

17. C. DeMarco, V. Balakrishnan, and S. Boyd, \A branch and bound

methodology for matrix polytope stability problems arising in power

systems", In Proc. IEEE Conf. on Decision and Control, , pp. 3022{

3027, Honolulu, Hawaii, (1990).

18. V. Balakrishnan, S. Boyd, and S. Balemi, \Branch and bound al-

gorithm for computing the minimum stability degree of parameter-

dependent linear systems", To appear, International Journal of Robust

and Nonlinear Control, (1992).

19. T. S. Parker and L. O. Chua, Practical Numerical Algorithms for

Chaotic Systems, Springer-Verlag, (1989).

20. V. Balakrishnan and S. Boyd, \Computation of the worst-case covari-

ance for linear systems with uncertain parameters", In Proc. IEEE

Conf. on Decision and Control, Brighton, U. K, (1991).

21. J. Rohn, \Systems of linear interval equations", Linear Algebra and

its Applications, 126, pp. 39{78, (1989).

22. J. Rohn, \Nonsingularity under data rounding", Linear Algebra and

its Applications, 139, pp. 171{174, (1990).

23. J. Rohn and S. Poljak, \Radius of nonsingularity", Mathematics of

Control, Signals, and Systems, (1991-92), To appear.

24. J. Demmel, \The componentwise distance to the nearest singular ma-

trix", SIAM J. on Matrix Analysis and Applications, (1991-92), To

appear.

25. V. L. Kharitonov, \Asymptotic stability of an equilibrium position of

a family of systems of linear di�erential equations", Di�erential'nye

Uraveniya, 14(11), pp. 1483{1485, (1978).

26. B. R. Barmish, \Invariance of the strict Hurwitz property for polyno-

mials with perturbed coe�cients", IEEE Trans. Aut. Control,AC-29,

pp. 935{936, (1984).

27. A. C. Bartlett, C. V. Hollot, and H. Lin, \Root locations of an entire

polytope of polynomials: it su�ces to check the edges", Mathematics

of Control, Signals, and Systems, 1(1), pp. 61{71, (1989).

52

28. M. Fu and B. R. Barmish, \Polytopes of polynomials with zeros in

a prescribed region", IEEE Trans. Aut. Control, 34(5), pp. 544{546,

(1989).

29. S. Bialas, \A necessary and su�cient condition for stability of interval

matrices", Int. J. Control, 37(4), pp. 717{722, (1983).

30. B. R. Barmish and C. V. Hollot, \Counterexamples to a recent result

on the stability of interval matrices by S. Bialas", Int. J. Control,

39(5), pp. 1103{1104, (1984).

31. B. Ross Barmish, M. Fu, and S. Saleh, \Stability of a polytope of

matrices: Counterexamples", IEEE Trans. Aut. Control, 33(6), pp.

569{572, (1988).

32. B. D. Anderson, N. K. Bose, and E. I. Jury, \Output feedback stabi-

lization and related problems|Solution via decision methods", IEEE

Trans. Aut. Control, AC-20, pp. 53{66, (1975).

33. E. Zeheb, \Necessary and su�cient conditions for root clustering of a

polytope of polynomials in a simply connected domain", IEEE Trans.

Aut. Control, 34, pp. 986{990, (1989).

34. C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output

Properties, Academic Press, New York, (1975).

35. D. G. Luenberger, Linear and Nonlinear Programming, Addison-

Wesley, Reading, Mass., 2nd edition, (1984).

36. S. Boyd and C. Barratt, Linear Controller Design: Limits of Perfor-

mance, Prentice-Hall, (1991).

37. S. Boyd, V. Balakrishnan, and P. Kabamba, \A bisection method

for computing the H1 norm of a transfer matrix and related prob-

lems", Mathematics of Control, Signals, and Systems, 2(3), pp. 207{

219, (1989).

38. S. Boyd and V. Balakrishnan, \A regularity result for the singular

values of a transfer matrix and a quadratically convergent algorithm

for computing its L1-norm", Syst. Control Letters, 15, pp. 1{7, (1990).

53

39. B. Anderson and J. B. Moore, \Linear system optimization with pre-

scribed degree of stability", Proc. IEEE, 116(12), pp. 2083{2087,

(1969).

40. J. Doyle, \Analysis of feedback systems with structured uncertainties",

IEE Proc., 129-D(6), pp. 242{250, (1982).

41. M. G. Safonov, \Stability margins of diagonally perturbed multivari-

able feedback systems", IEE Proc., 129-D, pp. 251{256, (1982).

42. J. Doyle, J. E. Wall, and G. Stein, \Performance and robustness anal-

ysis for structured uncertainties", In Proc. IEEE Conf. on Decision

and Control, , pp. 629{636, (1982).

43. M. K. Fan and A. L. Tits, \Characterization and e�cient computation

of the structured singular value", IEEE Trans. Aut. Control, AC-

31(8), pp. 734{743, (1986).

44. M. K. Fan and A. L. Tits, \m-form numerical range and the compu-

tation of the structured singular value", IEEE Trans. Aut. Control,

33(3), pp. 284{289, (1988).

45. M. G. Safonov, \Exact calculation of the multivariable structured-

singular-value stability margin", In Proc. IEEE Conf. on Decision and

Control, , pp. 1224{1225, Las Vegas, NV, (1984).

46. M. G. Safonov, \Optimal diagonal scaling for in�nity-norm optimiza-

tion", Syst. Control Letters, 7, pp. 257{260, (1986).

47. M. G. Safonov and J. Doyle, \Optimal scaling for multivariable stabil-

ity margin singular value computation", In Proceedings of MECO/EES

1983 Symposium, (1983).

48. M. Saeki, \A method of robust stability analysis with highly structured

uncertainties", IEEE Trans. Aut. Control, 31(10), pp. 935{940, (1986).

49. M. K. H. Fan, A. L. Tits, and J. C. Doyle, \Robustness in the presence

of mixed parametric uncertainty and unmodeled dynamics", IEEE

Trans. Aut. Control, 36(1), pp. 25{38, (1991).

54

50. S. Balemi and V. Balakrishnan, \Global optimization of H1-norm

of parameter-dependent linear systems", Technical Report # 91.15,

Automatic Control Laboratory, Swiss Federal Institute of Technology

(ETH), Z�urich, (1991).

51. H. T. Toivonen and P. M. M�akil�a, \Computer-aided design procedure

for multiobjective LQG control problems", Int. J. Control, 49(2), pp.

655{666, (1989).

52. R. A. Horn and C. A. Johnson, Matrix Analysis, Cambridge University

Press, (1985).

55

