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Introduction
Genes in living cells regulate various cellular biochemical processes through genetic regu-
latory networks. In such a network, the genes produce proteins that act as transcription
factors for other genes or themselves. The use of RNA microarrays has made it possible to
have an expression profile for a large number of genes when exposed to different conditions.
One of the most important problems in systems biology is to use these data to identify the
interaction pattern between genes in a regulatory network, especially in a large scale network.
In the literature, this is sometimes called reverse engineering the genetic network (see the
survey paper [1]). Genetic network identification has important potential applications, for
example in drugs discovery where a systems wide understanding of the regulatory network
is crucial for identifying the targeted pathways.

In this paper we propose a method for identifying genetic regulatory networks using genetic

perturbation data. In a genetic perturbation experiment, small perturbations are applied to
a genetic network in an equilibrium state and the resulting changes in expression activity
are measured. We aim at identifying the smallest model, corresponding to the sparsest
network, that explains the data, while conforming to known a priori structural information
about the network, if any. A priori biological knowledge is typically qualitative, encoding
whether one gene affects another gene or not, or whether the effect is positive or negative.
We solve the combinatorially hard problem of finding the sparsest model using a technique
from convex optimization [2], and demonstrate that our method performs better than other
existing methods.

Approach
A genetic regulatory network consisting of n genes in a genetic perturbation experiment can
be modeled as an n−dimensional dynamical systems ([3, 5]).

dx̂

dt
= f(x̂, u), x̂ ∈ R

n, u ∈ R
p, (1)

where x̂i denotes the transcription activity (typically measured as mRNA concentration) of
gene i in the network, and ui is the so called transcription perturbation. The dynamics close
to a given equilibrium xeq can be approximated by the set of linear differential equations,

dx

dt
= Ax + Bu, (2)

where x := x̂ − xeq ([4]). The matrix A ∈ R
n×n encodes pairwise interactions between the

individual genes in the network at the given equilibrium (phenotypical state), while matrix



B ∈ R
n×p indicates which genes are affected by the transcriptional perturbations. Given

that the system is stable around the equilibrium x = 0, if u is small enough, the system
will move to a new equilibrium x, for which Ax + Bu = 0. Let U = [U1 . . . Um] ∈ R

p×m

denote the stack matrix of the transcription perturbations for different m experiments and
X = [X1 . . . Xm] ∈ R

n×m denote the stack matrix of the corresponding steady state mRNA
concentrations.
Assuming that the measurements X and U are corrupted by noise, the equilibrium condition
becomes AX +BU = η, where η is the identification error. The goal of our method is to find
unknown matrix A, which models genetic network interactions and minimizes η with respect
to some metric. The error criterion that we choose is the weighted total squared error,

J(A) =
∑

j=1...m

ηT
j Rjηj, where ηj := AXj + BUj. (3)

The weight matrix Rj is the inverse of the covariance of the measurement error in the j−th
experiment. This means we penalize the identification error more when the measured data is
more reliable (less noisy). The a priori structural constraint that we impose on the network
can be encoded as Aij¤0, where ¤ ∈ {<, =, >}. The set of all n×n matrices that satisfy the
a priori constraint is convex, and we denote this set by S. The best model that satisfies the
a priori constraint while minimizing the error criterion can be found by solving the following
convex optimization problem.

minimize J(A), subject to A ∈ S. (4)

We denote the obtained minimum error level as the baseline error level (Ebs). Subsequently,
we find the sparsest model by solving the optimization problem

minimize ‖A‖0 , subject to A ∈ S, J(A) ≤ βEbs, (5)

where ‖A‖0 is the number of nonzero entries in A, and β is a parameter that controls the
tradeoff between model minimality and model accuracy.
Problem (5) is combinatorially hard and not convex. To solve this problem efficiently, we
relax it as a recursive convex ℓ1 optimization problem. That is, we want to find the sequence
of matrices A(k), k = 0, 1, . . . from the following convex optimization problem.

minimize
∑

i,j W
(k)
ij
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subject to A ∈ S, J(A) ≤ βEbs, where

W
(0)
i,j = 1, W
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(6)

This ℓ1 relaxation technique has been applied successfully in various fields where sparsity
optimization is needed such as, portfolio optimization in finance, controller design in engi-
neering, and electric power network design.

Results
We implement our method on MATLAB using the cvx toolbox1, running on an Intel Xeon

1More efficient implementation of the algorithm could possibly handle larger problems, but might require

custom made software.
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False positives = 4; False negatives = 15 False positives = 12; False negatives = 16

Figure 1: Identified models of the Escherichia coli SOS network. (a) The result of our
method. (b) The network identified in [3].

2.8GHz processor with 4GB RAM. We apply our method on the following data sets.
The segmentation polarity network in Drosophila melanogaster. We obtain a data
set from an in silico model provided by [5]. The original network consists of 5 genes. Our
method takes 6 seconds to run and identifies a smaller model than that in [5] with higher
accuracy (fewer false positives).
The SOS pathway in Escherichia coli. We obtain experimental data set from [3]. The
data set consists of 9 genes, and the performance comparison between our method and that
of [3] is shown in Figure 1.
A larger artificial network. We construct an artificial random network of 20 genes and
generate a noisy data set from it. For a noise level of 10%, our method takes about 9 minutes
to run and produces a result with predictive positive values and sensitivity of higher than
90%. This is better than the benchmark results from other methods reported in [1].
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