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SUMMARY

In a recent paper, the authors showed how to compute performance bounds for infinite-horizon stochastic
control problems with linear system dynamics and arbitrary constraints, objective, and noise distribution.
In this paper, we extend these results to the finite-horizon case, with asymmetric costs and constraint
sets. In addition, we derive our bounds using a new method, where we relax the Bellman equation to
an inequality. The method is based on bounding the objective with a general quadratic function, and
using linear matrix inequalities (LMIs) and semidefinite programming (SDP) to optimize the bound. The
resulting LMIs are more complicated than in the previous paper (which only used quadratic forms) but
this extension allows us to obtain good bounds for problems with substantial asymmetry, such as supply
chain problems. The method also yields very good suboptimal control policies, using control-Lyapunov
methods. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we consider a stochastic control problem with linear dynamics, and arbitrary objective
and constraint sets. This problem can be effectively solved in only a few cases. For example, when
the objective is quadratic and there are no constraints, it is well known that the optimal control is
linear state feedback [1-3]. In other cases, when the problem cannot be solved analytically, many
methods can be used to find suboptimal controllers, i.e. one that achieves a small objective value.
While this paper does not focus on suboptimal policies, one suboptimal control that we will discuss
in more detail is called the control-Lyapunov policy (CLF), sometimes also known as approximate
dynamic programming (ADP) [4-7]. In CLF, the control policy is obtained by replacing the true
value function for the stochastic control problem with a computationally tractable approximation.
We will see later that our lower bound naturally yields an approximate value function for use in
a control-Lyapunov policy; examples suggest that this control policy achieves surprisingly good
performance. For more detailed discussion of suboptimal policies, see, e.g., [2, 3, 8—13].

We present a method for computing a numerical lower bound on the optimal objective value for
the linear stochastic control problem. Our bound is not generic, i.e. it does not depend only on the
problem dimensions and some basic assumptions about the objective and constraints. Instead, the
bound is computed for each specific problem instance. We see that for many practical control
problems, the bound can be effectively computed by solving a convex optimization problem. Thus,
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PERFORMANCE BOUNDS AND SUBOPTIMAL POLICIES 1711

the complexity of computing the bound does not grow significantly with the problem dimensions,
and avoids the ‘curses of dimensionality’.

The bound we compute can be compared with the objective achieved by suboptimal control
policies, which can be found through Monte Carlo simulation. If the gap between the bound and
the objective achieved by a suboptimal policy is small, we can confidently conclude that our
suboptimal policy is nearly optimal, and that our bound is nearly tight. On the other hand, if the
gap between the two is large, then either our suboptimal controller is substantially suboptimal,
or our lower bound is poor (for this problem instance). We cannot (at this time) guarantee that
our bound will be close to the optimal objective value. However, in a large number of numerical
simulations, we have found that the bound we compute is often close to the objective achieved by
a suboptimal control policy.

In a previous paper [14], we presented a special case of our lower bound, where the constraint
sets and objective functions are symmetric. In this paper, we present a more general method that
produces better bounds for problems with substantial asymmetry. Our method is based on relaxing
the Bellman equation to an inequality, and looking for quadratics that bound the stage cost and
value functions. We can then optimize over this family of bounds by solving an optimization
problem. This new method is conceptually more elegant, and it will also allow us to extend our
bounds to more general settings, such as problems with polynomial dynamics, constraints, and
objective functions. (However, in this paper we focus exclusively on the linear quadratic case.) We
will illustrate our bound with several numerical examples. In all cases, we find that the bound we
compute is close to the objective achieved by a control-Lyapunov policy, which shows that both
are nearly optimal.

1.1. Prior and related work

Previous work related to performance bounds can be found in several areas. In approximate dynamic
programming, a common approach is to parameterize the approximate value function using a set
of basis functions, and then to find a combination of these basis functions with a guarantee on the
distance from the optimal solution. For example, in [15], the authors represent the approximate
value function as a combination of simple (i.e. linear, quadratic) basis functions. They use an
iterative method for adding basis functions to this set, based on a modified value iteration with
relaxed stage costs. This gives lower and upper bounds within a prespecified distance from the true
value function, and can be effectively applied to many practical problems. Another work closely
related to ours is [16], where the authors consider a stochastic control problem with a finite number
of states and inputs. In this paper, the approximate value functions are represented as a weighted
sum of pre-selected basis functions. The weights are then chosen to give a lower bound on the true
value function by solving a linear program (LP). Here, the lower bound property is obtained by
relaxing the Bellman equation to an inequality—a technique we will also use. The authors show
that as long as the basis functions are ‘well chosen’, a maximum distance from the true value
function can be guaranteed.

Another area in which performance bounds have been studied is in the context of Markov
decision processes and in particular, queueing systems. In [17], the authors derive performance
bounds for Markov decision processes by finding upper and lower bounds on the average cost
incurred in each period. This method is applied to a multiclass queueing system [17], as well
as event-based sampling [18], and typically yields analytic bounds that apply to entire problem
classes. Another example of performance bounds in this area is [19]. Here, the authors consider
the problem of controlling a sensor network to minimize estimation error, subject to a sensor
resource constraint. To get a lower bound, the resource constraint is ‘dualized’ by adding the
constraint function into the objective, weighted by a nonnegative Lagrange multiplier. The lower
bound is then optimized over the dual variable. We see that in special cases, our bound can also
be interpreted as an application of Lagrange duality.

There are also many works on deriving upper bounds on the performance of a suboptimal control
policy. A common approach here is to find a quadratic Lyapunov function to establish an upper
bound on the objective. This is sometimes called guaranteed cost control, and has been studied
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1712 Y. WANG AND S. BOYD

extensively in the context of robust control. We will not consider the problem of upper bounding
the performance of suboptimal control policies in this paper; interested readers are referred to
[20-24].

There are many other related works we will not summarize, including more theoretical contri-
butions [25-27], other application focussed papers [28—33], as well as books on approximate
dynamic programming methods and stochastic control [8, 34, 35]. Many of the ideas we will use
appear in these, and will be pointed out.

1.2. Outline

The structure of our paper is as follows. In Section 2 we describe our bound for the finite-horizon
stochastic control problem. In Section 2.1 we outline the dynamic programming ‘solution’, followed
by our method for finding a bound in Sections 2.2-2.4. Then, in Sections 2.5-2.6 we describe two
cases for which our bound can be effectively computed by solving a semidefinite program (SDP),
and in Section 2.7 we describe the control-Lyapunov suboptimal policy. In Section 3 we repeat
this for the infinite horizon, average cost-per-stage problem. Finally, in Section 4 we illustrate our
bound with three numerical examples.

2. FINITE HORIZON

We consider a discrete time linear system, over the time interval =0, ..., N, with dynamics
X1 =A Xt + B +w,, t=0,1,...,N—1, (D

where x; € R" is the state, u; € R" is the control input, w, € R" is the process noise (or exogenous
input), A; e R"*" is the dynamics matrix, and B; € R**™ is the input matrix, at time . We assume
that w;, for different values of ¢, are independent with mean w; =Ew,, and covariance W;=
E(w; —w;)(w; —w;)T. We will also assume that x is random, with mean Xy = Exo, and covariance
Xo=E(xg—X0)(xg —)EO)T, and that x is independent of all wy.

We consider causal state feedback control policies, where the current input u; is determined
from the current and previous states xo, ..., x;. For the problem we will consider, it can be shown
that there is an optimal policy that depends only on the current state, i.e.

ur =y, (x), t=0,1,...,N—1, )

where i/, : R" — R" is the state feedback function, or control policy, at time ¢. Equations (1) and (2)
determine the state and control input trajectories as functions of xo and the process noise trajectory.
Thus, for fixed choice of state feedback functions v, ..., ¥ _;, the state and input trajectories
become stochastic processes.

The objective function has the form

N—-1
J=E ( > et(xtaut)+eN(xN)) )

t=0

where ¢, :R"xR" —- R, =0, ..., N—1 is the stage cost function at time ¢, and £y :R" — R is
the stage cost function at time N, sometimes referred to as the terminal cost function. We will
assume that the above expectation exists.

We also have state and control constraints

(xs,u;)elC(as.), t=0,1,...,N—1, xyeCy (as.), 3)
where CoCR"xR™,...,Cy_1 CR"xR"™ and Cy CR" are nonempty constraint sets. The stage
cost functions £, ..., £ and the constraint sets Cp, ...,Cy need not be convex.

The stochastic control problem is to find the state feedback functions v, ..., ¥ _; that minimize
the objective J, among those that satisfy constraint (3). The problem data consists of Ag, ..., Ay—1,
Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:1710-1728
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PERFORMANCE BOUNDS AND SUBOPTIMAL POLICIES 1713

By, ..., By—1, the distribution of xo and each w;, the stage cost functions £, ...,£y, and the
constraint sets Cp, ...,Cy. We let J* denote the optimal value of the stochastic control problem,
i.e. the minimum value of J.

For more on the formulation of the linear stochastic control problem, including technical details,
see, e.g., [2, 3,8-10, 25,36-39].

2.1. Dynamic programming ‘solution’

In this section, we give the standard dynamic programming solution of the stochastic control
problem, for later use. We first define the extended value stage cost functions ¢;:R” x R" —
RU{o0}, t=0,...,N—1, as

- K[(Z,U), (Z7 U)EC[,
£(z,v)= , t=0,...,N—1
00 otherwise ,
Similarly, we define £y :R" — RU{oo} as
_ In(2), zeCly,
In(2)= .
00 otherwise.

Let V;(z) denote the optimal value of the objective J starting from time ¢, at state x; =z,

N—1 _ _
Viz)= min E ( Z Lo(xe, u‘r)"‘EN(xN))
Vi nw¥n_ T=t

subject to the dynamics (1). (V;:R" —RU{oo} is sometimes called the value function, or the
optimal cost-to-go function, at time ¢.) We know that Vy(z)=£x(z) and J*=EV(xp), where the
expectation is over xo. The functions Vj, ..., Vi satisfy the Bellman recursion,

Vi(@)=min{l;(z, V) +EViy1(Az+ Bt w)}, t=N—1,....0, )

where the minimization is over the variable v, and the expectation is over w,. We can write this
in abstract form as

Vt='Z;V,+1, IZN—l,...,O,
where 7; is the Bellman operator at time ¢, defined as

(7 f)(z) =mvin{l7z(2, v)+Ef(Aiz+ Biv+w,))

for any f:R" — RU{oo}.
The optimal feedback functions are

lﬁ?(z)=argmgn{l7z(z, V+EVi1(Aiz+Biv+wy)}, t=0,...,N—1. )

The value functions and optimal feedback functions can be effectively computed in only a few
special cases. The most famous example is when Cy=---=Cy_1 =R" xR", Cy =R" (there are
no constraints on the input and state) and £, ..., ¢y are convex quadratic functions [1]. In this
case the optimal state feedback functions are affine, i.e., u;=K;x;+ g, t=0,..., N—1, where
K; eR"™" and g; eR™ are easily computed from the problem data. For more details, including
proofs of these results, and other cases for which the optimal feedback function can be computed,
see [2, 3, 10, 36].
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1714 Y. WANG AND S. BOYD

2.2. Basic bound
Let ft ‘R"xR™" =R, t=0, ..., N—1 be quadratic functions with the form

T
~ Z o S Z T T
Li(z,v)= T +2q, z+2r, v+s;, t=0,...,N—1
v S, Ri||v
and let £ :R" — R be quadratic with the form
In()=2" Qnz+2qNz+sn.
We define operators 7~', t=0,...,N—1 as
(7 )@ =min{l,(z, V) +Ef(Az+B+w)), 1=0,....N=1,

where f:R" — R. The operators To, .. .L7~' ~N—1 are Bellman operators with stage costs 2o, ... N1,
instead of €, ...,¢y_1. Now suppose £y, ...,y satisfy

Z,gzt, t=0,...,N_1, ZN<ZN,

where the notation f<g for functions f and g means pointwise, i.e. f(x)<g(x) for all x. This
can be expressed as

sup (%(z,0)=,(2,0)) <0, 1=0, .., N—1,

(z,u)ec,~ ©)
sup (I (@)~ tn(2)) <0.
zeCn
Then for any function f:R"” — R, we have
(2, V) +Ef(Arz+Bo+w)<E(z, v)+Ef(Az+Bo+w)
for all zeR", veR™, which implies that
T, f<T,f, t=0,...,N—1. (7)
Now let \7, :R"—> R, r=0, ..., N be quadratic functions with the form
V,(z)=zTPtz+2p,Tz+c,, t=0,...,N.
Suppose Vou ..., Vy satisfy the Bellman inequalities
Vi<T;Vig1, t=0,...,N—1, Vy=Iy. (8)
Then we claim that
Vi<V, t=0,...,N, ©)
which gives us the lower bound
EVo(x0)<EVo(xo)=J*. (10)

The left-hand side can be explicitly given as
EVo(x0)=Tr(PoXo)+2pg % +co.

(The lower bound depends only on the first and second moments of xp, while the right-hand side
can depend on the particular distribution of xo.)
We now establish our claim (9). We know Vy ={¢xy <y = Vy, which implies that

VN1 <IN 1 VNS TN—1 VN <Ty—1 VN = V1.
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Here, the first and second inequalities follow from (8) and (7). The third inequality follows from
monotonicity of the Bellman operator [3, 25,26, 36], i.e. f<g implies Ty_1 f<7n_1g, and the
condition (6). Using the same argument we get

VN2 <Ty—2 VN1 <Ty2VN-1<Tn 2 V-1 = VN 2.

Continuing this argument recursively we get V,<V,, for t=0, ..., N.
In other words, if we can find

O, 1,5, Pryprycr, t=0,...,N,
St, Rs, e, t=0,....,N—1
for which (6) and (8) hold, then we have the lower bound on achievable performance
Tr(PoXo)+2pg % +co<J*.

In the remainder of this paper, we will focus on cases where we can effectively compute this
bound. In particular, we will see that we can optimize our bound over these variables by solving
a convex optimization problem.

2.3. Bellman inequality as an LMI

We can express the Bellman inequalities (8) as

T v1 TR S',T 7 v
z Propiflz o 5 G, 0 Vol
<min z Z , =0,...,N—
1 P;T o 1 " t r4qr
UL gt s

for all zeR", where we define
R = Rt‘i‘B,TPtJrle, 0,= Q1+A?Pt+1At, §t=St+A;rPt+lBt,
Fr=ri+B] P+ B piyt. Gi=qi+A] P+ A piy1,

5 =5 +Tr(P 1 (W, +U_)tu_f;r))+2ptT+1a)t +cry1-

This is equivalent to the condition,

v1Tf0 0 0 v v T R S’,T T v
z 0 P pi|lz |<]|z S, O G|z for all zeR", veR™
1 0 p/ e |L1 1 FTogT o5 | L1
for t=0, ..., N—1, which can be written as
RS 7y
S, 0;—P Gi—p:|=0, t=0,....,N—1. (11)

ftT th_PtT Si—¢;
Each of the terms R;, S;, 7, 0,— P, q: — pt» St —c; in the block matrix inequalities are linear
functions of the variables Q:, g;, st, P, p:, ¢t, S, Ry, and ry. Thus, inequalities (11) are linear
matrix inequalities (LMIs) [40—46]. In particular, the set of matrices Qy, q;, ¢, Py, ps, ¢, St, Ry,
and r; that satisfy (11) is convex.

The terminal condition Vy =£y can be written as

Py=0nNn, PN=qN, CN=SN, (12)

which is a set of linear equality constraints.
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1716 Y. WANG AND S. BOYD

2.4. Optimizing the bound
We can optimize lower bound (10) over the variables Qy, g;, 51, P;, pt, ¢, t =0, ..., N,and S, R, ry,
t=0, ..., N—1, by solving the optimization problem

maximize EVj(xo)

subject to  (6), (11), (12).

13)

This is a convex optimization problem. The objective can be written as
EVo(x0) ="Tr(PoXo)+2py X +co,

which is a linear function of Py, pg and co. LMIs (11) are convex constraint sets, (12) is linear
and in addition, condition (6) is convex. To see this, notice that the constraint

0,(z, v)<L(z, V)

is linear in the variables Q;, S;, R;, g, 1, s; for each z and v, and the supremum over a family of
linear functions is convex. In the general case, constraint (6) is a semi-infinite constraint, since it
is really a family of constraints parameterized by the infinite sets Cp, ...,Cy [40].

The idea behind our bound is to find functions ¢, that are everywhere smaller than the stage cost
functions ¢;. Then, ignoring the constraints, the optimal value of new stochastic control problem
with stage costs ¢, is already a lower bound on J*. If, in addition, the Bellman equations for
the new stochastic control problem are relaxed to Bellman inequalities, then the functions V; that
satisfy these inequalities are certainly also lower bounds. Finally, we optimize the bound over the
parameters by solving the optimization problem (13).

In some cases, we can solve problem (13) exactly. In other cases, we can replace the condition (6)
with a conservative approximation, which still yields a lower bound on J*. We give more specific
examples of each of these cases below.

2.5. Finite input constraint set

Here is a case for which we can solve optimization problem (13) exactly. We assume that the stage
costs are quadratic with the form

T —_ —_
Z Or S|z T T
bz, v)= T = +2q, z+2r, v+5, t=0,...,N—1 (14)
v S, R ||V

and terminal cost is quadratic with the form

In@)=2" ONz+2G Nz +5N. (15)
We also assume that there are no state constraints, and the input constraint sets are finite, i.e.

C;=R"xU;, t=0,....,N—1,

)
s

where U; ={u .,u(;()} and Cy =R". Condition (6) becomes

1" 0 S Z IR S SO 27" 0 S z T S g
4y 2Tl U NS _ _ q, 2+2r; u; " +s;
W] LSt R L] T T I A 7

(16)
for all zeR",i=1,...,K,t=0,...,N—1, and
T T T A ~T = n
2 ONZ+2gNz+sN<z Onz+2gyz+5y  for all zeR". (17)
Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:1710-1728
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We can write conditions (16) and (17) as LMIs,
[ 0:— 0 (S =Sou +a—a: }
(S =S0u+G—q0" 20— u +ul (R, — Ru” +5,—s,

i

>0 (18)

for t=0,...,N—1, and

ON—0On dGN—4gN
- T - >0. (19)
(gn—gnN) SN—SN
Thus in this case, problem (13) can be expressed as the SDP
maximize Tr(PyXo)+2pg x +co
Po (20)

subject to (18), (19), (11), (12)

with variables Qy, gy, s¢, Py, p1,cr, t=0,...,N, and S;, R;,r;, t=0, ..., N—1. This can be effec-
tively solved using interior-point methods (see, e.g. [40, 42, 47-49]).

2.6. S-procedure relaxation

We suppose again that the stage costs are quadratic, with the form in (14) and (15). Let ft(i):

R"xR"—>R,i=1,...,M;, t=0, ..., N—1, be quadratic (not necessarily convex) functions, with
the form
T (@) (1)
. z F G z . . .
)= (li)T l(i) +2¢Tz+2nTv 44}
v G, H, v

and let f](\,i):RN—>R, i=1,..., My have the form
Ig)(z)zzTFl(\f)z+2gx)Tz+dx).
Now suppose we can find matrices F,(i), Ggi), Ht(i), gt(i), hgi), and d,(i) so that
G CC={z )z, v<0,i=1,...,M}, 1=0,...,N—1
and
Cy ey =1zl fP(2)<0,i=1, ..., My}.

A sufficient condition for (6) is

sup (Z,(z,v)—f,(z,u)) <0, t=0,...,N—1, sup (ZN(z)—zN(z)) <0,

(z.v)eCy zeCy
which is equivalent to
F0<0i=1,.... M, = Iz )<z, ) @1)
fort=0,..., N—1, and
D(2)<0,i=1,....My = IN@<IN(Q). (22)
A sufficient condition for (21) and (22) is (by the so-called S-procedure [40, 41]) the existence of

nonnegative 2;1), ...,JVEM’), t=0, ..., N such that

- M, . .
Lz, v)— iz, 0)= Y 2D £z, 1)<0  for all zeR”, veR™
i=1
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and

- My . .
N —tn@)— Y AWV P(2)<0  for all zeR".

i=1

These can be written as LMIs

Qt -0 Si—5 qr—4qr | y Fz(l) ng) 8t(l)
— - t . . . .
(St_St)T Ri—R; ri—r +.2:1/AL§1) ng)T Ht(l) h;l) >0 (23)
G—q)" F—r)" §—s T 0T 4®

fort=0,...,N—1 and
|:QN_QN gN—qn | MNAU)[FIE;) 8%)}>0

- T - (24)
(gn—qn)" Sn—sn | i=l

Thus, to get a lower bound we relax condition (6) to conditions (23) and (24). This gives us
the SDP

maximize Tr(PoXo)+2pg % +co
subject to (23), (24), (11), (12) (25)
A0>0, 1=0,....N, i=1,...M

with variables Qt,qt,st,Pt,pt,Ct, t=0,...,N, S,,R,,rt, t=0,...,N_1, and /‘{y), i=1,...,M,
t=0,..., N. Again, this can be solved very efficiently [40, 42, 47-49].

2.7. Control-Lyapunov policy

There are many methods for implementing suboptimal controllers. In this paper, we consider one
of these methods, called the control-Lyapunov feedback policy (CLF).

In control-Lyapunov feedback, we modify optimal feedback function (5) by replacing the optimal
value function V;1, with an approximate value function Vtﬂl_fl :R" — R, which we call a control-
Lyapunov function [4-7]. The state feedback function at time ¢ is given by

M(z)=arg min (€(z. v)+EV (A2 +Bv+w)). (26)
(z,v)eC;
The performance of this feedback policy clearly relies on good choices for Vflf, . V]f,lf. Ideally,

a control-Lyapunov function should be a good approximation for the optimal value function, but it
should also allow the state feedback function to be effectively evaluated. For example, if the stage
costs are convex and quadratic, then common choices for Vle, eees Vf,lf would be the quadratic
value functions for the associated linear stochastic control problem with no constraints.

In this paper, when we optimize our bound on J* (either exactly, or by solving a conservative
approximation of (13)), we obtain the lower bound functions vyl V}\E’ , Where

V() =ZTPPz42p 74P, 1=0,....N.

Here, PI°, p!®, ¢l denote the P;, p;, and ¢, matrices we obtain by optimizing our lower bound (13).
Very roughly speaking, we can interpret Véb, e V}I\}’, as value functions for an unconstrained
problem that approximates our original problem. Thus, we expect that V\°, ..., V}\}’ would be good
choices for a control-Lyapunov policy. In this case, the state feedback function can be written as

TraA AT .
v R; StT 2 v

Mpy=arg min | o+ z| | S O al||z]|]
(z,v)eC;

~T AT
1 Atogh o0 1
Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:1710-1728
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where
R,=B'P" B, Q,:ATPlblA,, S;=AlP" B,
=B P® w,+Blp’,. G=ATPR W +Al Py,

In particular, when the stage cost ¢;(z,v) is convex and quadratic and the constraint set C; is
polyhedral, we can evaluate this feedback function by solving a convex quadratic program (QP)
with m variables. This can be done very efficiently: For instance, for a system with say 10 inputs,
the QP can be solved in tens of microseconds, allowing control to be carried out at tens of
kilohertz [13, 50-52]. Alternatively, we can also solve the QP explicitly offline, as a multiparametric
quadratic program (parameterized by the state z). Then, online evaluation of the control policy
reduces to searching through a lookup table of pre-computed affine controllers. When the state and
input dimensions are small, this method also yields extremely fast computation times [11, 53-59].

In Section 4 we show that for many examples, the gap between the objective achieved by the
control-Lyapunov policy and our lower bound is small, which shows that these controllers are
nearly optimal.

3. INFINITE HORIZON

We now derive a lower bound for the infinite horizon, average cost-per-stage problem. Here, we
consider a discrete time-invariant linear system with dynamics,

xt+1=Axt+BM[+w[, t=0,1,..., (27)

where x; e R" is the state, u; € R™ is the control input, w; € R" is the disturbance at time ¢, and
AeR"™" and BeR™ are the dynamics and input matrices. We assume that w; for different
values of ¢ are independent identically distributed (IID) with mean w=Ew,, and covariance
W =E(w; —w)(w; —w)T. We also assume that xq is random, and independent of all w;, but we
see that the distribution of xp will not matter in the problem we consider.

As with the finite-horizon case, we consider causal state feedback control policies, where the
current input u, is determined from the current and previous states xo, ..., x;. For the problem, we
will consider, it is also possible to show that the there is an optimal policy that is time invariant
and depends only on the current state, i.e.

ur=y(xy), t=0,1,..., (28)

where 1/ :R” — R" is called the state feedback function. For a fixed state feedback function (28)
and system dynamics (27), the state and input trajectories are stochastic processes.
We now introduce the objective function, which we assume has the form

N-1
J=limsup — E > C(xs, uy), (29)
N—oo t=0

where £:R"” x R"™ — R is the stage cost function. (Here, we assume that the expectations exist.)
The objective J is the average stage cost. We also impose constraints on the state and input

(x;,u;)eC(as.), t=0,1,..., (30)

where C CR" is a nonempty constraint set. The stage cost £ and the constraint set C need not be
convex.

The time-invariant infinite-horizon stochastic control problem is to choose the state feedback
function i that minimizes the objective J and satisfies constraint (30). We let J* denote the optimal
value of J and we let yy* denote the optimal state feedback function. The problem data are A, B,
the distribution of wy, the stage cost function ¢, and the constraint set C.

For more on the formulation of the stochastic control problem, including technical details
(e.g. finiteness of J*, existence, and uniqueness of an optimal state feedback function), see
[2,3,8-10, 36].
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3.1. Dynamic programming ‘solution’

As with the finite-horizon case, we first give the dynamic programming solution of the stochastic
control problem. We will use these results (and the notation) later. First, we define the extended
value stage cost function £:R"” x R” — RU{oo}, as

L(z,v), (z,v)eC,

o0 otherwise.

oz, v):{

The Bellman equation for the average cost-per-stage problem can be written as
at+ V=TV, €19
where V:R" — RU{oo}, a€R. Here, 7 is the steady-state Bellman operator, defined as
(Tf)(Z)=IIgH{Z(Z, V)+Ef(Az+ Bv+w;)}
for any f:R" — RU{oo}, and a2+ V is a function defined as
(a+V)x)=0+V(x)

for all x. If we can find a function V and a constant o« that satisfies (31), then J*=«, and the
optimal feedback functions are

lp*(z)=argmvin{z7(z, v)+EV(Az+Bv+w;)}. (32)

Notice that if o, V satisfy (31), then a, V + f also satisfy (31), for any € R. Thus, we can assume,
without loss of generality, that V(0)=0.

Here, several pathologies can occur. The stochastic control problem can be infeasible—there
exists no causal state feedback policy that satisfies the constraints, and attains a finite average
cost-per-stage J. The stochastic control can also be unbounded below, which means that we can
find policies for which J=—o0c. Finally, the Bellman equation may not have any solutions, i.e.
there exist no o, V that satisfy (31). In this paper, we consider only the cases where the stochastic
control problem is feasible, the optimal average cost per stage is finite, and a solution exists to
Bellman equation (31). For the technical details, including the conditions under which a solution
to the Bellman equation exists, see, e.g., [2, 3, 10, 36].

The value iteration method for the average cost problem can be written as

v — Tyv®,  yEth v _ "}'(k)(o)’ o — Q(k)(o)’ (33)

where V® . R" — RU{o0}, 1{OF) : LN RU{o0}, k=1,2,..., and VO:.R" >R is any real-valued
function. As k — o0,

k)

vo 5y (pointwise), ol o,

where V :R" — RU{oco} and o € R satisfy Bellman equation (31). As with the finite-horizon case,
the function V and the constant « can be computed only in a few special cases. One example is
where C=R" x R” and the stage cost £ is a convex quadratic function. In this case, the optimal
state feedback function is affine, i.e. u;=Kx;+g (and K, g are easily computed from the
problem data).

3.2. Basic bound

Our development of the performance bound for the infinite-horizon problem will be very similar
compared with the finite-horizon case in Section 2.2. Here, we make use of the value iteration
described in Section 3.1 to show one of our inequalities.

Let £:R" xR™ — R be quadratic with the form

_ JdTe SU<] ¢ 1
Lz,v)= . T el +2q z42r v+s.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:1710-1728
DOI: 10.1002/rnc



PERFORMANCE BOUNDS AND SUBOPTIMAL POLICIES 1721

We define an operator 7 as
(ifX@=n?ﬂﬁLw+Efuﬁ+Bv+w0L
where f:R”— R. The operator 7 is a Bellman operator with stage cost £, instead of £. Now

suppose that { satisfies £<f. As before, the notation f<g for functions f and g means pointwise
inequality, i.e. f(x)<g(x) for all x. This condition can be expressed as

sup (&ZJO—Z@,W)éO. (34)
(z,v)eC

Then, for any function f €R" — R we have
Uz, v)+Ef(Az+Bv+w)<l(z,v)+Ef(Az+Bv+w,)
for all zeR", veR™, so we get
Tr<Tf. (35)
Now let V:R" — R, be a quadratic function with the form
V()=z"Pz+2p'z

and suppose %€ R and 1% satisfy the Bellman inequality

a+VLTV. (36)
We define o and V:R" — R to be

a= lim «®, V(z)= lim V®(z) forall zeR",
k— 00

k—o00

where o® and V& satisfy the value iteration (33), with VO=V. In particular, o and V satisfy
Bellman equation (31), i.e., x+V =7V, and «a=J*. Now we claim that

aLa=J" (37)
so & is our lower bound. To prove this, we can write V&) (the kth iterate of the value iteration), as
k=1 k=1
y® =7ky© _ > D =TkV — 3 @,
i=0 i=0
This implies
k=1 k=1
TVO=TETV - Y D254+ TV - 3 oD =54 v®.
i=0 i=0

Here, the inequality follows from &+ V<TVLTV (i.e. inequalities (36) and (35)). Taking the
pointwise limit as k — co we get

a+V(2)=(TV)z)= lim (TV®)2)=a+ lim V®P(2)=a+V(z) forall zeR".
k— o0 k—o0

Thus, we conclude a<o.
This means that if we can find

0,5 R,q,s,r,P,p,

for which (34) and (36) hold, then & is a lower bound on J*. As with the finite-horizon case, we
will focus on the cases where we can effectively compute (and optimize) this bound.
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3.3. Bellman inequality as an LMI

We can express the Bellman inequality (36) as

T v
z P pllz o -
< min Z
1 | pt &l v . QT
q

for all zeR", where we define

X~
W
Qe

R=R+B"PB, Q0=0+A"PA, S=5+ATPB,
F=r+B"Pw+BTp, G=q+ATPw+ATp,
§=s+Tr(P(W+ww")+2pTw.

This is equivalent to the condition,

w170 0 07w v1TTR 5T 7o
Z 0 P pllz|<]|z S 0 q||z for all zeR", veR™,
1l {o pt &Ll 1|7 g7 5Lt
which can be written as
RS
§ 0-P G-p|=0 (38)
FTogt—pt §-3

Each of the terms R, S, 7, Q — P, g—p, $—a in the block matrix inequality is a linear function
of the variables Q, S, R, q, s, r, P, p, & Thus, inequality (38) is an LMI [40-42, 44, 45].

3.4. Optimizing the bound
As with the finite-horizon case, we can optimize our lower bound &, over the variables Q, S, R,
q,s,r, P, p, a, by solving the optimization problem

maximize &

subject to (34), (38).

(39)

Condition (34) is convex, since the constraint
£z, v)<L(z, V)

is linear in the variables Q, S, R, g, r, s, for each z and v, and the supremum over a family of linear
functions is convex. In addition, LMI (38) defines a convex constraint set, thus the optimization
problem (39) is a convex optimization problem [40].

In the general case, condition (34) is a semi-infinite constraint, since it is a family of constraints
parametrized by the infinite set C. In the following few sections, we discuss cases where we can
handle the semi-infinite constraint exactly, and cases where we can replace (34) with a relaxation,
which still yields a lower bound on J*.
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3.5. Finite input constraint set

We now describe a case for which we can solve the optimization problem (39) exactly. First, we
assume that the stage cost is quadratic with the form

Uz v)—[ZT[Q S] {Z}—I—Z’Tz%—zﬂv—l—s‘ (40)
ol 5T R 1 '

We also assume that there are no state constraints, and the input constraint set is finite, i.e.
C=R"xU,

where U = {u(l), R u(K)} CR™. Condition (34) becomes

T TrFr =~ =
z 0o S Z . z 0o S Z .
T T, ¢ T AaT, () <
L(i)] LT R}L@]Hq Z+2r u +s\[u(l.)} [ST RMM")}ZQ 2427 D45 (41)

for all zeR",i=1,..., K. We can write conditions (41) as LMIs

0-0 S—SuV+g—q
_ . . o . >0 42)
(S=uD+g—)" 26— Tu?+uDT(R—Ru® +5—s
fori=1,..., K. Thus, problem (39) becomes the SDP
maximize &
(43)

subject to (42), (38)

with variables Q, S, R, ¢, r, s, P, p, and & (which we can solve using interior-point methods
[40, 42, 47-49)).
3.6. S-procedure relaxation

Now we consider the case where we can relax condition (34), and still obtain a lower bound.
We suppose again that the stage cost is quadratic, with the form in (40). Let f@:R" x R" — R,

i=1,..., M, be quadratic (not necessarily convex) functions, with the form
T 0] 0]
. z F G Z . . .
f(l)(Z, v)= . . +2g(l)Tz+2h(')Tv+d(1).
o| [g®T HO || v

Now suppose we can find matrices FO GO HO, g(i), KD, and d© so that
ccl={lfPCv<0i=1,...,M).

A sufficient condition for (34) is

sup €z, v)— €z 1)) <0,
(z,v)eC’

which is equivalent to

fOz,0)<0,i=1, ..., M= U(z, v)<L(z, V). (44)
A sufficient condition for (44) is (by the S-procedure) the existence of nonnegative Ap, ..., Ay
such that
- M .
Uz, v)— Lz, v)— 3 4 fD(z,v)<0  for all zeR", veR™.
i=1
Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:1710-1728

DOI: 10.1002/rnc



1724 Y. WANG AND S. BOYD

This can be written as the LMI
0-0 §5-S5 G—q FO GO o0
_ _ M . . .
S=$T R-R 7—r |+X 4| GPT HD p®|>o0. (45)
=
G-q)" G—r)" ! DT pOT 40

—s g
Thus, to get a lower bound we relax condition (34) to the above LMI (45). Then, to optimize the
bound we solve the SDP

“|

maximize o
subject to (45), (38) (46)
420, i=1,....M
with variables Q, S, R, ¢, r, s, P, p, &, and 41, ..., 2). Again, this can be effectively solved (see
[40, 42, 47-49]). Note that when S=0, §=0, 7 =0, and F® =0, GH =0, g@ =0, and 1) =0,

i=1,...,M, (46) simplifies to the SDP obtained in our previous paper [14], and gives the same
bound.

3.7. Control-Lyapunov policy

As with the finite-horizon case, to get the CLF for the infinite-horizon problem we modify the
optimal feedback function (32) by replacing the optimal V, with an approximation V°:R” — R.
We call V! the steady-state control-Lyapunov function [4—7]. In this case, the state feedback
function is given by

y(z) = arg (angc(e(z, V)+EVYE(Az+ Bo+w))). (47)

As before, one natural choice for V< that arises from our lower bound is
VvIP(z)=7TP°; +2pleZ,

where P'®, p'® denote the P, p matrices we obtain by optimizing our bound (39). Again, for this
choice of V' we can write the feedback function as

v [ R
S

>
H

<

<

[\ &}
Q>
N

YyM(z)=arg min | €z, v)+]| z
(z,v)eC

11 [T T of L1

~>
_Q

where

R=B"P®B, O0=ATP%A, S$=ATP"B,

F=BTPLo BT, 5=ATPPH 4 AT pb,
When the stage cost £(z,v) is convex and quadratic and the constraint set C is polyhedral, we
can evaluate this feedback function by solving a QP with m variables (which we can do very

efficiently [11, 13, 50-60]). Examples in the following section show that V'° is often a good choice
for VeIf.

4. EXAMPLES
In this section, we compute our bound for several example problems, and compare it to the
performance achieved by the control-Lyapunov suboptimal policy (which we evaluate via Monte

Carlo simulation). The first three problems are all infinite-horizon problems, while problem 4 is
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Table 1. Performance of control-Lyapunov policy and lower bounds for three examples.

Finite input Positive input Supply chain Finite horizon
Jeif 160.0 51.0 44.6 245.9
Jib 157.0 474 39.5 211.0
n 1.9% 7.6% 12.9% 16.5%

a finite-horizon problem. Table I summarizes our results for all three examples. Here, J' is the
lower bound found by our method, J°If is the objective achieved by the control-Lyapunov policy,
and n=(J"— )/

4.1. Small example

The first example is a small problem with n=6 states and m=2 inputs. A, B matrices are
generated randomly: The entries of each matrix are drawn from a standard normal distribution,
and then A is scaled so that its spectral radius is less than one (which ensures that the open loop is
stable). This is not needed to compute the bound, but we find that the performance of suboptimal
policies can often be poor for highly unstable systems. The stage costs are quadratic with the form
in (40), where R=1I, Q:I, S=0, g=1, r=1, and 5§=0. The disturbance w; has distribution
N(1,0.257). There are no state constraints, and the input constraint set is finite with K =15 points,
ie. C=R"xU, where U = {u(l), ...,u(K)}. Each entry of u® is randomly drawn from a standard
normal distribution.

Results: For this small problem, the average objective value achieved by the control-Lyapunov
policy is 160.0. (This is averaged over 1000 time steps in statistical steady state.) The lower
bound we compute for this problem is 157.0. Thus, for this problem instance we conclude that the
control-Lyapunov policy, as well as our lower bound, are both within 2% of J*.

4.2. Nonnegative control

The second example is generated in the same way as the first example, except that it is larger,
with n=30 states and m =5 inputs. The stage costs are quadratic with R=1, 0=1, §=0, g=1,
r=1, and 5 =0. The disturbance w; is Gaussian with mean w =0 and covariance W =1. Again,
there are no state constraints; the input constraint set is U/ = {v | v>0}.

Results: For the nonnegative control problem, the average objective value achieved by the
control-Lyapunov policy is 51.0. (As before, this is averaged over 1000 time steps in statistical
steady state.) Our method gives the lower bound 47.4. Thus, we conclude that both the suboptimal
policy, as well as our bound, are within 10% of J*.

4.3. Supply chain

Our third problem instance is a single commodity supply chain with n =6 nodes, that represent
warehouses (or buffers), and 13 uni-directional links, over which the commodity can be transported
from one node to another (this is the same example as [13]). This is shown in Figure 1. Three
of these links, represented by dashed arrows, are inflows, which represent random arrivals of the
commodity at each warehouse (these cannot be controlled). We denote the vector of inflows at time
t by w,. We assume that w; is exponentially distributed with w=1 (hence W =1). The remaining
m =10 links are the controls. At time ¢ we denote the vector of commaodity transported along these
links by u;. Each component of u; is constrained to lie in the interval [0, 2.5]. The system state
x; denotes the amount of commodity present at each node, and is constrained to be nonnegative,
i.e., x,20. The final constraint is that the total flow out of any node, at any time, cannot exceed
the amount of commodity available at the node (which is a linear inequality constraint involving
x; and u;). The objective is also quadratic with Q:I, R=0, S=0, g =1, r=1. This means that
there is a storage cost at each node, with value (x;); +(Xz),-2, and a charge for transporting the
commodity along each edge.
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w2

U

T3

Uuio

Figure 1. Supply chain model. Dots represent nodes or warehouses. Arrows represent links or commodity
flow. Dashed arrows are inflows and dash-dot arrows are outflows.

Results: For the supply chain problem, the average objective value achieved by the control-
Lyapunov policy is 44.6 (averaged over 1000 time steps in statistical steady state). Our lower
bound is 39.5. This shows that the control-Lyapunov policy, as well as our lower bound, are both
within around 10% of J*.

4.4. Finite horizon

Our last example is a finite-horizon nonnegative control example. The problem instance is generated
in the same way as examples 1 and 2, with n =8 states, m =3 inputs, and horizon N =15. The
stage costs are all quadratic with R, =1, Q, =1, S,=0, q:=1,r=1,5=0,t=0,..., N—1, and
ov=I1, gy =1, sy =0. The disturbance w; is Gaussian with mean w =0 and covariance W =1.
The initial state is also Gaussian with mean xy=0 and covariance Xo=1. There are no state
constraints; the input constraint set is U; = {v|v=>0}.

Results: For this problem instance, the average objective value achieved by the finite-horizon
control-Lyapunov policy is 245.9 (averaged over 1000 runs, where each run consists of N =15
steps). The bound we get is 211.0, so both the J!f and J™ are within around 15% of J*.

5. CONCLUSIONS AND EXTENSIONS

In this paper, we have described a method for computing lower bounds on the optimal objective
value of linear stochastic control problems. Our method naturally yields an approximate value
function that can be used with a suboptimal control method, such as the control-Lyapunov policy. In
many examples, we find that the gap between the objective achieved by the control-Lyapunov policy
and our lower bound is small (say, less than 10%), which shows that both are close to J*, the optimal
value of the control problem. In other words, the controller is nearly optimal, in practical terms.

Our method directly extends to the case where the dynamics, constraints and objective functions
are polynomials. In this case, we look for polynomial lower bounds on the stage cost and value
functions. The derivation of the bounds is exactly the same as for the quadratic case, except that to
get a sufficient condition for the lower bound we use the sum-of-squares procedure instead of the
S-procedure. The resulting set of inequalities is still convex, with a tractable number of variables
and constraints as long as the degree of the polynomials as well as the state and input dimensions
are small.

The same methods can also be used to obtain piecewise quadratic bounds. For example, for the
finite-horizon case, the lower bound condition defines a family of quadratic lower bounds on the
value function. A simple observation is that the supremum over this family of lower bounds is also
a lower bound (in many cases a much better bound than the ones shown here). We will examine
these extensions in more detail in forthcoming publications.
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