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Abstract—We consider the problem of choosing the gate sizes or
scale factors in a combinational logic circuit in order to minimize
the total area, subject to simple RC timing constraints, and a min-
imum-allowed gate size. This problem is well known to be a geo-
metric program (GP), and can be solved by using standard interi-
orpoint methods for small- and medium-size problems with up to
several thousand gates. In this paper, we describe a new method
for solving this problem that handles far larger circuits, up to a
million gates, and is far faster. Numerical experiments show that
our method can compute an adequately accurate solution within
around 200 iterations; each iteration, in turn, consists of a few
passes over the circuit. In particular, the complexity of our method,
with a fixed number of iterations, is linear in the number of gates.
A simple implementation of our algorithm can size a 10 000 gate
circuit in 25 s, a 100 000 gate circuit in 4 min, and a million gate
circuit in 40 min, approximately. For the million gate circuit, the
associated GP has three million variables and more than six mil-
lion monomial terms in its constraints; as far as we know, these are
the largest GPs ever solved.

Index Terms—Gate sizing, geometric programming (GP), large-
scale optimization.

I. INTRODUCTION

W E consider the gate-sizing problem, that is, the problem
of choosing scale factors for the gates in a combina-

tional logic circuit in order to minimize area, or any other ob-
jective function that is a linear function of the gate scale factors
(such as power), subject to some timing requirements. We are
given the circuit topology and timing constraints; the variables
to be chosen are the gate-scale factors, which must exceed some
minimum-allowed value. The scale factor of a gate affects its
delay, area, and input capacitance, and also affects the load ca-
pacitance (and, therefore, also the delay) of any gate that drives
it. The gate delays, in turn, affect the arrival times of signals,
which are subject to given requirements.

In this paper, we use a relatively simple, but standard model
for timing analysis, based on an RC model for each gate and
static timing analysis. The same (or equivalent) model is used,
for example, in the logical effort method [1], [2]. This timing
model is approximate and even with careful tuning of the model
parameters is unlikely to predict actual timing with an accuracy
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of better than 5% or 10%. For this reason, there is no need to
solve the gate-sizing problem considered here to an accuracy of
better than 5% or so.

Several methods can be used to achieve higher accuracy (if
it is needed). First, our method can be extended to more com-
plex (and accurate) models that account for differing rising and
falling gate delays, the effects of signal slope, and better models
of gate and wire load delay, as described in [3]. Another ap-
proach to obtaining higher accuracy is to use the method de-
scribed in this paper to find an initial design, and then use a
local optimization method, with accurate models, to fine-tune
this design. This general approach can also be used to deal with
problems in which the gate scale factors are restricted to a fi-
nite set of values, instead of being continuously variable, as is
assumed here. We first solve the (approximate) problem, using
the method described in this paper, ignoring the discrete con-
straints. We then round the scale factors obtained to valid values.
Finally, we use a local method, with accurate timing models,
to fine-tune the design. In this approach, the RC gate-sizing
method described in this paper is used as a fast method for ob-
taining a good initial condition for a local optimization method
(see, for example, [3]).

The gate-sizing problem and variations on it, such as wire
and device sizing, have been studied in many papers (e.g.,
[4]–[9]). Many methods have been proposed to solve, or ap-
proximately solve, the gate-sizing problem and its variations
(e.g., [10]–[12]). The most widely known is the logical effort
method [1], [2], [13], which provides fast heuristics or design
guidelines for approximately solving the gate-sizing problem.
(The main focus of the logical effort method is, however, giving
design insight, and not solving the problem per se.) Another
approach is based on formulating the gate-sizing problem as a
geometric program (GP), and using a standard interior-point GP
solver (e.g., [14]–[16]) to obtain the exact solution [17]–[19],
[3]. These methods can solve the gate scaling problem for cir-
cuits with up to 10 000 gates, but require an effort that typically
scales with problem size more than linearly, and so, becomes
impractical for larger problems. In this paper, we describe a
custom method for solving the gate-sizing problem, to within a
few percent accuracy that is extremely fast and handles circuits
with up to 1 000 000 gates (or more). Numerical experiments
show that our method can compute an adequately accurate
solution within around 200 iterations; each iteration, in turn,
consists of a few passes over the circuit. In particular, the com-
plexity of our method, which uses a fixed number of iterations,
is linear in the number of gates. A simple implementation of
our algorithm can size a 10 000 gate circuit in 25 s, a 100 000
gate circuit in 4 min, and a million gate circuit in 40 min
approximately.

For the million gate circuit, the associated GP has three mil-
lion variables and more than six million monomial terms in
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its constraints. As far as we know, these are the largest GPs
ever solved to date (by any method, for any application). A
custom method for solving the -regularized logistic regression
problem, which is similar to the gate-sizing problem, can be cast
as a GP and is reported in [21]. While the general approach is
similar to the method described here at the highest level, all of
the critical details differ.

The outline of the paper is as follows. In Section II, we
provide the gate-sizing optimization problem. In Section III, we
consider a variation on the gate-sizing optimization problem,
when the arrival times are fixed, and give a very efficient
method, which we call nonlinear back substitution, to solve
it exactly. Using this method, we can reduce the general
gate-sizing problem to an unconstrained optimization problem,
where the variables are the arrival times. This problem is not
differentiable; however, in Section IV, we introduce a smooth
(and convex) approximation. In Section V, we describe our
algorithm, which is a variation on a truncated pseudo-Newton
method, which solves the gate-sizing optimization problem
efficiently. In Section VI, we report some numerical results for
our method applied to various examples. In Section VII, we
give a proof of convexity for the unconstrained problem and
the approximation; these imply that the solutions that are found
are, in fact, global.

II. GATE SIZING

In this section, we describe our timing model and the gate-
sizing problem, and give an overview of our method.

We consider a combinational logic circuit consisting of
gates, labeled . Its topology will be described by a di-
rected acyclic graph, where each node represents a gate and each
edge represents an interconnection from the output of a gate to
an input of another gate. We let denote the number of edges
(interconnections). We define the set , the fan-in of gate ,
as

there is a connection from the output of

gate to an input of gate

and the set , the fan-out of gate , as

there is a connection from the output of

gate to an input of gate

Gate is said to drive gate if . Gates for which
the fan-out is the empty set are called primary output gates
or just primary outputs, and gates for which the fan-in is the
empty set are called primary input gates or just primary in-
puts. We denote the set of primary output gates by O. We order
the gates in such a way that , for

. In other words, a gate can only drive another gate
with a higher index. (This is possible because the topology is a
directed acyclic graph.) In addition, we list the primary output
gates last . Thus, we have gates that are
not primary outputs.

Each gate has a size or scale factor , with ,
which denotes the size of the gate relative to the minimum-size
gate of the same type. A gate with is called a minimum-
size gate. The gate sizes will be the design variables

in our problem. We let be the vector of gate scale
factors.

Each gate has an area, which we take to be , where is
the area of the minimum-size gate . (In other words, we assume
that the gate area scales linearly with the scale factor.) The total
area is then , where is the (given, positive) vector of area
of the minimum-size gates.

Each gate has a delay that depends on its size and the size
of the gates in its fan-out. We will use the model

(1)

where , and are the given
problem parameters. Here, gives the minimum possible
delay of gate , obtained only in the limit as , with
all other gates fixed. All entries of the matrix are non-nega-
tive; moreover, the sparsity pattern of is given by the circuit
topology:

As a result of our ordering of gates, the matrix is strictly upper
triangular, and the number of nonzero entries in is the number
of interconnections . The set of (1) can be written in matrix
form as

where denotes the diagonal matrix with entries
.

Throughout this paper, we will use the timing model (1), pa-
rametrized by , and . But we briefly explain here how
the standard RC delay model can be put in our form. In the RC
model, gate is modeled as an RC circuit, with resistance in-
versely proportional to scale factor, and a total capacitance that
has contributions from the gate itself, a wire load, and the input
capacitance of gates that it drives. The delay of gate is then
taken to be the product of the resistance and capacitance (times
a constant, typically 0.69, that gives the 50% threshold delay of
an RC circuit). We can write this as

(2)

where is the driving resistance, is the internal capaci-
tance, and is the input capacitance of a minimum-size ver-
sion of gate , and is the wire load capacitance for gate
. (We have absorbed the constant 0.69 into the constants .)

Our model here assumes that the internal capacitance and input
capacitance of a gate scales linearly with the scale factor. Al-
though (2) does not distinguish between different input pins of
a gate, we could account for this by adding another subscript
that denotes an input pin (or driving gate) to . The RC timing
model (2) is readily mapped to our model:

otherwise.
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We now describe the timing of the whole circuit. We define
the arrival time for gate as the latest time at which its signal
becomes valid. This is defined recursively, as follows. We define
the arrival time of a primary input gate as its delay. The arrival
time of gate is defined recursively as its own gate delay, plus
the largest arrival time of its fan-in gates. Our timing constraint
is that the arrival times for all output gates should not exceed

, which is the (given) timing specification for the whole cir-
cuit. (This assumes, for simplicity, that the signals at the inputs
of the primary input gates arrive at time 0, and that the timing
requirement on all primary output gates is the same. We can
readily extend our model to incorporate different arrival times
for the primary inputs, and different arrival time requirements
for the primary outputs.) The maximum arrival time at the pri-
mary output gates (with the signals at the inputs of the primary
input gates arriving at time 0) is called the delay of the circuit.

It will be convenient for us to work with upper bounds on the
gate delays and arrival times, instead of their actual values. We
let denote an upper bound on gate delay (i.e., ),
and we let denote an upper bound on the arrival time at gate .
The timing requirements can then be expressed as a set of linear
inequalities and equalities

(3)

The inequality (3) is interpreted as if . If
and satisfy these conditions, and , then will be an
upper bound on the arrival time at gate , and the overall circuit
timing constraints will be met. In the sequel, we will call the
delay of gate , and the arrival time of gate , even though they
are really only upper bounds on these quantities. The vector of
arrival times is also called the timing assignment.

Now we can form the gate-sizing optimization problem. The
objective is to minimize the area of the circuit subject to meeting
the timing constraints. Instead of the variables , we will use
variables , which give the additional gate delay,
above the minimum value. (Our motivation for formulating the
problem in the variables , instead of , will be explained in
Section IV-B). The optimization problem is

minimize

subject to

(4)

where the variables are , and . The
domain of the problem, denoted by , is

(5)

The problem parameters are , and . (The circuit
topology can be extracted from the matrix .) The second in-
equality in the problem (4) is interpreted as if

.
The problem (4) has variables, inequality constraints,

and linear equality constraints. The equality constraints

are easily eliminated, of course, since each one constrains one
variable to a specific value. We can simply consider the variables
to be , and , and replace with
the (constant) .

We note that we can just as well minimize any linear function
of , with positive coefficients, such as power, or some linear
combination of area and power.

The problem (4) is a GP (see [3] and [19]), and so can be
solved (globally) by standard methods. For GP, see [25] and
[26].

A. Overview of Our Approach

Our approach to solve the gate-sizing optimization problem
consisting of several steps. In this section, we give a brief
overview of the steps involved.

In Section III, we describe an efficient method, called the
nonlinear back substitution, to eliminate the variables and ,
thereby reducing the problem to an unconstrained optimization
problem in the unspecified arrival time . Thus, if we are given
optimal (nearly optimal) arrival times, we can very efficiently
compute the optimal (nearly optimal) and .

The objective function of the reduced problem is not differ-
entiable because the gate-sizing optimization problem (4) has
implicit max and min functions. In Section IV, we construct a
smooth approximation of the original problem (4), by replacing
the max and min functions with soft-max and soft-min func-
tions. When nonlinear back substitution is applied to this ap-
proximation, we reduce it to a smooth unconstrained optimiza-
tion problem in the unspecified arrival times. At this point, we
have a very large, but smooth and convex, unconstrained opti-
mization problem.

To solve this optimization problem efficiently, we develop a
customized method, which is of the truncated pseudo-Newton
type, described in Section V. We define an appropriate surro-
gate for the Hessian of the objective function, and then compute
our search direction using an iterative method (preconditioned
conjugate gradients) to approximately solve the pseudo-Newton
equation.

The overall algorithm proceeds as follows. We first initialize
the variables using a method described in Section V-A. We use
our truncated pseudo-Newton method to approximately mini-
mize the smoothed objective. Finally, we use nonlinear back
substitution to obtain the final design. Efficiency depends on two
issues: first, we must be able to compute the search directions
fast, and second, the search directions must be good enough so
that the overall problem can be solved in a reasonable number
of iterations.

The solution found by using this method (or more accurately,
would be found if the method were carried out to high accu-
racy) is, in fact, a globally optimal solution. This follows from
convexity of the original and the smoothed reduced problems,
which is shown in Section VII.

III. NONLINEAR BACK SUBSTITUTION

In this section, we show how the gate-sizing optimization
problem (4) can be transformed to an unconstrained optimiza-
tion problem in the unspecified arrival times.
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The optimization problem (4) can be written as

minimize

subject to

(6)

with the variables , and .
We consider the problem (6) for a fixed timing assignment ,

which is

minimize

subject to

(7)

with the variables and . Here, the timing assignment is
considered given problem data, along with , and .

The solution to the problem (7) can be computed
efficiently as follows. First, is computed as

(8)

If any is found to be nonpositive, we simply terminate as the
timing assignment that is infeasible.

The optimal sizes are given by the backward recursion: for

(9)

Note that for any , the sizes required to calculate have
been calculated in the previous steps.

We will now show that the point , computed by the
above procedure, is optimal. Suppose that is not op-
timal and let the optimal point be . The point has a
lower objective value (i.e., ). Let be the largest
index such that . If , then

which means there is a such that ,
thereby making infeasible. If , consider the point

with replaced by . This point is feasible
since the delay of any other gate can only decrease by decreasing

. The objective value of this point is lower than that of .
Thus, cannot be optimal. Therefore, is the op-
timal point.

The optimal sizes are calculated starting from the back of
the circuit at the primary output gates, and moving to the pri-

mary input gates. We call this procedure nonlinear back substi-
tution, because if we consider the problem (7) without the con-
straints on the minimum gate size, then the solution is given
by (8), and is given by the upper triangular matrix equation

where . The solution can be ef-
ficiently found by back substitution, the standard algorithm
for solving a set of upper triangular linear equations: for

Thus, the recursion (9) can be considered to be a generalization
of the standard back substitution algorithm.

A. Reduced Problem

Let the optimal value of the optimization problem (7), as a
function of , be denoted by . The domain of the function

is given by

(10)

If , the inequality is interpreted as .
The function can be viewed as a composition

(11)

The function is given by (8). The function is a function
of , and is implicitly defined as a backward recursion by (9).
The optimization problem (6) (and, therefore, (4)) is reduced to
the optimization problem

minimize

subject to (12)

and further to the unconstrained optimization problem of mini-
mizing over the unspecified arrival time .

The function is not differentiable because the min and the
max functions, that appear in and , respectively, are not
differentiable. In Section VII, we will show that is a convex
function of and, therefore, a method that finds a local minimum
of , in fact, finds a global minimum of and, thus, finds a
globally optimal solution of the gate-sizing problem.

IV. SMOOTH APPROXIMATION

In this section, we show how to construct a smooth approx-
imation to , by substituting the max and min functions in (6)
with soft-max and soft-min functions, respectively.

A. Soft-Max and Soft-Min Functions

Consider the soft-max function

where , and . The domain of the soft-max function
is
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The soft-max function satisfies the inequality

We call this property the conservative nature of the soft-max
function. Further, for any , as , the value of the
soft-max function decreases monotonically to the value of the

function. The soft-min function is constructed by applying
the soft-max function to the inverse of , i.e.,

where , and . The domain of the soft-max function
is

The soft-min function is also conservative, i.e.,

We also use the following notation for the soft-min function:

A soft-max (soft-min) function is characterized by the weight
.

B. Smooth Approximation

To obtain an approximation to the problem (6), we replace the
max and the min functions in the problem (6) with the soft-max
(with weight ) and the soft-min (with weight )
functions, respectively. The problem that is obtained is

minimize

subject to

(13)

The variables are , and . The domain
of the problem is , as given in (5).

In Section III, the problem (7) was obtained by considering
the problem (6) for fixed arrival times. Similarly, we consider
the problem (13) for fixed arrival times. The solution to this
problem can be efficiently obtained by nonlinear back
substitution with a slight modification, which is, in (8), the
min function being replaced by the soft-min function ,
and in (9) the max function being replaced by the soft-max
function . Let the optimal value of the optimization
problem (13) for a fixed be denoted by . The domain
of the function [given in (10)]. Similar to
that in Section III-A, this reduces the problem (13) to the
unconstrained optimization problem of minimizing over the
unspecified arrival time .

Similar to the function as shown in (11), the function
can be viewed as the composition , where

is defined by using the soft-min function, and is defined
by using the soft-max function. The function is differentiable
because the soft-min and soft-max functions that appear in the
composition are differentiable.

The function is an approximation to , and as
for any . Further, for any

. This is due to the conservative nature of the soft-min and
the soft-max functions. The obtained by the soft-min func-
tion is smaller than the obtained by the min function. A de-
crease in the delays, coupled with the conservative nature of the
soft-max function, yields larger than the one found using the
max function and the larger . Thus, for any , the optimal
objective value of the problem (13) for a fixed is al-
ways greater than or equal to the optimal objective value of the
problem (7) .

In Section VII, we will show that is a convex function of
and, therefore, a method that finds a local minimum of ,

in fact, finds a global minimum of and, therefore, finds a
globally optimal solution of the problem (13).

We can now explain the reason for formulating the
gate-sizing optimization problem in the variables of the
additional gate delays, instead of the variables of the actual
gate delays. Formulating the problem (4) in the variables

and following the same process by which the problem
(13) was obtained, will lead to approximating the function

by ; whereas, in the
problem (13), we approximate with

. It can be shown that

which means that is a better
approximation than to

. If and the number of gates in is greater than
1, the inequalities can be shown to be strict. Thus, the advan-
tage of formulating the problem in the additional gate delays

, instead of the gate delays , is that we obtain a better ap-
proximation to .

V. METHOD

We considered several candidate methods for minimizing
over the unspecified arrival time . Simple

methods, such as gradient or diagonally scaled gradient, re-
quired far too many iterations to converge; quasi-Newton
methods required too much memory.

We developed a custom method of the truncated pseudo-
Newton type (see [27, Ch. 6] and [28, Ch. 9] for related opti-
mization methods.) The method consists of the following steps:

Step 1) Compute a feasible initial point .

Repeat

Step 2a) Compute the gradient of the function with
respect to .
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Step 2b) Compute a search direction as an
approximate solution to the system with a
diagonally preconditioned conjugate gradient method.

Step 2c) Compute the step size by backtracking the
line search.

Step 2d) Update. .

Until the stopping criteria is satisfied.

Step 3) Use to compute the area and gate size by
nonlinear back substitution.

In Step 2b), the matrix is a suitable approximation of or surro-
gate for the Hessian of . We describe each step of the method
in detail in the following sections and, in particular, the surro-
gate for the Hessian of , the preconditioned conjugate gra-
dient (PCG) algorithm implementation to find a search direction

.
The method is called pseudo-Newton because the matrix

(in Step 2b) is not the Hessian of , but only an approximation;
it is called truncated because the search direction (in Step
2b) is computed by terminating the PCG algorithm after only
a few iterations, well before an accurate solution of the system
has been computed.

A. Initial Point

In this section, we will find a timing assignment
so that . In the process, we will find
additional delays so that and are feasible for the
problem (4).

We first consider the circuit with all of the gates operating at
their minimum delays (i.e., the additional delays

). The arrival times are calculated by a forward re-
cursion: for

The delay of the circuit, with all of the gates operating at their
minimum delay is

A timing constraint on the circuit is feasible if and only if
; therefore, is called the minimum circuit delay. The

minimum circuit delay is achieved in the limit as
and . (Since we order the gates

so that , the above conditions imply that
, and .)

The critical slack of gate , denoted by , is the maximum
additional delay of gate , such that when gate has delay

and all other gates have their minimum delays, the
delay of the circuit is less than or equal to . For a feasible
timing , the critical slack of gate satisfies

.
A path in the circuit is a sequence of gates for which each gate

in the sequence is in the fan-in of the next gate in the sequence.
The length of a path is the number of gates in the sequence. A
longest path through a gate is a path among all of the paths that
contain the gate for which the length of the path is greater than

or equal to any other path that contains the gate. Let the length
of a longest path through gate be .

We set to be

The arrival times are calculated by the forward recursion: for

(14)

Since the critical slacks are positive, the additional delays are
positive, and the arrival time satisfies . Further, the
delay along any path is less than or equal to because the ad-
ditional delay of any gate along the path is less than or equal to

, divided by the length of the path.
Finally, to obtain a feasible point for the problem (4), we set

the arrival times for all primary output gates to be . This can
only increase the arrival times of the primary output gates and,
thus, with . Therefore, we
have a feasible initial point for the unconstrained optimization
problem.

We refer to a recursion [e.g., (14)], as a pass over the circuit,
in particular, a forward recursion of the type (14) as a forward
pass, and a backward recursion of type (9) as a backward pass.
The critical slack and the length of a longest path through the
gate can be found for all gates by carrying out two passes over
the circuit (one forward and one backward), each requiring a
very modest number of computations per interconnection.

B. Gradient

In this section, we will show how to compute the gradient of
the function efficiently. To simplify the notation, we write

as , respectively, in this section.
Similar to the function as given in (11), the function is

a composition: . The function is given by
(8) with the replaced by , which is

(15)

The function is implicitly defined by the recursion (9), with the
replaced by . With a little rearrangement of terms,

we can write the function as

(16)

The set of equations (16) shows that can be written explicitly
as a function of .

Let

To find the gradient of , we apply the chain rule.
Applying the chain rule to as a function of gives

...
... (17)
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The partial derivatives, using (15), are

otherwise

Since we can write as an explicit function of , see (16), we
can compute . Applying the chain rule to as a function
of gives

...
... (18)

where . The partial derivatives, using (16), are

otherwise

To calculate , we start with . Then, we
solve (18) to obtain . The Jacobian matrix in (18) is lower
triangular, and has nonzero entries. Therefore, can
be calculated efficiently. Finally, is given by (17).

The gradient of the function with respect to is the
vector consisting of the first components of .

C. Search Direction

For a large-scale problem solving a Newton-like system
[e.g., (19)] accuracy is not computationally practical, and is not
needed. We need to find a search direction which is good
enough in terms of the tradeoff of the computational complexity
versus the accelerated convergence it provides. In our method,
the search direction is an approximate solution of

(19)

where the matrix is not the Hessian of the but a
matrix that captures the critical curvature of .

Consider the function

(20)

The domain of the function [given in (10)]. The
matrix , instead of being the Hessian of , is the Hessian
of the function (with respect to ). In (20), if ,
the term should be interpreted as

.
The Hessian of the function (with respect to )

can be written compactly in the following notation. Let the in-
terconnect wires of the circuit be labeled , where each
wire connects the output of a particular gate to an input of a par-
ticular gate. We also label wires , one for each
primary input gate, where each wire connects to any input of
a different primary input gate. These wires though can be con-
nections from the output of a pseudo-gate to an input of every
primary input gate. Thus, we have primary input gates,

and wires. We define as follows. For ,
let

where wire connects the output of gate to an input of gate ;
and for , let

where wire connects to an input of the (primary input) gate .
Let the matrix be

wire connects to an input of gate
wire connects to the output of gate
otherwise

The Hessian of (with respect to ) is

The Hessian of with respect to is the top left
subblock of the matrix . The matrix is given by

where is the matrix formed by the first rows of
the matrix .

The matrix is the Laplacian matrix of the graph with
weights on the edges . (See [29, Sec. 2.5] for
the Laplacian matrix of a graph.) Therefore, the matrix (and

) is diagonally dominant. Since the diagonal entries of are
positive and offdiagonal entries of are nonpositive, diagonal
dominance for means . We note
this fact for future use.

To find a search direction , we approximately solve the
system (19) using a diagonally preconditioned conjugate gra-
dient (PCG) algorithm. We will not go into the details of the
PCG algorithm, and refer the reader to [30] [31, Sec. 6.7], [27,
Ch. 5]. It is well known that the PCG algorithm with diagonal
preconditioning performs well when the matrix is diagonally
dominant, which is indeed the case for the matrix . (See, for
example, ([32, Sec. 6.1] and ([28, Sec. 8.5] for more details.)
Within a small number of iterations of the PCG algorithm, we
expect to obtain enough of a search direction .

We now describe the important points needed in an imple-
mentation of the PCG algorithm, which are the initialization
rule, the truncation rule, and a couple of operations described
below. First, we need to multiply a given vector
with the Hessian , which is implemented as follows. To
compute , we start by multiplying the vector with the
matrix , then we multiply the vector with the matrix

, and the result with
the matrix to obtain . Note
that we never need to form the matrix . Second, given
and the preconditioning matrix , we need to solve the system
of equations , for . Since our preconditioning matrix

is a diagonal matrix, solving the system is trivial.
The diagonal of is the diagonal of , which has positive
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entries and is given by , where the matrix
is

Note that depends on but the matrix does not. The ma-
trix depends on the circuit topology and, therefore, needs
to be computed only once.

Now we address the issue of initialization and truncation of
the PCG algorithm. A good initial search direction requires, on
average, fewer iterations of the PCG algorithm and, therefore,
can accelerate the method. There are many choices for the initial
search direction (e.g., 0, the search direction found in the pre-
vious step of the method). The truncation rule for the algorithm
gives the number of PCG iterations to be carried out before ter-
minating the algorithm. Among the various schemes we tried
out for the choice of the initial search direction and the trunca-
tion rule, the following implementation worked quite well.

In our implementation, the PCG algorithm is initialized with
0 if the decrement in the objective value in the previous step
is less than 0.05 times the decrement in the objective from two
steps before. This check indicates that the search direction found
in the previous step is not good enough for the current step.
Otherwise, the search direction found in the previous step is
used for initialization.

The truncation rule in our implementation is simple. We per-
form two PCG iterations when the PCG algorithm is initial-
ized with the search direction found in the previous step of the
method, and four PCG iterations when the PCG algorithm is
initialized with 0. This means that we carry out, at most, four
PCG iterations irrespective of the size of the matrix . Each
PCG iteration, in turn, involves a small number of passes over
the circuit.

We should make a few comments about our choice of the
function for the surrogate Hessian. The function is a com-
position of functions, so applying the chain rule to obtain the
Hessian will involve Tensor products, which is cumbersome;
the complexity of computing the Hessian of (let alone com-
puting the search direction) will be at least , which will
defeat our aim of having a scalable method. Second, the function

can be obtained by substituting
for , in the objective function . This
captures, approximately, the inverse relationship of the gate size

and the additional gate delay , where is given by (15).
Also, the Hessian of the function can be easily adapted for
applying the PCG algorithm as shown earlier in this section.

D. Line Search

Given the search direction , the new point is , where
, the step size, is to be computed. A backtracking line

search is implemented to find the step size . First, to ensure that
the new point is feasible, we compute the maximum step size
such that the point is feasible, i.e.,

In the backtracking line search, taking the initial value of
, the following condition is checked:

(21)

with . If the condition (21) holds, then is taken to
be the step size, else the step size is set to be , with

, and the procedure is repeated. The current point is
updated (i.e., ).

Note that an iteration of the backtracking line search is expen-
sive. Each iteration of the line search [i.e., checking the condi-
tion (21)] requires one evaluation of the function , which is
one nonlinear back substitution.

E. Complexity

The computational complexity of the method, for a fixed
number of iterations, is linear in the number of interconnections
(or edges) . To see this, we analyze the complexity of each
step of the method.

We analyze the step that needs to be carried out only one
time, which is to find an initial feasible point. To compute the
initial point, we need to compute the lengths of a longest path
and the critical slacks for all of the gates. These quantities can
be computed by two recursions which take a small number of
operations per interconnection .

Now we analyze the operations that are performed for every
step of the method. First, we need to find the gradient . The
complexity of computing or is the number of nonzero
entries in the Jacobian matrices in (18) and (19). Each matrix
has nonzero entries, so the complexity of computing the
gradient is linear in . Second, we need to compute the search
direction (i.e., an approximate solution to the system )
by the PCG algorithm. The computationally expensive oper-
ation for a PCG iteration is the matrix–vector multiplication,
which primarily depends on the number of nonzeros in the ma-
trix . The number of nonzeros in is linear in . Since every
step requires, at most, four PCG iterations, computing a search
direction has a complexity that is linear in . To compute the
step size, we require a small number of backtracking line search
iterations. For each iteration, we need to evaluate , which
is one nonlinear back substitution. The complexity of the non-
linear back substitution is linear in the number of edges because
it requires a traversal of the circuit once from the primary out-
puts to the primary inputs, considering each edge exactly once.
Thus, the complexity of nonlinear back substitution and, there-
fore, the complexity of computing the step size is linear in .

Finally, suppose the stopping criteria does not depend on the
circuit size ( or ). Then, the complexity of the method is
linear in the number of interconnections in the circuit. Sup-
pose that the average fan-out of a gate is constant, and does not
depend on (which usually is the case). Then, depends lin-
early on and, therefore, the complexity of the method is linear
in the number of gates of the circuit .

The numerical experiments in Section VI-B suggest that a
few hundred steps are sufficient to obtain a good enough solu-
tion, even for very large circuits. Thus it seems to be, for prac-
tical purposes, that the complexity of the method is linear in the
number of gates in the circuit.

VI. EXAMPLES

In this section, we apply our method to 105 circuits. The
examples consist of 35 different circuit topologies, and for each
topology, we solve the gate-sizing optimization problem for
three timing specifications: loose, medium, and tight. The 35

Authorized licensed use limited to: Stanford University. Downloaded on April 30,2010 at 20:37:02 UTC from IEEE Xplore.  Restrictions apply. 



2768 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 9, OCTOBER 2008

TABLE I
RC MODEL PARAMETER VALUES

circuit topologies consist of 11 ISCAS-85 benchmark circuits
[33], with numbers of gates ranging from 6 to 3512. The other
24 topologies are randomly generated, with the number of gates
ranging from 100 to 1000000.

We use the standard RC model for the gate delays as shown in
(2), with model parameter values given in Table I. These model
parameter values come from the logical effort model (see [1]).
The values are chosen so that the delay of the unit-size inverter
with no load is . Thus, the unit of time is taken to
be the delay of an unloaded unit-size inverter.

The randomly generated circuits include five types of gates,
given in Table I. Depending on the number of inputs of a gate,
the RC model parameter values for the gate are chosen from
Table I. If there are two or more models with the same number of
inputs, we choose among them with equal probability. The value
of wire/fixed load capacitance for a gate is chosen ran-
domly from a uniform distribution on . For a gate whose
output is an output of the circuit, a capacitance of 20 is added
to the wire/fixed load capacitance. For the ISCAS-85 circuits,
the RC model parameter values for gates are chosen similarly,
according to the number of inputs of the gate. If the number of
inputs of a gate exceeds three, then the parameter values are
given by

The resistance is taken to be 0.333.
The timing specification for a circuit will be given in terms

of the minimum circuit delay . For the randomly generated
circuits, the loose timing specification is ,
the medium timing specification is , and
the tight timing specification is . For the
ISCAS-85 circuits, ,
and . These timing specifications are chosen
so that the distribution of the optimal gate sizes is reasonable.
For the loose timing specification, around half of the optimal
gate sizes are of minimum size, and the largest gates have a size
on the order of 16. For the medium timing specification, approx-
imately 35% of the optimal sizes were of minimum size, and the
maximum gate size was 64. For the tight timing specification,
around a quarter of the optimal gates have minimum size, and
the largest gates have a size on the order of 128.

We will judge convergence by , the suboptimality of a
timing assignment , defined as

(22)

where is the optimal area. The domain of the function is
[given in (10)]. To observe the performance of

our method, we will look at the suboptimality versus the
cumulative number of PCG iterations.

To calculate the suboptimality, we need to know the exact
optimal area , which can be found by solving the problem
by a standard technique. As mentioned earlier, the gate-sizing
optimization problem (4) is a GP, and a standard technique is
to transform the problem into a convex optimization problem
and use an interior-point method to solve it. The advantage of
the interior-point-based standard method is that we can solve the
problem to a high degree of accuracy, which is guaranteed by the
method since it produces a certificate of optimality for the solu-
tion. For all but the three largest circuits (with 100 000 and more
gates), we used a customized GP solver, using a primal-dual in-
terior-point method to solve the convex optimization problem,
with each Newton step solved approximately by the PCG algo-
rithm. For the large circuits, computing the exact value of
was expensive (tens of hours), but we did this only to reliably
judge the convergence of our method (which was much faster).
For the three largest circuits, even our custom GP solver failed.
For these circuits, we estimated by using our own algorithm
to run many iterations (1000). For these circuits then, we cannot
absolutely certify that our value of is correct, but we have
very high confidence in our estimates. (This will become clear
later.)
A. Randomly Generated Circuit Topologies

To generate a circuit topology, we decide on a number of
levels , and the number of gates in each level , so the total
number of gates in the circuit is . Level 1 gates are
primary input gates and level gates are primary output gates.
For each gate in the circuit, the number of inputs of the gate
are chosen independently according to the following probability
distribution.

Similarly, the tentative number of gates in the fan-out of a gate
is chosen to be independent of its number of inputs and other
gates, according to the following probability distribution.

The actual number of gates in the fan-out of a gate can be less
than the randomly generated number due to the nonavailability
of gate inputs at a higher level. In such a case, the gate’s output
serves as an output of the circuit.

The output of a gate will be connected to an input of a gate
at a higher level, or will serve as an output of the circuit. There-
fore, the topology of the circuit will be a directed acyclic graph.
For each gate, for each output, a level is chosen independently
according to the following probability distribution.

Once a level is chosen, then among all of the unconnected inputs
of all the gates in that level, one unconnected input is chosen
randomly. This input and the output of the gate (at a lower level)
for which this input has been selected, are then connected. After
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TABLE II
PCG ITERATIONS REQUIRED TO ACHIEVE 10% AND 5% SUBOPTIMALITY FOR ISCAS-85 BENCHMARK CIRCUITS

connecting the outputs of all the gates, some gates may have
some of their inputs unconnected. Such unconnected inputs are
considered as the inputs of the circuit.

We generate 24 topologies, ranging from 100 gates (rand1),
up to 1 000 000 gates (rand24). These topologies are listed in
Table II.

B. Numerical Results

We start by showing the performance of the method for a typ-
ical circuit, rand21, with 100 000 gates, and the medium timing
specification. Fig. 1 shows the suboptimality versus the
cumulative number of PCG iterations. The soft-max weight is

5, and the soft-min weight is 55. The dotted line
shows the value of , and the solid line displays
the suboptimality . Since for any , the solid
line is below the dotted line. The two circles indicate the first
iteration to achieve 10% and 5% suboptimality (i.e., 50 and 72
iterations, respectively). To give a rough idea of the speed of our
algorithm, we note that the custom GP solver required around
20 h to compute , whereas our algorithm required around
4 min to compute a 5% suboptimal point. The time taken by
MOSEK [14] (a standard GP solver) to compute for a much
smaller circuit, rand8 with 1200 gates, is around 20 min.

We solve the gate-sizing optimization problem (4) for the
randomly generated circuits with the loose, medium, and tight
timing specifications. We use soft-max weight 5, and

Fig. 1. Suboptimality versus cumulative PCG iterations for the rand21 circuit
(consisting of 100 000 gates), with a medium timing specification.

soft-min weight 55. The cumulative number of PCG iter-
ations required to achieve 10% and 5% suboptimality is shown
in Table II. The corresponding numbers for the ISCAS-85 cir-
cuits are shown in Table III. For all of the circuits, the plot of
the suboptimality versus cumulative number of PCG iterations
looks similar to Fig. 1. In general, with a cumulative number of
500 PCG iterations (or less), the method has converged to the
optimal solution (i.e., the suboptimality is less than 1%).

Increasing the number of PCG iterations in each step to com-
pute an approximate search direction does not help. Consider,
for example, the rand21 circuit with a medium timing specifica-
tion. If ten PCG iterations are used in each step, the cumulative
PCG iterations required to achieve 10% and 5% suboptimality
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TABLE III
PCG ITERATIONS REQUIRED TO ACHIEVE 10% AND 5% SUBOPTIMALITY

FOR RANDOMLY GENERATED CIRCUITS

are 120 and 220, respectively, as compared to 50 and 72. Sim-
ilar results are observed for the other circuits, which indicates
that increasing the number of PCG iterations for each step is, in
fact, wasteful.

The values for weights of the soft-max and soft-min func-
tions and , respectively, are chosen so the approximation

is good enough, as judged by the final performance. For very
small values of and , the approximation is poor enough to
the affect final performance; for very large values of and ,
numerical problems are sometimes encountered. However, the
method works for a wide range of values of and .

For various circuits, the average number of line search itera-
tions to find the step size in Step 2c) of the algorithm, is three or
sometimes even less. Each line search iteration [i.e., checking
condition (21)], requires one nonlinear back substitution, which
is one pass over the circuit. The computational effort of the line
search amortized over the PCG iterations is small. Thus, mea-
suring the computational effort of the method in terms of the
cumulative PCG iterations is a good criterion.

As mentioned earlier, it is not practical to solve the gate-sizing
optimization problem for circuits rand22, rand23, and rand24
(which contain more than 100 000 gates), using the cus-
tomized GP solver. For these large-scale circuits, the optimal
area is taken to be the area obtained by our method
after running for 1000 cumulative PCG iterations. This is
indicated by a break in Table II. For these three large cir-
cuits, the loose, medium, and tight timing specification were
changed to , and

, respectively, so as to achieve reasonable
distributions of optimal gate sizes. (For the same reason, we use

, and
for the c6288 ISCAS-85 circuit.)

The values in Tables II and III indicate that the cumulative
number of PCG iterations required to achieve points with a sub-
optimality of less than 10% or 5% do not depend on the problem
size (i.e., the number of gates ). (The ratio of the number of in-
terconnections to the number of gates is around two for the ran-
domly generated topologies, and around 1.5 for the ISCAS-85
circuits. Therefore, we will use the number of gates as our com-
parison criterion.) In fact, a couple hundred cumulative PCG

Fig. 2. Suboptimality (in percentage) at 200 and 300 cumulative PCG iterations
for various circuits.

iterations are good enough to achieve a point with a subopti-
mality of less than 10%. The cumulative number of PCG it-
erations do depend on the timing specification. One reason is
that the suboptimality of the initial point found by the method
described in Section V-A increases as the timing specification

decreases. The suboptimality of the initial point for the cir-
cuits with a loose timing specification is around 20%; with a
medium timing specification, the suboptimality is around 50%;
and with the tight timing specification, the suboptimality is typ-
ically around 150%. In some cases, the initial points are within
10% of optimality, before any PCG steps have been carried out.
(This is seen as the entries marked as 0 in Table III.) This is the
case for the ISCAS-85 c17 circuit, for example, even with the
tight timing specification.

Of course, in practice, we do not know the value of . The
numerical results that are shown (and many others that are not
shown) suggest that a very safe stopping criterion is to simply
run the algorithm for some fixed total PCG iterations, such as
200 or 300. We plot the number of circuits versus the subopti-
mality obtained after 200 and 300 iterations in Fig. 2. We see
that at 300 PCG iterations, the suboptimality is less than 10%
for all circuits and less than 5% for most of the circuits.

Finally, we report the time required to obtain a point with
less than 10% suboptimality for various circuits. A scatter plot
of time taken versus the number of gates in the circuit is shown
in Fig. 3 on a log–log scale. The dashed line is the least-squares
fit of the function to the log of the observed
times. The parameters and are found to be 1.11 and ,
respectively. This shows that the time required to achieve 10%
suboptimality is nearly linear in the number of gates (or inter-
connect wires).

Our implementation , written in MATLAB and C (using
the MEX interface), is available online [34]. The method takes
approximately 20 s for the rand14 (9000 gate) circuit, 4 min
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Fig. 3. Time required to achieve a point with less than 10% suboptimality for
various circuits.

for the rand21 (100 000 gate) circuit, and 40 min for the rand24
(1 000 000 gate) circuit to achieve a point with less than 10%
suboptimality. Since the method is implemented in MATLAB,
the measured times should not be taken too seriously; a com-
plete C implementation is expected to be substantially faster.

Of course, these experiments do not prove that our method
will converge to a point with 5% suboptimality or less within,
say, 300 PCG iterations. However, these results (and many
others not reported here) strongly suggest that this is the case.

VII. GLOBAL OPTIMALITY

In this section, we will show that the functions and are
convex in .

Before proceeding, we would like to mention an im-
portant difference between the traditional approach to
solve the gate-sizing optimization problem as a GP, and
our approach. One standard way to solve the problem
(4) is based on recognizing that the problem is a GP in
the variables . This means that the
problem (4) is a convex optimization problem in the variables

. Our approach is different.
We show that the gate-sizing optimization problem (4) can be
formulated as a convex optimization problem in the variables

. This will lead us to show that
function is convex in . The function is not differentiable,
and we construct a smooth approximation by choosing the
soft-min and soft-max functions so that is also convex in .

A. Convexity of

Consider the transformation
(23)

Using the transformation (23) and taking the log of the inequal-
ities, the problem (4) becomes

minimize

subject to

(24)

where the variables are , and . The
domain of the problem, denoted as is

(25)

Here, if , we mean . Note that unlike the GP,
we have not transformed the to .

Now we show that the optimization problem (24) is a convex
optimization problem in the variables , and . The objective
function

is convex in as and are convex in
. The first set of constraints can be written as

since . The function
on the left-hand side is a -sum- function in the variables

and and, therefore, a convex function of the
variables. The second set of inequalities is

The function is a convex function of
since it is a composition of , a convex function, with an
affine transformation of . The function on the left-hand
side of the inequality is affine in . Thus, the function is a
convex function of , and . Therefore, the optimization
problem (24) is convex in the variables , and .

The optimal objective value of the problem (7) as a function
of (i.e., ) is the optimal objective value of the problem (6)
or (24) for the given (fixed) . A convex optimization problem,
when minimized over a subset of variables, leaves a convex
problem in the remaining set of variables (see [25, Sec. 3.2.5]).
Thus, eliminating and in the problem (24), which effectively
is eliminating and in the problem (6), gives the convex op-
timization problem (12). Therefore, is convex in .

B. Convexity of

Consider the optimization problem (13). Using the change of
variables (23) and writing the soft-min and soft-max functions
explicitly, the optimization problem obtained is

minimize

subject to

(26)
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with the variables being , and . The do-
main of the problem is [given in (25)]. Rearranging the terms
and taking the log of the first set of inequalities, the optimiza-
tion problem (26) can be written as

minimize

subject to

(27)

We now show that the problem (27) is a convex optimization
problem in the variables , and . The objective function is
convex in , as shown in Section VII-A. The first set of inequal-
ities can be written as

since . The function
on the right side is the log-sum-exp function, and the function

is concave in [see (28) in the Appendix].
Thus, the first set of inequalities represents a convex set. The
second set of inequalities is

where . Using
(30) in the Appendix and since is an affine transformation of

, the function on the right-hand side is a convex function
of , and . Thus, the second set of inequali-
ties also represents a convex set. Therefore, the problem (27) is
convex in and .

The optimal objective value of the approximation (13) as
a function (i.e., ) is the optimal objective value of the
problem (13) or (27) for the given (fixed) . Thus, eliminating

and in the problem (27), which effectively is eliminating
and in the problem (13), presents the optimization problem of
minimizing subject to . Therefore, is
convex in .

VIII. CONCLUSION

In this paper, we have described a new custom method for
solving the gate-sizing problem with an RC timing model. Nu-
merical experiments show that the method reliably finds solu-
tions accurate to 5% (or better) with a computational effort that
scales linearly with a problem size, up to 1 000 000 gates. Our
method can size a 1 000 000-gate circuit in around 40 min. For
a circuit of this size, the associated GP has 3 000 000 variables,

and more than 6 000 000 monomial terms in the constraints. As
far as we know, these are among the largest GPs ever solved.

The same approach can be generalized to handle a variety of
extensions. For example, the nonlinear back substitution method
can be used with any delay model in which the gate delay is
monotone decreasing in the gate size, for a given load capaci-
tance. More complex timing models, such as distinguishing be-
tween rising and falling gate delays and signal arrival times, can
also be used.

Finally, we mention a variation on the problem formulation.
In this paper, we focus on the problem of minimizing area (or
power), given a timing constraint. (As part of our solution, we
determine, very efficiently, whether the timing constraint is fea-
sible.) Our method can be used to trace out the entire optimal
tradeoff curve between the area and circuit delay (i.e., ). This
is done simply by minimizing the area, for each of several values
of . Once we have this curve, we can readily solve the problem
of minimizing the circuit delay, subject to a limit on area.

APPENDIX

SOME CONVEX FUNCTIONS

In this section, we show the convexity of some of the func-
tions used in Section VII-B.

Consider the function
(28)

where , and is a positive constant. The domain of is
. The function is convex in . This can

be seen by calculating the second derivative of

which is positive for any .
Consider the function

(29)

where , and is a positive constant. The domain
of is . The function is
convex in . To prove this, we will show that the Hessian
of is positive definite. The Hessian of the function is

The diagonal elements of the 2 2 Hessian matrix are positive.
The determinant of the Hessian is

Therefore, the function is convex.
Consider the function

(30)

where , and is a positive constant. The domain
of is

The function is convex in , as it is the sum of convex
functions, each function of the form given in (29).
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