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Abstract Gauss quadrature is a well-known method for estimating the integral of a
continuous function with respect to a given measure as a weighted sum of the function
evaluated at a set of node points. Gauss quadrature is traditionally developed using
orthogonal polynomials. We show that Gauss quadrature can also be obtained as the
solution to an infinite-dimensional linear program (LP): minimize the nth moment
among all nonnegative measures that match the 0 through n − 1 moments of the given
measure. While this infinite-dimensional LP provides no computational advantage in
the traditional setting of integration on the real line, it can be used to construct Gauss-
like quadratures in more general settings, including arbitrary domains in multiple
dimensions.
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1 Gauss Quadrature

We briefly review Gauss quadrature and set up our notation. Let ! ⊂ R be a closed
interval and q a given measure on !. The standard method for approximating the
definite integral of a continuous function f on ! is

∫

!

f (x) dq(x) ≈
N∑

j=1

w j f (x j ).

The right-hand side is referred to as a quadrature. The coefficients w1, w2, . . . , wN
are the weights and x1, x2, . . . , xN ∈ ! are the nodes, i.e., the locations at which the
function f is sampled to form the approximation. The quadrature is said to be of order
n if it is exact for polynomials up to degree n − 1, i.e.,

∫

!

xi dq =
N∑

j=1

w j x i
j , i = 0, . . . , n − 1.

The numbers on the left-hand side are the 0 through n − 1 moments of the measure
dq. These conditions are a set of n linear equations in the N weights. For N = n
(and for N ≥ n), for any choice of distinct nodes, we can always find weights that
satisfy the preceding equations since the coefficient matrix for the linear equations
is Vandermonde and, therefore, invertible. (However, the resulting weights are not
necessarily nonnegative.) Thus, a quadrature of order n can be found by choosing an
arbitrary set of distinct N = n nodes. We call a quadrature of order n with N < n
nodes efficient; such a quadrature requires fewer function evaluations than its order.
The linear equations for the weights of an efficient quadrature have more equations
than variables; these equations are not solvable unless the nodes are chosen very
carefully.

In 1814 Gauss [11] discovered the first efficient quadrature, which is now called a
Gauss quadrature. A Gauss quadrature of order n requires only N = n/2 nodes (for
n even). Traditionally a Gauss quadrature is developed with the theory of orthogonal
polynomials; such a treatment can be found in many standard texts [19,9,32]. There
are efficient methods to find Gauss quadrature nodes and weights, such as the Golub–
Welsch algorithm [14] and the Glaser–Liu–Rokhlin algorithm [12].

2 Gauss Quadrature Via Linear Programming

As we show in this paper, a Gauss quadrature can also be obtained as the solution
of an infinite-dimensional linear program (LP) over nonnegative measures. Again, let
! ⊆ R be a closed (but not necessarily compact) interval. Assume that supp q = !,
where q ≥ 0 is the given nonnegative measure of integration to approximate, and that
n is even, and consider the optimization problem
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minimize
∫

!

xn dµ

subject to
∫

!

xi dµ =
∫

!

xi dq, i = 0, . . . , n − 1, µ ≥ 0, (1)

where µ ∈ M is the optimization variable and M the space of finite Borel measures
on !. This is a LP with n equality constraints and an infinite-dimensional variable,
the measure µ. Problem (1) seeks a nonnegative measure with smallest nth moment
while matching the 0 to n − 1 moments of dq.

Theorem 1 There is a unique solution µ⋆ to the LP (1) given by

µ⋆ =
n/2∑

i=1

wiδxi ,

where w1, . . . , wn/2 and x1, . . . , xn/2 are the weights and nodes of the Gauss quadra-
ture and δxi denotes the Dirac measure.

By analogy to basic feasible solutions of finite-dimensional linear programs [22, §2.4],
one may expect µ⋆ to be discrete with |supp µ⋆| ≤ n. Moreover, since the constraint
µ ≥ 0 enforces wi ≥ 0 for all i , it is not surprising that µ⋆ is a quadrature with
positive weights. What is surprising is that µ⋆ is in fact a Gauss quadrature (which
has |supp µ⋆| = n/2). The proof of Theorem 1 is given in the appendix.

We immediately point out that this observation gives no computational advantage at
all in the univariate setting; it is certainly simpler to compute Gauss quadrature nodes
and weights using the classical methods than by solving an infinite-dimensional LP
over the space of nonnegative measures. The advantage of the LP formulation is that
it generalizes to other settings, as we will explore in §3.

We can give µ⋆ a minimum sensitivity interpretation. Consider a polynomial of
degree n, f (x) = α0 + α1x + · · · + αn xn . Then for any feasible µ,

∫

!

f (x) dµ = α0

∫

!

1 dµ + α1

∫

!

x dµ + · · · + αn

∫

!

xn dµ

holds, and the objective in (1) gives the sensitivity of the quadrature to αn . Thus the LP
can be interpreted as seeking the measure that gives the exact integral for polynomials
of degree less than n and is least sensitive to the xn term.

We can also interpret the optimization problem (1) as a (weighted) ℓ1-norm mini-
mization problem. Adding a constant α to the integrand xn ensures that the integrand
is strictly positive, without changing the problem (since the integral of a constant is
fixed by the moment constraint), and we can do the same for odd n if the domain is
bounded. The objective can then be written as

∫
!(α+xn) d|µ| since µ is nonnegative.

Minimizing a (possibly weighted) ℓ1-norm to obtain a sparse solution (in this case,
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one with finite and small support) is the central idea of compressed sensing [6] and
many other related methods such as lasso [33] and basis pursuit [7].

We conclude this section with two quick remarks. First, if in (1) we maximize
instead of minimize, then we obtain a Lobatto quadrature. If n is odd instead of even,
then we obtain a Randau quadrature [1, p.888]. Second, Theorem 1 can be generalized
to Chebyshev systems, a set of equations that are in some sense like polynomials
[17,28,24,18]. We omit the proofs as they are straightforward modifications of the
main result.

3 Extensions of Gauss Quadrature Via Linear Programming

We observe that the LP approach makes sense in a more general setting. Let ! ⊂ Rd

be a compact domain, with C(!) denoting the space of continuous functions on!. In
analogy to the powers x0, . . . , xn−1 that appear in (1), we let p(0), . . . , p(n−1) ∈ C(!)

be a linearly independent set of test functions, with p(0) = 1. We let r ∈ C(!) be
a function that will serve the role of xn in the LP (1); we refer to it as the sensitivity
function and assume it is linearly independent of the test functions.

Let q be a nonnegative Borel measure with supp q = !. For convenience, we use
the notation µ( f ) =

∫
! f dµ for any f ∈ C(!) and µ ∈ M.

We seek quadratures that approximate q, i.e.,

q( f ) ≈
N∑

j=1

w j f (x j ),

where x1, . . . , xN are the nodes and w1, . . . , wN the weights. We say a quadrature is
of order n if it is exact on the test functions p(0), . . . , p(n−1), i.e.,

q(p(i)) =
N∑

j=1

w j p(i)(x j ), i = 0, . . . , n − 1.

The motivation is similar to that of a Gauss quadrature; such a quadrature is accu-
rate for functions that are approximated well by the test functions. As with standard
quadratures on an interval, given a set of nodes x1, . . . , xN , the aforementioned con-
straints are a set of n linear equations in the N weights; they are generically solvable
for N ≥ n, over choices of distinct nodes x1, . . . , xN . We say a quadrature is efficient
when N < n; in this case, the linear equations for the weights have more equations
than unknowns, and so have no solution, except when the nodes are chosen carefully.

Motivated by the LP (1) we form the LP

minimize µ(r)

subject to µ(p(i)) = q(p(i)), i = 0, . . . , n − 1,

µ ≥ 0, (2)
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where µ ∈ M is the optimization variable. Here we seek a nonnegative measure that
matches the values of the given measure on the test functions and, among all such
measures, has a minimum value on the sensitivity function.

Theorem 2 The LP (2) has a solution µ⋆ that satisfies |supp µ⋆| ≤ n.

This theorem tells us that there is a solution with support on no more than n points;
such a measure gives a quadrature with nonnegative weights on no more than N = n
nodes and with nodes within the domain". Again, µ⋆ is like a basic feasible solution of
a finite-dimensional LP [22, §2.4]. The bound |supp µ⋆| ≤ n is tight in certain cases,
so we cannot say more (for example, that there exists an efficient quadrature) without
adding more assumptions about the given measure, the domain, the test functions,
and the sensitivity function. But in many examples, the LP (2) produces efficient
quadratures, analogous to a Gauss quadrature. We also note that the existence of
quadratures of order n is clear, indeed, for a generic choice of nodes; the theorem says
that there is a choice of no more than n nodes that yields a quadrature of minimum
sensitivity.

The LP (1) that characterizes Gauss quadratures has a unique solution, but the
generalized LP (2) can have multiple solutions. Moreover, it can have solutions with
infinite support; we will see an example in §5.5. It is only when supp µ⋆ is a finite
set that we can identify it with a quadrature, and the quadrature is efficient only if
|supp µ⋆| < n.

We will refer to a quadrature obtained from the LP (2) as a Gauss-LP quadrature.
Unlike a standard Gauss quadrature, such quadratures need not be unique; there can
be multiple Gauss-LP quadratures for a given ", q, p(0), . . . , p(n−1), and r .

Finally, we shall note that the choice of r is somewhat arbitrary. As discussed briefly
in the conclusion, different choices of r yield different quadratures. This in particular
tells us that in problem (2) we can either maximize or minimize because minimizing
µ(−r) is equivalent to maximizing µ(r).

4 Numerical Methods

We first point out that the optimization problem (2) is convex, but in general NP-hard,
when the dimension d is allowed to vary. The problem of deciding polynomial non-
negativity in Rd is NP-hard [25], and we will reduce it to problem (2) with Lasserre’s
approach to convexifying the polynomial nonnegativity problem [20].

Let r be a multivariate polynomial, n = 1, and p(0) = 1. Then problem (2) becomes

minimize P(r)

subject to P is a probability measure.

The optimal P is supported on the points that minimize the polynomial, and the optimal
value is the minimum value of r . This minimum value is nonnegative if and only
if r(x) ≥ 0 for all x ∈ Rd . Therefore, we have reduced an NP-hard problem to
problem (2); this implies that problem (2) is NP-hard and that there is no known
efficient algorithm to solve it.
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On the other hand, our interest is limited to cases with d fixed and quite small,
say, 2 or 3, in which case there are effective methods for solving (2). Several standard
methods can solve such infinite-dimensional optimization problems when d is small.
One approach focuses on the dual problem, which has a finite number of variables
but an infinite number of constraints and so is called a semi-infinite program [4,10].
A cutting-plane method can be used to solve the dual, from which we can construct a
solution of the original (primal) problem. There are also algorithms that resemble the
simplex or exchange method that directly solve the original problem [3,13].

For the sake of completeness we describe a simple but effective method for solving
(2) when d is small, say, 2 or 3. Our description is informal; for formal descriptions of
an algorithm to solve the infinite-dimesional LP we refer the reader to the references
cited earlier.

We choose a finite set of sample points S = {s1, . . . , sM } ⊂ ! (chosen to form a
grid with small mesh size in !) and restrict µ to the finite-dimensional subspace of
measures that are supported on S to obtain the problem

minimize µ(r)

subject to µ(p(i)) = q(p(i)), i = 0, . . . , n − 1,

µ ≥ 0,

supp µ ⊆ S,

(3)

with variable µ ∈ M. If we represent µ using µ = ∑M
i=1 αiδsi , this problem reduces to

an ordinary finite-dimensional LP for the (nonnegative) variables α1, . . . ,αM , which
is readily solved. The solution gives a quadrature using nodes contained in the sample
set S. Any basic feasible solution of the LP (say, the solution found using the simplex
algorithm) has at most n nonzero coefficients. This gives us an order n quadrature,
with at most N = n nodes.

What we observe is that the support of the discretized LP (3) often contains N < n
clusters of sample points, near each point in the support of an optimal measure. We
identify these N clusters, and for each cluster we choose a node point given by the
weighted convex combination (in which the weight of xi is proportional to wi ) of the
nodes of the approximate quadrature within the cluster; we choose as the weight the
sum of the weights in the cluster. We now have an approximate but efficient quadrature,
with nodes x̂1, . . . , x̂N and weights ŵ1, . . . , ŵN .

To further refine our solution, we now switch to local optimization and solve the
nonlinear least-squares problem

minimize
n−1∑

i=0

⎛

⎝q(p(i)) −
N∑

j=1

w j p(i)(x j )

⎞

⎠
2

subject to xi ∈ !, i = 1, . . . , N ,

wi ≥ 0, i = 1, . . . , N ,

with variables w1, . . . , wN and x1, . . . , xN , starting from our approximate solution
ŵ1, . . . , ŵN and x̂1, . . . , x̂N . Using standard sequential quadratic programming with
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an active set method [26], this typically converges quickly to a point with objective
zero, and when it does (and if N < n), we have an efficient quadrature.

Finally, we note that while the method sketched here sounds heuristic (especially
the step in which we identify N clusters), we can certify the final solution obtained
as being optimal for (2) using its dual (5), given in the appendix. The certification
requires that we check that a linear combination of p(i) and r is nonnegative on !,
which can be done by fine sampling.

5 Examples

When our method is applied to integration on the real line, with polynomial test func-
tions, a classical Gauss quadrature is recovered exactly, as predicted by Theorem 1.
In the remainder of this section we report numerical results for our quadrature con-
struction method on some more interesting examples in R2 and R3.

Traditional Gauss quadrature does not easily generalize to multidimensional inte-
grals, and while much effort has been dedicated to this problem, the theory is far
from complete. In particular, all known methods do not have optimality guarantees,
although many perform very well in practice [27,15,30,31,8,35,34]. The purpose of
this section is to provide a proof of concept for our method applied to this multidi-
mensional setting. The work should not be considered an exhaustive investigation of
the method’s practical performance.

5.1 Gauss Quadrature on the Unit Disk in R2

We take! =
{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
, with measure q( f ) =

∫
! f dxdy. We use

polynomial test functions x p yq for p+q < m, so n = m(m +1)/2, and the sensitivity
function r = xm + ym . It is also possible to include other degree m monomials in r ,
and doing so would give us a different quadrature.

The resulting Gauss-LP quadrature is shown in Fig. 1 for the case m = 10, n = 55.
The previously described method finds a solution of the LP (2) with support size 21,
i.e., a quadrature with N = 21 nodes.

Fig. 1 Gauss-LP quadrature on
unit circle in R2 with m = 10
and n = 55, with N = 21 nodes

123



Found Comput Math

Table 1 Number of nodes in Gauss-LP quadratures and Pierce’s [27] quadratures

n 3 10 21 36 55 78 105 136 171 210

Gauss-LP 1 4 9 20 21 36 37 57 65 80
Pierce 4 16 36 64 100

Pierce’s quadratures are only defined for every other entry

Fig. 2 Gauss-LP quadrature for
m = 6 and n = 21, with N = 12
nodes

The Gauss quadrature for the unit disk is well studied; Pierce [27] gives a formula
for quadratures for R2; more general formulas for Rd can be found in [31]. These
quadratures rely on the product Gauss quadrature and the polar coordinate parameter-
ization that maps [−1, 1]× [−π

2 , π2 )d−1 onto the unit ball. In Table 1 we compare the
number of required nodes, given the same test functions, between Pierce’s quadratures
and Gauss-LP quadratures found using the method described earlier. It appears that
the Gauss-LP quadratures are at least competitive with, and for larger orders more
efficient than, Pierce’s quadratures.

5.2 Gauss Quadrature on Arbitrary Domain in R2

In this example (and the next) we look at a quadrature on a nonconventional domain,
with " defined via a polynomial inequality,

" =
{
(x, y) ∈ R2 :

(
x2 + y2

)2
+ (1/2)y3 ≤ x

(
x2 + 4y2

)}
. (4)

For our first example, the given measure is simple integration on ", q( f ) =∫
" f dxdy. The test functions are monomials of degree less than m, and the sen-

sitivity function is r = xm + ym .
The Gauss-LP quadrature found for the case m = 6, n = 21 is shown in Fig. 2. It

has N = 12 nodes, a bit more than half the order.
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Fig. 3 Gauss-LP quadratures
for Poisson equation with
n = 30 and 16 nodes. Black
cross: location of x0

Fig. 4 Gauss-LP quadrature for
m = 6 and n = 56, with N = 24
nodes

In Fig. 2 we see several paired nodes, which raises the question of whether they
are numerical artifacts. However, they are not; the computed measure is indeed the
solution to problem (2), and this is verifiable, as discussed in Sect. 4.

It may be possible to improve the quadrature by further reducing the number of
nodes, perhaps by joining the pairs and running Newton’s method for root finding
[35,23]. Combining our method with existing ones could be an interesting direction
for future work.

5.3 Gauss-LP Quadrature to Approximate the Poisson Equation

Let φ f : " → R be the solution to the Poisson equation

−∇2φ f = f on int", φ f = 0 on ∂",
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Fig. 5 Gauss-LP quadrature on 2D unit square with m = 6 and n = 21. The first quadrature uses 9 nodes,
whereas the Gauss-LP quadrature produced with the rather odd choice of r uses only 8
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Fig. 6 More efficient
quadrature obtained with
different r . This one uses 11
nodes compared to 12 in Fig. 2

where ! ⊆ Rd is compact. Define q as the linear functional that maps f to φ f (x0),
where x0 ∈ int!. By the strong maximum principle q is strictly monotone and
continuous. It also satisfies supp q = !.

A natural choice for test functions are the n eigenfunctions of the Laplacian,

−∇2 : H2(!) ∩
{

f : ∂ f
∂ n̂

= 0
}

→ L2(X),

where H2(!) is the standard Sobolev space associated with the n smallest eigenvalues.
We note that λ0 = 0 and p(0) = 1. We take the sensitivity function r to be the
eigenfunction associated with λn .

Now consider the specific example with the domain given by (4). Discretized ver-
sions of p(i) are computed as eigenvectors of the discretized Laplacian, and interme-
diate values between the discretized points are obtained via interpolation. Applying
our method to find a quadrature of order n = 30, we obtain an efficient Gauss-LP
quadrature with N = 16 nodes, as shown in Fig. 3.

5.4 Surface Integration on a Torus

We take our domain! to be the torus with inner and outer radii r and R, with measure

q( f ) =
∫

!

f (x, y, z) d S =
2π∫

0

2π∫

0

f ((R + r cosφ) cos θ,

(R + r cosφ) sin θ, r sin φ) dφdθ .

In other words, q( f ) is the surface integral of f over the torus. We use polynomial test
functions x p yq zr for p + q + r < m, so n = m(m + 1)(m + 2)/6, and the sensitivity
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function r = xm + ym + zm . The resulting Gauss-LP quadrature of order n = 56 with
N = 24 nodes is shown in Fig. 4.

5.5 Solution with Infinite Support

Here we provide an example in which a solution µ⋆ of (2) is supported on a continuous
curve; in particular, the support is not finite. We take" = {(x, y) ∈ R2 : −1 ≤ x, y ≤
1}, i.e., the 2D unit square, with measure q( f ) =

∫
" f dxdy. We use 1, x , and y as

our test functions and r = x2 as our sensitivity function. The LP (2) is then

minimize µ(x2)

subject to µ(1) = 4,

µ(x) = µ(y) = 0,

µ ≥ 0,

where µ ∈ M is the optimization variable. Since x2 ≥ 0, we have p⋆ ≥ 0. So a
feasible µ is a solution if µ(x2) = 0. Finally, dµ⋆ = 2dδ0(x)dy is a solution and
supp µ⋆ is the y-axis. Clearly, |supp µ⋆| = ∞.

From Sect. 3 we know that there must be another solution supported on at most 3
points. One such example is dµ = 4dδ0(x)dδ0(y), which is supported on 1 point.

6 Conclusion and Extensions

The procedure presented in this paper provides a heuristic method to obtain efficient
quadratures for general integrals in multiple dimensions, a regime where the traditional
theory of the Gauss quadrature breaks down. While we do not have a theoretical
guarantee that the procedure will produce an efficient quadrature (except in the 1D
case) we observe empirically that it often does.

We mention here a few interesting extensions of and variations on the method. The
first concerns the choice of the sensitivity function r . We have observed that different
sensitivity functions lead to different Gauss-LP quadratures and, indeed, Gauss-LP
quadratures with different numbers of nodes. As an example, take the domain to be
the 2D unit square, the test functions to be the bivariate monomials of degree less than
m, and q( f ) =

∫
" f dxdy. If we let r = xm+ym , then the solution to (2) is the product

of 1D Gauss quadratures. However, if we choose r = cos(π2
√

(x + 1)2 + (y + 1)2),
then we obtain a quadrature of the same order with fewer nodes, as shown in Fig. 5.
Likewise, in the setting of Sect. 5.2 we find a quadrature with fewer node points with
the choice r = exp(x2 + y3), as shown in Fig. 6. This suggests the possiblity of
choosing r to minimize N , the number of node points. We do not know how to do
this; moreover, it is harder to justify an unnatural choice of r than a natural one.

Another variation is to use a nonlinear objective instead of the linear objective.
In particular, max{µ( f1), . . . , µ( fk)} is an interesting choice because it can be given
a minimax interpretation and would include |µ( f )| = max{µ( f ), µ(− f )}. These
problems can be solved as LPs as well.
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Finally, we could consider the extension to signed measures. For signed measures it
makes sense to use the objective ∥µ∥, which would be an infinite-dimensional analog
of ℓ1 minimization.
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Appendix 1: Notation

We write Cb for the Banach space of bounded continuous functions on ". Write
∥ · ∥∞ : Cb → R for the supremum norm defined as

∥ f ∥∞
def= sup

x∈"
| f (x)|.

We write M for the Banach space of finite signed Borel measures on " and for
µ ∈ M write µ ≥ 0 to denote that µ is unsigned. An unsigned measure µ is finite if
µ(") < ∞.

The support of µ ∈ M is defined as

supp µ = {x ∈ "|∀ r > 0, µ(B(x, r)) > 0} ,

and |supp µ| denotes the cardinality of supp µ as a set.
We write N for the Banach space of normal signed Borel charges of bounded

variation. A charge is a set function defined on an algebra and is like a measure
except that it is only finitely (and not necessarily countably) additive. A charge is
Borel if it is defined on the algebra generated by open sets. A charge is normal if
µ(A) = sup{µ(F) : F ⊆ A, F closed} = inf{µ(G) : A ⊆ G, G open}. A charge is
tight if µ(A) = sup{µ(K ) : K ⊆ A, K compact}. For µ ∈ M write µ ≥ 0 to denote
that µ is unsigned. An unsigned charge µ is of bounded variation if µ(") < ∞.
Integration with respect to a charge is defined similarly to Lebesgue integration [2,
§14.2].

By Theorem 5, N is isomorphic to the dual of Cb. Thus, for any µ ∈ N and f ∈ Cb
we can view µ as a linear functional acting on f , and we denote this action as

⟨ f, µ⟩ def=
∫

"

f dµ.

Appendix 2: Miscellaneous Theorems

Theorem 3 If supp q = ", a Gauss quadrature is the only quadrature that integrates
1, x, . . . , xn−1 exactly with n/2 or fewer nodes [31].
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Theorem 4 On ! ⊆ Rd , every tight finite Borel charge is a measure [2, §12.1].
(Precisely speaking, the charge has a unique extension to the Borel σ -algebra that is
a measure.)

In the proof of strong duality we will encounter charges, which are generalizations of
measures. Fortunately, Theorem 4 will allow us to conclude that the charge is in fact
a measure.

Theorem 5 For a domain! not necessarily compact, the dual space C∗
b is isomorphic

to N , the space of signed normal Borel charges of bounded variation [2, §14.3].

Theorem 5, used in the proof of Theorem 1, is analogous to the Riesz–Markov theorem
and provides an explicit representation of the dual space C∗

b .

Appendix 3: Proof of Main Results

Appendix 3.1: Proof of Theorem 1

We will call the optimization problem (1) the primal problem and the following prob-
lem the dual problem.

maximize
n−1∑
i=0

νi+1⟨xi , q⟩

subject to λ = xn −
n−1∑
i=0

νi+1xi ,

λ(x) ≥ 0, for all x ∈ !,

(5)

where ν ∈ Rn is the optimization variable. We define µ⋆ and ν⋆ as solutions of the pri-
mal and dual problems, respectively. We write λ⋆ for the polynomial that corresponds
to ν⋆. Let p⋆ and d⋆ denote the optimal values of the primal and dual problems.

In the proof we first introduce a new LP, problem (6), that is similar to the original LP,
problem (1), but different in that is has a larger search space. We show that problem (6)
is the dual of problem (5) and that strong duality and complementary slackness holds.
The nonnegative polynomial λ⋆ can have at most n/2 roots, and this will allow us to
conclude that in fact problems (6) and (1) must share the same solution and that the
solution must be a Gauss quadrature.

Proof Define

ψ(x) =
{

1 if |x | ≤ 1
1

xn otherwise

and the norm

∥ f ∥∞,ψ = ∥ fψ∥∞ = sup
x∈!

| f (x)ψ(x)|.
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Let D be the set of continuous real-valued functions f defined on ! such that
∥ f ∥∞,ψ < ∞. In other words, D = 1

ψCb is the space of continuous functions
that grow at a rate of at most O(xn).

The map T : D → Cb, where T : f $→ fψ , is an isometric lattice isomorphism
between (D, ∥·∥∞,ψ ) and (Cb, ∥·∥∞) [2, §14.3]. Thus, (D, ∥·∥∞,ψ ) is a Banach space.
Moreover, since C∗

b
∼= N by Theorem 5, the isomorphism tells us that D∗ ∼= ψN ,

where N is the Banach space of normal Borel charges of bounded variation.
Consider the following variant of the primal problem: (1)

minimize ⟨xn, µ⟩
subject to ⟨xi , µ⟩ = ⟨xi , q⟩, i = 0, . . . , n − 1,

µ ≥ 0, (6)

where µ ∈ ψN ∼= D∗ is the optimization variable. Note that µ, which used to be in
M, now resides in a larger space. Weak duality between (6) and (5) can be readily
shown via standard arguments. Both primal and dual problems are feasible because
µ = q and ν = 0 are feasible points, and therefore −∞ < d⋆ ≤ p⋆ < ∞.

Now we can apply Lagrange duality, which states: if d⋆ is finite (which we have
shown) and if there is a strictly feasible ν, then strong duality holds, a primal solution
exists, and complementary slackness holds [21, §8.6]. The point ν = e1 is strictly
feasible, and this establishes strong duality and the existence of a primal solution µ⋆.

We now claim that the dual problem attains the supremum, i.e., a solution ν⋆ exists.
We prove this in Appendix 3.2.

Next we will show that µ⋆ is a measure (not just a charge) and that supp µ⋆ ⊆
{x1, x2, . . . , xk}, where x1, x2, . . . , xk are the roots of the polynomial λ⋆. Comple-
mentary slackness states that ⟨µ⋆, λ⋆⟩ = 0. Remember that λ⋆ ≥ 0 by definition. For
any set A ⊆ R\⋃k

i=1 B(xi , ε), where ε > 0 is small, there exists a small enough
δ > 0 such that δ1A ≤ λ⋆, where 1A is the indicator function, and we have

δµ⋆(A) =
∫

!

δ1A dµ⋆ ≤
∫

!

λ⋆ dµ⋆ = 0.

So we conclude µ⋆(A) = 0. Now by the normality of the charge µ⋆,

µ⋆((xi − ε, xi )) = sup{µ⋆(F) : F closed and F ⊆ (xi − ε, xi )}.

However, by the previous argument, µ⋆(F) = 0 for any closed F such that F ⊆
(xi−ε, xi ). Therefore,µ⋆((xi−ε, xi )) = 0 and, by the same logic,µ⋆((xi , xi+ε)) = 0.
Thus, µ⋆(R\{x1, x2, . . . , xk}) = 0, and for any measurable set A we have µ⋆(A) =
µ⋆(A∩{x1, x2, . . . , xk}). In particular, {x1, x2, . . . , xk} is compact, and this establishes
the tightness of µ⋆. Thus, by Theorem 4, we conclude that µ⋆ is a discrete measure
and can have point masses only at x1, x2, . . . , xk .

Since µ⋆ is a discrete measure,

µ⋆ ∈ {µ ∈ M|µ is feasible for the primal problem (1)} ⊆ ψN .
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Therefore, the primal problem can be simplified by searching over the feasible mea-
sures in M and not over the entire superspace ψN . In other words, µ⋆, the solution
to problem (6), is a solution to the original problem (1).

Moreover, since λ⋆ is a nonnegative polynomial of degree n, it can have at most n/2
distinct roots in$, and therefore |supp µ⋆| ≤ n/2. In other words, µ⋆ is equivalent to
a quadrature that integrates 1, x, x2, . . . , xn−1 exactly with n/2 or fewer nodes. Thus,
by Theorem 3, we conclude that µ⋆ must be the Gauss quadrature and that the solution
µ⋆ is unique. ⊓$

Appendix 3.2: Attainment of Dual Optimum

Lemma 1 Let K ⊆ Rn be a proper cone. Assume u0 ∈ K ∗ has the property that for
any v ∈ K we have vT u0 > 0, unless v = 0. Then u0 ∈ int (K ∗).

Proof Assume for contradiction that u0 ∈ ∂K ∗. Then there exists a nonzero separating
hyperplane λ such that λT u0 = 0 and λT u ≥ 0 for any u ∈ K ∗. However, this implies
that λ ∈ K ∗∗ = K , and this contradicts the assumption that vT u0 > 0 for any nonzero
v ∈ K . Thus we conclude that u0 ∈ int (K ∗). ⊓$

Theorem 6 A solution to the dual problem (5) is attained.

Proof Let K be the convex cone defined as

K = {y ∈ Rn+1|yn+1xn + yn xn−1 + · · · + y2x + y1 ≥ 0 for x ∈ $},

i.e., the cone of coefficients of nonnegative polynomials.
Also, let M be the convex cone defined as

M = {m ∈ Rn+1 : m =
(
⟨1, µ⟩, ⟨x, µ⟩, . . . , ⟨xn−1, µ⟩, ⟨xn, µ⟩

)
, µ ≥ 0}, (7)

i.e., the cone of possible moments. We note that K ∗ = cl M , where cl M denotes the
closure of M , and that K ∗∗ = K as K is a proper cone [5, pp. 65–66]. The following
duality argument hinges on these facts.

Let m0 ∈ Rn+1 be the moment vector, i.e., (m0)i+1 = q(xi ) for i = 0, . . . , n.
Consider the following problem:

minimize xn+1

subject to xi = (m0)i , i = 1, . . . , n,

x ∈ K ∗, (8)

where x ∈ Rn+1 is the optimization variable. (Since K ∗ = cl M , problem (8) is in
fact equivalent to problem (1).) Lagrange duality tells us that the dual of (8) is (5)
and that a dual solution ν⋆ exists if (8) has a strictly feasible point (i.e., if Slater’s
constrain qualification holds) [5, §5.3]. We omit the Lagrange dual derivation because
it is routine and involves no unexpected tricks.
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Consider any y ∈ K such that y ̸= 0. Then

yT m0 =
∫

!

n∑

i=0

yi+1xi dq > 0

since by definition y ∈ K implies
∑n

i=0 yi+1xi ≥ 0 and since supp q = !. Thus, by
Lemma 1, we see that m0 ∈ int (K ∗), i.e., m0 is strictly feasible. Hence, we conclude
that a dual solution ν⋆ exists. ⊓&

Appendix 3.3: Proof of Theorem 2

Proof We write

M = {m ∈ Rn+1 : m =
(
⟨p(0), µ⟩, ⟨p(1), µ⟩, . . . , ⟨p(n−1), µ⟩, ⟨r, µ⟩

)
, µ ≥ 0},

(9)

and we will call M the moment cone. Also, define

K =
{
(p(0)(x), p(1)(x), . . . , p(n−1)(x), r(x)) ∈ Rn+1 : x ∈ !

}
.

Since the p(i) and r are continuous, K is the image of a compact set under a continuous
function and therefore is compact. We assume as before that p(0) = 1 and, therefore,
0 /∈ convK , where convK denotes the convex hull of K . Therefore, cone K , the
conical hull of K , is closed [16, §1.4].

Now we prove cone K = M . By choosing µ to have point masses at a finite number
of points in (9), we can produce any element in cone K and therefore cone K ⊆ M .
Now assume for contradiction that cone K ̸= M . In other words, assume there exists
an m ∈ M such that m /∈ cone K . Since cone K is a closed convex set, there must be a
strictly separating hyperplane λ such that λT m < 0 and λT n ≥ 0 for any n ∈ cone K .
However, since m ∈ M , there must exist a corresponding measure µ ≥ 0 that produced
m in (9), i.e.,

mi+1 = ⟨p(i), µ⟩ for i = 0, . . . , n − 1 and mn+1 = ⟨r, µ⟩.

Therefore,

λT m =
〈

λn+1r +
n−1∑

i=0

λi+1 p(i), µ

〉

< 0,

and this in particular implies that

λn+1r(x) +
n−1∑

i=0

λi+1 p(i)(x) < 0
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for some x ∈ !. However, since by construction λT n ≥ 0 for all n ∈ K ⊆ cone K ,
i.e.,

λn+1r(x) +
n−1∑

i=0

λi+1 p(i)(x) ≥ 0 for all x ∈ !,

we have a contradiction. Therefore, cone K = M and M is closed.
Now consider the optimization problem

minimize mn+1

subject to mi = q(p(i)), i = 0, . . . , n − 1,

m ∈ M,

where m ∈ Rn+1 is the optimization variable. Note that this problem is equivalent
to the original problem (2). Since M is closed, so is the feasible set. Moreover, the
feasible set is bounded because for any m ∈ M , the last coordinate mn+1 (the only
one that is not fixed) is bouned since

|mn+1| = |µ(r)| ≤ ∥r∥∞µ(1) = ∥r∥∞q(1) < ∞

for some nonnegative measure µ ∈ M. Therefore, the feasible set is compact. Finally,
the feasible set is nonempty because m ∈ M generated by the measure q is a feasible
point. Therefore, there exist an optimal m⋆ for the reduced problem and a µ⋆ that
generated m⋆; this µ⋆ is optimal for the original problem (2).

Now, by Carathéodory’s theorem on cones [29, §17], m⋆ ∈ cone K = M can be
expressed as a linear combination of at most n+1 vectors in K . This linear combination
is equivalent to a measure with point masses at at most n +1 locations. In other words,
m⋆ can be produced (in the sense of (9)) by a measure µ⋆, where |supp µ⋆| ≤ n + 1.
This µ⋆ is a solution to problem (2).

Finally, we can further reduce the support of this solution. Given a solution µ⋆ with
finite support, we can restrict problem (2) to searching only over measures that are
supported on supp µ⋆. This reduces problem (2) to a finite-dimensional LP, which
always has a solution supported on n or fewer points [22, §2.4]. ⊓)
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