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Abstract— An adaptive rate and power control approach
is presented in this paper. The approach is layered, with
a rate optimization algorithm selecting the optimal rates
for the system and a power control algorithm subsequently
calculating the associated powers. The approach adapts to
changes in demands on the system such as the arrival or
departure of users, changes in the rate thresholds expected
by users, and changes in the mix of traffic presented to the
system.

Basic properties and performance limits are established
within the mathematical framework of Perron Frobenius
matrix theory. The right and left eigenvectors of a matrix
associated with the network are found to describe the
optimal performance of each link in the system. Leveraging
this analysis, a method is described that seeks optimal rates.
A simulation demonstrates the performance gain associated
with this approach.

Index Terms— wireless networks, power and rate control,
utility functions, optimization, adaptation and admission,
Perron Frobenius

I. INTRODUCTION

FUTURE wireless networks will need to automat-
ically adjust link rates and transmitter powers in

response to changes in user demand, network configura-
tion, or QoS requirements. A wireless Internet terminal
may demand a large bursty data rate when compared to
that of a typical cell phone. Likewise, two way video
will demand data rates substantially different from those
of voice only communications. In multi-hop networks
the problem is exacerbated by the need to account for
multiple data flows across multiple links. The challenge
for the network is to find the “best” link rates and
associated set of “best” transmitter powers to support
the demands on the system.

There are two general ways to solve the problem
of joint power and rate optimization. The first is to
simultaneously optimize both the powers and rates in
one algorithm, and the second is to iteratively optimize
the rates and powers separately. The joint optimization
problem can be solved globally and efficiently by many
methods, such as geometric programming [1], [2], [3];

however, we are not aware of a distributed implementa-
tion for the joint optimization.

The second way to optimize is to iteratively optimize
the powers and rates. The problem of finding the optimal
set of transmitter powers for a known set of link data
rates has been extensively investigated. The problem
of finding the optimal set of link data rates, however,
has received considerably less attention [4], [5], [6],
possibly because until recently link rates have generally
been fixed. G. Foschini and Z. Miljanic in their paper
on distributed power control [7] addressed the issue of
finding optimal rates by positing a “Genie” that provided
the network optimal target link rates.

This paper presents a method for finding the optimal
link rates in a network, and, in this way, functions as the
Genie described by G. Foschini and Z. Miljanic. Optimal
in this context means that the set of rates maximizes a
system performance measure or alternatively a set of user
utility functions. The system gain matrix is key to this
approach. This matrix of power gains implicitly defines
the set of link rates feasible for the system. This set is
convex and can be used to find the optimal rates for
reasonable performance measures.

Figure 1 illustrates the basic concept. The upper level
system corresponds to the rate optimization algorithm
and the lower level system to the algorithm for calculat-
ing the correct powers for the optimal rates. The powers
can be calculated in several different ways. A distributed
approach is suggested in [8]. The two levels exchange
information in an iterative fashion. The rate optimization
algorithm provides rate targets for the power algorithm
and receives several types of power information in return.
The variables p, q, λpf correspond to the transmitter pow-
ers for the network, the transmitter powers for the adjoint
network (with G′ = GT ) which might be used to carry
acknowledgements, and the Perron Frobenius eigenvalue
associated with the system, which is discussed exten-
sively in this paper. Interestingly, p and q correspond to
the right and left eigenvectors associated with the system.
Surprisingly, q completely characterizes the interference
seen by links in the network. In particular q will be seen
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Fig. 1. Rate and Power Control Relationship.

to scale the effect of transmitter powers on link rates.
The rate optimization algorithm is adaptive. As users

enter or leave the network, or users change their rate
demands, the algorithm automatically searches for rates
that best meet the new demands or set of QoS require-
ments. The rate optimization algorithm searches the set
of feasible rates by systematically exploring the asso-
ciated rate-region. This region is defined by the Perron
Frobenius eigenvalue associated with the network, and
is also convex. As users change their requirements, the
algorithm iteratively seeks to align these new demands
with points in the rate-region in such a way that the
system performance metric is maximized.

This paper is divided into several sections. Section II
describes the wireless network model. Section III math-
ematically formulates the problem. Section IV analyzes
the problem and develops tools for developing a rate
optimization algorithm. Section V describes the rate
optimization algorithm. Finally, section VI presents sim-
ulation results.

II. SYSTEM MODEL

A. Wireless Network

This paper considers a network of n links, each
link with one transmitter and one receiver. All links
utilize a CDMA transmission scheme and share the same
bandwidth.

The line of sight propagation model between a trans-
mitter and a receiver is

pr = pKd

(

d0

d

)γ

, (1)

where pr is the received power, p is the transmitted
power, d is the propagation path length, and d0 is a

reference distance for the antenna far-field, usually taken
so that the normalization constant Kd equals 1. The path
loss exponent γ is usually between 2 and 6 for most
propagation environments.

B. Signal to Interference Ratio

The SIR for the ith link is defined as

ρi =
KspiLiid

−γi

i αi
∑N

j 6=i pjLijd
−γj

j αj

. (2)

The constant Ks is the spreading gain for the link, and
the constant Lii captures the effect of fading for the
path from the transmitter to the receiver on the ith link.
The Lij are similarly defined as the gain associated
with fading from the transmitter on the jth link and the
receiver on the ith link. Receiver noise is assumed to be
dominated by interference power and is neglected in this
model. The factors αj are introduced to accommodate
normalization constants and other factors, such as the
effect of beam-forming in multi-antenna systems.

To simplify notation the various constants in this
equation can be collected and SIR rewritten as

ρi =
Giipi

∑

j 6=i Gijpj

. (3)

Gii represents the effective gain between the transmitter
and receiver on link i and includes the multiplicative
spreading gain Ks, antenna gain, coding gain, and other
gain factors. Likewise Gij represents the effective gain
from the interfering transmitter on link j to the receiver
on link i. Note that this allows for more general models
than that given in equations 1 and 2. The gain matrix G
with elements Gij is assumed to be irreducible in what
follows.

Because noise is neglected in this model, the set
of powers can be arbitrarily scaled without effecting
ρi; That is, SIR is homogeneous of order zero in the
transmitter powers. By choosing to scale the sum to one,
1T p = 1, the pi can be interpreted as representing the
relative powers of the transmitters or equivalently the
percent of total power transmitted by the system.

In most systems ρi � 1 since it represents the
effective SIR after spreading gain, antenna gain, and
coding gain

C. Link Rate Transfer Rate

The link rate Ri specifies the capacity of the link in
units of bits or fixed length packets per second for a
given power vector p. It models the physical capacity
of the link and is the maximum rate at which data can
actually be transferred over the link. The transfer rate
ri is the rate at which the system chooses to actually
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send data over the link. For a given p the transfer rate
ri is necessarily less than the link rate Ri, ri ≤ Ri.
For obvious physical reasons both rates are non-negative,
ri, Ri ≥ 0.

An empirically based link rate model for M-QAM and
M-PSK modulation is [9]

Ri = α log(1 + Kρi), (4)

where K = (−1.5)/(ln(5BER)) and BER is the target
average bit error rate. The constant α is a scaling
constant and represents the base of the logarithm used
and several other system constants.

This is similar in form to the information theoretic
capacity model,

Ci = W log(1 + ρi). (5)

For reasons that will become clear later, the link
rate model used in this paper is a simplified version of
equation 4:

Ri = log(ρi). (6)

The constant K is absorbed into Gii, and α is taken as
equal to 1, since this constant has the effect of scaling
all rates equally. The assumption ρi ≥ 1 is necessary to
prevent negative rates, and ρi � 1 makes equation 6
a good approximation of equation 4. Since ρi is the
effective SIR accounting for the various gains in the
system, ρi � 1 will be the case for most real systems
in normal operation.

D. Rate-Region

The rate-region is the set of feasible transfer rates r ∈
Rn

+ for the system. A transfer rate r ∈ Rn
+ is feasible if it

is possible for the system to simultaneously transfer data
over the network at the specified rates for some power
vector p. By considering all power allocations the set
of feasible transfer rates can be found. Analytically the
rate-region can be described as

R = {r ∈ Rn
+|r ≤ R(p) for some p}, (7)

where r ≤ R for two vectors means component-wise
inequality, i.e. ri ≤ Ri for all i.

The rate-region R is convex. This is shown by first
defining the set of feasible transfer rate and power pairs
(r, p), demonstrating its convexity, and projecting it onto
the rate transfer space. The set of feasible transfer rate
and power pairs, M, is the set of (r, p) such that ri ≤
log(ρi) for all links i. Analytically,

M = {(r, p) ∈ R2n
+ |ri ≤ log(ρi),∀i}

=
⋂

i{(r, p) ∈ R2n
+ |ri ≤ log(ρi)}

=
⋂

i Mi.
(8)

0
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The Mi = {(r, p) ∈ R2n
+ |ri ≤ log(ρi)} are convex. This

can be seen by the change of variables xi = log pi and
rewriting the set qualifier as follows:

ri ≤ log(ρi) ⇔ e−ri ≥ ρ−1
i

⇔ e−ri ≥
∑

j 6=i Gije
xj G−1

ii e−xi

⇔ 1 ≥
∑

j 6=i Gije
xj G−1

ii e−xieri

⇔ 0 ≥ log(
∑

j 6=i Gije
xj G−1

ii e−xieri).
(9)

It is known [1] that the function log(
∑

αie
yi), for

αi ∈ R+ and yi ∈ R, is convex in y. Sub-level
sets of convex functions always define convex sets, so
equation 9 defines a convex set in the variables log pi

and ri. Since the intersection of convex sets is convex
M must also be convex.

The rate-region R is a projection of M onto the
transfer rate space. Since linear projection conserves
convexity, the rate-region R must also be convex. An
example of the rate region is shown in Figure 2.

E. Performance Metrics

System performance is modeled by a function U that
represents the value of a rate vector r to the system.
This function can represent the utility a user derives from
using the system at a particular rate or can be implied
by data protocols, service rate agreements, or other
system level metrics [10], [11], [12]. By assumption,
a higher data rate is valued at least as much as a
lower data rate, so U is a non-decreasing function of
r. Also, by assumption, there is a diminishing return to
additional data rate, so U is a concave function of r.
For convenience U is termed the system utility function,
although it may be composed of functions other than
user utility functions.

One example of the system utility is U(r) =
∑

i Ui(ri) in a single cell site where each user uses a
single link and the figure of merit is the sum of the user’s
utility functions Ui.
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A single voice link might have a protocol that requires
a minimum ri but is indifferent to rates above this rate.
An appropriate function is the following:

Ui(ri) =

{

−∞, ri < Rmini

c, ri ≥ Rmini
.

(10)

A wireless Internet user might benefit from an increased
rj and be willing to pay more for this service. A possible
link metric is then Uj(rj) = αrj , where implicitly the
user pays more for more bandwidth.

QoS constraints can be added to this formulation by
embedding them in the Ui. A video user might have
a minimum required rate to ensure a minimum level
of picture quality, and subjectively value rates above
this threshold according to his personal utility function.
Assuming a logarithmic utility function

Ui(ri) =

{

−∞, ri < Rmini

α log(ri) + b, ri ≥ Rmini
.

(11)

System performance metrics can also be formulated
for multi-hop networks.

In what follows U is assumed to have continuous
second derivatives.

III. PROBLEM FORMULATION

The goal is to find the best set of rates r such that the
system figure of merit U is maximized. Formally this is
expressed as:

maximizer U(r)
subject to r ∈ R.

(12)

This is a convex optimization problem in variable r since
the constraint set is convex and the objective maximized
is concave. Each r ∈ R is associated with one or more
power vectors p.

An alternative expression is more revealing and useful
in what follows. The rate constraints may be rewritten
as follows:

ri ≤ log(ρi) ⇔ pi ≥
eri

Gii

∑

j 6=i Gijpj

⇔ p ≥ DG̃p,
(13)

where the inequality is taken to mean element wise, D
∆
=

diag
(

eri

Gii

)

and

G̃ij =

{

Gij , i 6= j
0, i = j.

(14)

Thus the rate-region R can be rewritten as R = {r ∈
Rn

+|p ≥ DG̃p, p > 0}, and the problem can be
expressed as,

maximizep,r U(r)

subject to p ≥ DG̃p
p > 0,

(15)

This formulation can be solved numerically in several
different ways, such as interior point methods. In this
paper a new approach based on Perron Frobenius theory
of positive matrices is developed.

IV. ANALYSIS

A. Perron-Frobenius

For a square matrix A the notation A > 0 means
A is an element-wise positive matrix. The eigenvalue
of A with greatest magnitude is the Perron-Frobenius
eigenvalue λpf(A). If the matrix A > 0 is regular,
meaning that (Ak)ij > 0 for all i, j and some positive
integer k, then λpf is strictly positive and unique, and the
associated right and left eigenvectors p > 0 and q > 0
are strictly positive. If λpf(A) is the Perron-Frobenius
eigenvalue for regular A > 0, then the inequality βp ≥
Ap has a feasible p > 0 if and only if λpf(A) ≤ β.
Finally, for any positive matrix, the monotone property
states if Aij ≤ Bij for all i, j with strict inequality for
at least one i, j then λpf(A) < λpf(B).

Since D is a function of r, in what follows the
Perron Frobenius eigenvalue associated with the network
is written as λpf(D(r)G̃).

The Perron Frobenius eigenvalue associated with the
network is convex in r. This can be seen by applying the
monotone property of positive matrices and the definition
of convexity for 0 ≤ α ≤ 1,

D(αr1 + (1 − α)r2)G̃=diag
(

eαr1+(1−α)r2

Gii

)

G̃

≤diag
(

αer1 + (1 − α)er2

Gii

)

G̃

=αD(r1)G̃ + (1 − α)D(r2)G̃,

where the inequality follows from the convexity of ex.
By the monotone property of positive matrices it follows
that

λpf(D(αr1 + (1 − α)r2)G̃)

≤ αλpf(D(r1)G̃) + (1 − α)λpf(D(r2)G̃).
(16)

The Perron Frobenius eigenvalue associated with
D(r)G̃ is also a differentiable function of r. By as-
sumption the matrix DG̃ is irreducible, so λpf(D(r)G̃)
is a unique eigenvalue. Since it is a unique root of the
characteristic polynomial it is continuous in the elements
of D(r)G̃. Further, by an application of Gerschgorin’s
Theorem [13] λpf(D(r)G̃) is differentiable in the ele-
ments of D(r)G̃.

The rate-region R = {r ∈ Rn
+|p ≥ DG̃p, p > 0}

can be rewritten as R = {r ∈ Rn
+|λpf(D(r)G̃) ≤ 1},

and the network rate optimization problem can then be
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re-expressed as

maximizer U(r)

subject to λpf(D(r)G̃) ≤ 1
r > 0,

(17)

where the objective is concave and the constraints con-
vex.

B. Pareto Surface

A point r ∈ R is Pareto optimal for the rate-region
R if there does not exist another point r′ ∈ R that
dominates r. A point r′ ∈ R dominates r if r′i ≥ ri

for all i, and r′j > rj for some j. The notation r′ �d r
means r′ dominates r. The Pareto surface is defined as
the set of Pareto optimal points,

P = {r ∈ R|∃/r′ ∈ R s.t. r′ �d r}. (18)

A solution to the utility maximization problem always
lies on P since the system utility function U is non-
decreasing in r and concave. To see this, if r∗ /∈ P is an
optimal set of rates for the utility maximization problem,
then there exists a feasible r′ ∈ P with r′i ≥ r∗i ∀i. So
by the non-decreasing property of the utility function U ,
U(r′) ≥ U(r∗). By optimality of r∗, U(r∗) ≥ U(r) ∀
feasible r, so U(r′) = U(r∗) and r′ ∈ P is also optimal.

The equation p ≥ DG̃p will be met with equality for
a rate vector r∗ ∈ P . If the constraint is not tight for
a power vector p, then one or more links is operating
below the rate its transmitter power could support, and
that link rate ri could be increased without impact on
other links. Thus, the inequality must be tight for r ∈ P
since by definition r is undominated.

Transfer rates r lying in P can be expressed as the
following:

P = {r|p = DG̃p} = {r|λpf(D(r)G̃) = 1}, (19)

where λpf(D(r)G̃) = 1 corresponds to the surface of
the rate-region. Note, λpf(D(r)G̃) > 1 corresponds
to a point outside of the rate region, i.e. that can not
be achieved by the system for any set of powers, and
λpf(D(r)G̃) < 1 corresponds to a point inside the rate
region, i.e. that can be achieved.

C. Normal to Pareto surface

The outward normal to the Pareto surface at r ∈ P
is given by N(r) = ∇λpf(D(r)G̃), since P is a level
surface of λpf(D(r)G̃). The gradient of λpf can be found
from matrix perturbation theory [13]. The key result is
that the simple eigenvalues of a matrix are differentiable
functions of the elements of the matrix. Formally this
means

∂λ(A)

∂aij

= qT ∂A

∂aij

p. (20)

By assumption G̃ is regular and consequently
λpf(D(r)G̃) simple. Thus, the ith component of
∇λpf(D(r)G̃) is:

∂λpf(D(r)G̃)

∂ri

=qT (r)
∂DG̃

∂ri

p(r)

=qT ∂diag(er1/G11, . . . , e
rN /GNN )G̃

∂ri

p

=qT diag(0, . . . , 0, eri/Gii, 0, . . . , 0)G̃p

=
∑

j 6=i

qie
ri

Gijpj

Gii

. (21)

Further, if ri is on the Pareto surface P , then eri =
eRi = ρi, so

∂λpf(D(r)G̃)

∂ri

=
∑

j 6=i

qiρi

Gijpj

Giipi

pi (22)

= qipi. (23)

Thus the outward normal is

N(r) = ∇λpf(D(r)G̃) = [q1p1, q2p2, . . . , qnpn]
T

,
(24)

which is automatically normalized such that 1T N(r) =
1.

The left eigenvector q has several interesting inter-
pretations. Surprisingly, for r ∈ P , ∂λpf (D(r)G̃)

∂ri
is a

function only of qi and pi and not the interference
power received from other transmitters. The effect of
interference is therefore captured in the left eigenvector,
which summarizes the interference at each receiver as a
single number qi. The components of the left eigenvector
scale the associated link transmitter powers, modeling
the effect of interference by reducing the link’s rate.
The product qipi can be interpreted as a normalized
equivalent transmitter power.
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The qipi can also be interpreted as the marginal
prices charged by the system for increases in rate. The
constraint λpf ≤ 1 can be thought of as the “budget
constraint” on the network; the network pays for rate
increases by spending in λpf dollars. The system is free
to spend up-to one unit of λpf , but no more. An increase
of δri results in an increased charge of qipiδri to the
system. This concept can be extended to include factors
that reduce the overall capacity of the system and reduce
its “budget” from one to a lesser number.

Lastly, the left eigenvector can be interpreted as the
power of the adjoint system to the wireless network.
In the adjoint system the transmitters and receivers
reverse roles, every transmitter becomes a receiver and
conversely every receiver becomes a transmitter. So for
a system with gain matrix G, the adjoint system has
gain matrix GT . Thus, from (DG̃)T q = qλpf , q is the
transmit power vector for the adjoint system.

D. Criteria for Optimality

Because the optimal values of r lie on the Pareto
surface P the network optimization problem can be
restated (in its final form) as

maximizer U(r)

subject to λpf(D(r)G̃) = 1
r > 0.

(25)

By Lagrange’s Theorem ∇U = K∇λpf at optimality,
where K is a positive constant of proportionality. In
words, the vectors ∇U and ∇λpf must be parallel at the
optimal rates. This is depicted in Figure 4. The gradient
∇U is normal to the level sets of U and N(r) = ∇λpf is
normal to the rate surface. At optimality these normals
align and the level set surface for the performance metric
is tangent to the rate region.

The constant K is found by noting 1T∇λpf =
1T N(r) =

∑

i piqi = 1, and

∇U = K∇λpf

1T∇U = K1T∇λpf

1T∇U = K,
(26)

thus the constant K of proportionality described in the
optimality condition is K = 1T∇U . So r ∈ P is optimal
if and only if (1/piqi)(∇iU/1T∇U) = 1.

At optimum, the marginal performance tradeoffs be-
tween rates can also be found from Lagrange’s Theorem:

(

∂U(r)
∂ri

)

(

∂U(r)
∂rj

) =

(

∂λpf (D(r)G̃)

∂ri

)

(

∂λpf (D(r)G̃)

∂rj

) . (27)

The left-side of the equality is the marginal rate of
substitution between rates ri and rj for the same over-
all system performance. The right-side is the ratio of
marginal costs for changing these rates. Thus Lagrange’s
Theorem simply states that at optimality the trade off in
performance from a rate change must equal the trade off
in costs associated with these new rates.

E. Approximate projection onto the Pareto surface

It will be useful in what follows to formulate methods
for finding a rate vector rc ∈ P on the Pareto surface
which is close to a given rate vector rp. A point rc

could be found by projecting rp onto P; unfortunately,
this approach complicates the problem considerably and
offers little computational advantage over approximate
projections in finding the optimal rates. In this section
we describe two simple alternative methods for finding
a point rc ∈ P close to a given rate vector rp by
approximate projection.

The two methods are illustrated in Figure 5, and are
given in more detail below. The first method moves from
a point ra to the Pareto surface by adding the same fixed
offset βa to each element in the vector. This represents
a movement in the [ 1 1 . . . 1 ]T direction, which
for n = 2 is simply a 45 degree line . The second
method scales each element in the rate vector by the
same proportion αa. This represents a movement on a
ray from the origin. Points outside the rate-region can
be brought to P in a similar fashion.

1) Shifting method: The shifting method adds a fixed
constant βp to each element in the rate vector rp to find
a rate vector rc ∈ P . Formally rc = rp + βp1

T , where
1T is a vector of ones. Note that for the matrix DG̃ with
D = diag(eri ...), βp is an additive term in the exponent.
Thus βp scales DG̃ by exp(βp).

The offset βp can be found from the Perron Frobenius
eigenvalue λpf(D(rp)G̃) as

βp = − log(λpf(D(rp)G̃)). (28)
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Fig. 5. Moving on to the Pareto surface.

At rate rp, λpf(D(rp)G̃) satisfies DG̃p =
λpf(D(rp)G̃)p, so multiplying this relation by
(λpf(D(rp)G̃))−1 yields (λpf(D(rp)G̃))−1DG̃p = p.

2) Scaling method: The scaling method multiplies
each element in the rate vector rp by a fixed scalar rc =
αprp, αp > 0 to find a rate vector rc ∈ P . Increasing
α increases all rates rc = αrp, and in turn increases
the elements of D(rc)G̃. By the monotone property for
the Perron Frobenius eigenvalue, λpf(D(αrp)G̃) also
increases and is monotonic in α. This leads to a bisection
algorithm to find αp.

The bisection algorithm increases α linearly until
λpf(D(αrp)G̃) ≥ 1, so αp lies between zero and α.
Next λpf(D( 1

2αrp)G̃) is computed and compared with
one; if it is greater than one then αp ∈ [0, α/2] while if
it is less than one then αp ∈ [α/2, α]. If αp ∈ [α/2, α],
then λpf(D( 3

4α)G̃) is computed and compared with one
to again reduce the range containing αp by half. The
segment that αp lies in is reduced through repeated
bisections until αp is known to the desired number of
decimal points.

F. Feasible ascent direction

It will be useful to have a method for moving to-
ward the optimal rate vector r∗ from a given point
rc ∈ P on the Pareto surface. Let N(r)⊥ =
{

r′|(r − r′)T N(r) = 0
}

be the hyper-plane that is tan-
gent to the Pareto surface at rc. The supporting hyper-
plane N(r)⊥ is a good approximation of P for small
changes in r. Also, since the rate-region R is convex,
N(r)⊥ is a supporting hyper-plane and lies outside of
R, except at the point rc. For this reason a direction
δr is defined to be feasible if it lies along N(r)⊥, or
equivalently δrT N(r) = 0.
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Fig. 6. Finding δr.

A small change δr is defined as an ascent direction if
U(r + αδr) increases for small α > 0. Thus, δr is an
ascent direction if and only if ∇U(r)T δr > 0. A point
that is both feasible and an ascent direction is termed a
feasible ascent direction.

Feasible ascent directions δr are not necessarily
unique and consequently different approaches can lead
to different vectors. Two approaches are presented in this
section.

1) Projected Gradient: The projected gradient ap-
proach is illustrated in Figure 6. In this approach a
normalized version of ∇U(r) is projected onto N(r)⊥.
A small step in this direction will approximate a small
ascent step on the Pareto surface P that also brings the
two normals, ∇U(r) and N(r), into closer alignment.
More specifically,

δrpg =
(

I − N(r)N(r)T

‖N(r)‖2

)

∇U
1T ∇U

=

(

I − [p1q1,...,pnqn][p1q1,...,pnqn]T
∑

n

i=1
(piqi)2

)

∇U
1T ∇U

,

(29)
where p and q are the right and left eigenvectors respec-
tively of D(r)G̃ associated with the Perron Frobenius
eigenvalue λpf(D(r)G̃). The term

(

I − N(r)N(r)T

‖N(r)‖2

)

is

a projection matrix that projects the scaled normal ∇U
1T ∇U

onto the supporting hyper-plane at the current rate vector
r. Lagrange’s condition of optimality is met when δr =
0.

The projected gradient can best be understood by con-
struction. The projected gradient computes a component-
wise error metric from the optimality condition and then
projects this error onto the supporting hyper-plane. The
error estimate is defined as

e =

(

N(r) −
∇U

1T∇U

)

. (30)
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Because U is concave and λpf is convex, a rate change
δri causes the performance metric normal and rate
region normal to respond in opposite ways; an increase
δrpg,i > 0 causes the ith component of ∇U

1T ∇U
to

decrease and the comparable component of ∇λpf to
increase. Consequently, the decision to increase the ith
component of δrpg can be made by comparing the two
normals. If ∇U

1T ∇U
is greater than ∇λpf for component

i, then the associated rate should be increased.
The change in rates δθ is then initially estimated to

be
δθ = −

(

∇λpf −
∇U

1T∇U

)

. (31)

The new rate estimate r = δθ + rc is not necessarily
on the rate surface or in the feasible set of rates. This
direction δθ is made a feasible direction for δr by
projecting it onto the supporting hyper-plane N(r)⊥.
This gives δrpg shown in equation 29.

2) Direct Step: The direct step approach directly
constructs a δr on the supporting hyper-plane N(r)⊥,
rather than projecting ∇U

1T ∇U
onto this plane as was

done in the projected gradient method. As mentioned
previously, equation 30 can be used to determine whether
a component of r should be decreased or increased to
improve the value of U(r) and reduce the angle between
N(r) and ∇U(r). Specifically, δrds should have the
same sign as −e, for small rate adjustments. The direct
step method uses this information to find a δrds that
is an ascent direction but which is also feasible by
construction, that is lies on N(r)⊥. Specifically,

δrds = −diag(
1

qipi

, . . .)e. (32)

Substituting e and simplifying gives

δrds,i = −

(

1 −

(

1

piqi

) (

∇iU

1T∇U

))

, (33)

where piqi is the ith component of N(r).
That δrds lies on the supporting hyper-plane can be

seen from

N(r)T δrds =
∑

qipi

(

ei

qipi

)

=
∑

ei

= 1T e
= 1T N(r) − 1T∇U/1T∇U
= 0

(34)

where 1T N(r) = 1.

V. METHOD OF SOLUTION

A general method of solution can be described as the
following algorithm. Given rc ∈ P and α > 0 iterate
the following three steps until δr = 0:

1) Compute a feasible ascent direction δr at rc.

2) Compute rp = rc + αδr.
3) Approximately project rp onto P .
This general method describes several specific

schemes. For step 1 either the projected gradient δrpg or
direct step δrds directions may be used for δr. For step 3
either the shifting or scaling method may be used to
approximately project rp onto P . Mixing and matching
these methods gives four algorithms.

VI. SIMULATION

This section describes a simple simulation. The model
is of a 5 link single hop network. The performance
metric corresponds to the sum of individual user utility
functions and is given by

U(r) =

5
∑

i=1

ai log(ri) + ∆ log(ri − rth,i), (35)

where the first term in the sum is the utility associated
with a given rate ri and the second term acts as a barrier
limiting this rate to ri > rth,i. For the utility function,
the natural log is used. The ai are scale constants
associated with different users, and the constant ∆ � ai

∀i. The barrier portion of the individual utility functions
is negligible for ri > rth,i but dominates for ri ∼
rth,i, preventing the link rate from dropping below the
threshold.

The solution algorithm uses the direct step approach
for finding a feasible ascent direction and the scaling
method for approximately projecting rp onto P . The
step size parameter is arbitrarily set to a small positive
number, α = 0.001.

For the simulation, the gain matrix is

G =













144.1 0.217 0.311 0.068 0.617
0.469 83.0 0.307 0.125 0.269
0.537 0.053 120.5 0.166 0.221
0.563 0.229 0.954 144.3 0.713
0.511 0.167 0.131 0.136 108.2













,

(36)
and ∆ = 0.0001. Three events are progressively
simulated, each 4000 time periods long. At time
0, the initial utility coefficient vector is a =
[ 0.1 1 3 5 7 ]T , the initial rate threshold vector
is rth = [ 5 0 0 0 0 ]T , and the initial power
vector is p = [ 1 0.01 0.01 0.01 0.01 ]T . During
this initial period the network converges to an optimal
set of rates subject to a rate constraint on link 1.
At time 4000 the second event occurs, link 1’s rate-
threshold rth,1 changes to zero, rth,1 = 0, removing
the rate constraint. All of the other parameters remain
unchanged. At time 8000 the third event begins, link 1’s
utility coefficient a1 is changed to 7, a1 = 7, while all
the other parameters remained the same.
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Fig. 7. Power and Link Rates

The simulation results, shown in Figures 7 and 8, show
the initial convergence and the two events. In Figure 7
the transmitter powers and link rates for each of the five
links is shown. In Figure 8 the associated total utility and
optimality measure is depicted. At optimum the angle
between the normal to the rate surface and the normal
to the iso-utility curves will be zero. Any angle greater
than this represents a residual error.

Starting at time zero, the network evolves to a steady
state in which the transfer rate of link 1 is constrained
to be greater than rth,1 = 5. As shown in Figure 7,
the transmitter powers and associated link rates of the
constrained link initially decrease, but upon reaching the
point marked p1 stabilize at values corresponding to r1 =
5. As can also be seen, total utility changes little past
point p1, while the optimality measure quickly converges
to zero.

At time 4000 (point p2), when the rate constraint is
removed rth,1 = 0, the system adapts by further decreas-
ing r1, and thereby increasing overall utility. The angle
between the Pareto surface normal and the utility surface
normal jumps to approximately 45 degrees when the
constraint is removed, and then exponentially declines
to zero. The overall utility changes little, however, since
the link 1 utility coefficient a1 = 0.1 is much smaller
than the other users, and thus the system was operating
near the optimal point before the constraint was removed.
At time 8000 (point p3), when user 1’s utility function
is changed by increasing a1 = 7, the system responds
by finding a new equilibrium point at greater aggregate
utility.

VII. SUMMARY

This paper presents a new approach to finding optimal
network link rates and transmitter powers. The approach
is layered, with a rate optimization algorithm selecting
optimal rates from the surface of the rate-region and a
power optimization algorithm calculating the associated
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optimal powers. The approach is adaptive and can re-
spond to changes in the demands on the network.

The analytical rate adaptation approach is based on
Perron Frobenius theory and describes the network in
terms of λpf , the transmitter powers p, and the trans-
mitter powers q of the adjoint network. The Perron
Frobenius eigenvalue is interpreted as a convex cost
function for the network, and the transmitter powers as
Perron Frobenius eigenvectors. The left eigenvector q
is shown to fully capture the effect of interference on
transmitter rates.
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