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Abstract
We consider the problem of predicting the covariance of a zero mean Gaussian vec-
tor, based on another feature vector. We describe a covariance predictor that has the 
form of a generalized linear model, i.e., an affine function of the features followed 
by an inverse link function that maps vectors to symmetric positive definite matri-
ces. The log-likelihood is a concave function of the predictor parameters, so fitting 
the predictor involves convex optimization. Such predictors can be combined with 
others, or recursively applied to improve performance.

1  Introduction

1.1 � Covariance prediction

We consider data consisting of a pair of vectors, an outcome vector y ∈ Rn and a 
feature vector x ∈ X ⊆ Rp , where X  is the feature set. We model y conditioned on 
x as zero mean Gaussian, i.e., y ∣ x ∼ N(0, Σ̂(x)) , where Σ̂ ∶ X → Sn

++
 , the set of 

symmetric positive definite n × n matrices. (We will address later the extension to 
nonzero mean.) Our goal is to fit the covariance predictor Σ̂ based on observed train-
ing data xi, yi , i = 1,… ,N . We judge a predictor Σ̂ by its average log-likelihood on 
out of sample or test data,

where x̃i, ỹi , i = 1,… , Ñ is a test data set.
The covariance prediction problem arises in several contexts. As a general exam-

ple, let y denote the prediction error of some vector quantity, using some prediction 

1

2Ñ

Ñ∑
i=1

(
−n log(2𝜋) − log det Σ̂(x̃i) − ỹT

i
Σ̂(x̃i)

−1ỹi
)
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that depends on the feature vector x. In this case we are predicting the (presumed 
zero mean Gaussian) distribution of the prediction error as a function of the features. 
In statistics, this is referred to as heteroscedasticity, since the uncertainty in the pre-
diction depends on the feature vector x.

The covariance prediction problem also comes up in vector time series, where i 
denotes time period. In these applications, the feature vector xi is known in period 
i, but the outcome yi is not, and we are predicting the (presumed zero mean Gauss-
ian) distribution of yi . In the context of time series, the covariance predictor Σ̂(xi) is 
also known as the covariance forecast. In time series applications, the feature vec-
tor xi can contain quantities known at time i that are related to yi , including quanti-
ties that are derived directly from past values yi−1, yi−2,… , such as the entries of 
yi−1y

T
i−1

 or some trailing average of them. We will mention some specific examples 
in Sect. 3.5, where we describe some well known covariance predictors in the time 
series context.

As a specific example, yi is the vector of returns of n financial assets over day i, 
with mean small enough to ignore, or already subtracted. The return vector yi is not 
known on day i. The feature vector xi includes quantities known on day i, such as 
economic indicators, volatility indices, previous realized trading volumes or returns, 
and (the entries of) yi−1yTi−1 . The predicted covariance Σ̂(xi) can be interpreted as a 
(time-varying) risk model that depends on the features.

1.2 � Parametrizing and fitting covariance predictors

Covariance predictors can range from simple, such as the empirical covariance of 
the outcome on the training data (which is constant, i.e., does not depend on the 
features), to very complex, for example a neural network or a decision tree that maps 
the feature vector to a positive definite matrix. (We will describe many covariance 
predictors in Sect. 3.) Many predictors include parameters that are chosen by solv-
ing an optimization problem, typically maximizing the log-likelihood on the training 
data, minus some regularization. In most cases this optimization problem is not con-
vex, so we have to resort to heuristic methods that approximately solve it. In a few 
cases, including our proposed method, the fitting problem is convex, which means it 
can be reliably globally solved.

In this paper we focus on a predictor that has the same form as a generalized lin-
ear model, i.e., an affine function of the features followed by a function interpretable 
as an inverse link function that maps vectors to symmetric positive definite matrices. 
The associated fitting problem is convex, and so readily solved globally.

1.3 � Outline

In Sect. 2 we observe that covariance prediction is equivalent to finding a feature-
dependent linear mapping of the outcome that whitens it, i.e., maps its distribution 
to N(0, I) . Our proposed covariance predictor is based directly on this observa-
tion. The interpretation also suggests that multiple covariance prediction methods 
can be iterated, which we will see in examples leads to improved performance. In 
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Sect. 3 we outline the large body of related previous work. We present our proposed 
method, the regression whitener, in Sect. 4, and give some variations and extensions 
of the method in Sect. 5. In Sects. 6 and 7 we illustrate the ideas and our method on 
two examples, a financial time series and a machine learning residual problem.

2 � Feature‑dependent whitening

In this section we show that the covariance prediction problem is equivalent to 
finding a feature-dependent linear transform of the data that whitens it, i.e., results 
(approximately) in an N(0, I) distribution.

Given a covariance predictor Σ̂ , define L ∶ X → L as

where chol denotes the Cholesky factorization, and L is the set of n × n lower trian-
gular matrices with positive diagonal entries. For A ∈ Sn

++
 , L = chol(A) is the unique 

L ∈ L that satisfies LLT = A . Indeed, chol ∶ Sn
++

→ L is a bijection, with inverse 
mapping L ↦ LLT . We can think of L as a feature-dependent linear whitening trans-
formation for the outcome y, i.e., z = L(x)Ty should have an N(0, I) distribution.

Conversely we can associate with any feature-dependent whitener L ∶ X → L the 
covariance predictor

The feature-dependent whitener is just another parametrization of a covariance 
predictor.

2.1 � Interpretation of Cholesky factors

Suppose y ∼ N(0, (LLT )−1) , with L ∈ L . The coefficients of L are closely connected 
to the prediction of yi (here meaning the ith component of y) from yi+1,… , yn . Sup-
pose the coefficients ai,i+1,… , ai,n minimize the mean-square error

Let Ji denote the minimum value, i.e., the minimum mean-square error (MMSE) in 
predicting yi from yi+1,… , yn . We can express the entries of L in terms of the coef-
ficients ai,j and Ji.

We have Lii = 1∕
√
Ji , i.e., Lii is the inverse of the standard deviation of the pre-

diction error. The lower triangular entries of L are given by

L(x) = chol(Σ̂(x)−1) ∈ L,

Σ̂(x) = (L(x)L(x)T )−1 = L(x)−TL(x)−1.

�

(
yi −

n∑
j=i+1

ai,jyj

)2

.

Lji = −Liiai,j, j = i + 1,… , n.
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This interpretation has been noted in several places, e.g., (Pourahmadi 2011). An 
interesting point was made in Wei and Pourahmadi (2003), namely that an approach 
like this “reduces the difficult and non-intuitive task of modelling a covariance 
matrix to the more familiar task of modelling n − 1 regression problems”.

2.2 � Log‑likelihood

For future reference, we note that the log-likelihood of the sample x, y with whitener 
L(x), and associated covariance predictor Σ̂(x) = L(x)−TL(x)−1 , is

The log-likelihood function (1) is a concave function of L(x) (Boyd and Vanden-
berghe 2004).

2.3 � Iterated covariance predictor

The interpretation of a covariance predictor as a feature-dependent whitener leads 
directly to the idea of iterated whitening. We first find a whitener L1 , to obtain the 
(approximately) whitened data z(1)

i
= L1(xi)

Tyi . We then find a whitener L2 for the 

data z(1)
i

 to obtain z(2)
i

= L2(xi)
Tz

(1)

i
 . We continue this way K iterations to obtain our 

final whitened data

This composition of K whiteners is the same as the whitener

with associated covariance predictor

The log-likelihood of sample x, y for this iterated predictor is

This function is multi-concave, i.e., concave in each Lk(x) , with the others held con-
stant, but not jointly in all of them.

Our examples will show that iterated whitening can improve the performance 
of covariance prediction over that of the individual whiteners. Iterated whitening is 

(1)

− (n∕2) log(2𝜋) − (1∕2) log det Σ̂(x) − (1∕2)yT Σ̂(x)−1y

= −(n∕2) log(2𝜋) +

n�
j=1

logL(x)jj − (1∕2)‖L(x)Ty‖2
2
.

z
(K)

i
= LK(xi)

T
⋯L1(xi)

Tyi.

L(x) = L1(x)⋯LK(x) ∈ L,

Σ̂(x) = L1(x)
−T

⋯LK(x)
−TLK(x)

−1
⋯L1(x)

−1.

−(n∕2) log(2�) +

K�
k=1

n�
j=1

log(Lk(x))jj − (1∕2)‖LK(x)T ⋯L1(x)
Ty‖2

2
.
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related to the concept of boosting in machine learning, where a number of weak learn-
ers are applied in succession to create a strong learner (Freund and Schapire 1996).

3 � Previous work

In this section we review the very large body of previous and related work, which 
goes back many years, using the notation of this paper when possible.

3.1 � Heteroscedasticity

The ordinary linear regression method assumes the residuals have constant vari-
ance. When this assumption is violated, the data or model is said to be hetero-
scedastic, meaning that the variance of the errors depends on the features. There 
exist a number of tests to check whether this exists in a dataset (Anscombe 1961; 
Cook and Weisberg 1983). A common remedy for heteroscedasticity once it is 
identified is to apply an invertible function to the outcome (when it is positive), 
e.g., log(y) , 1/y, or 

√
y , to make the variances more constant or homoscedastic 

(Davidian and Carroll 1987). In general, one needs to fit a separate model for the 
(co)variance of the prediction residuals, which can be done in a heuristic way by 
doing a linear regression on the absolute or squared value of the residuals (David-
ian and Carroll 1987).

3.2 � General examples

Here we describe some of the covariance predictors that have been proposed. 
We focus on how the predictors are parametrized and fit to training data, noting 
when the fitting problem is convex. In some cases we report on methods origi-
nally developed for fitting a constant covariance, but are readily adapted to fitting 
a covariance predictor.

3.3 � Constant predictor

The simplest covariance predictor is constant, i.e., Σ̂(x) = Σ for some Σ ∈ Sn
++

 . 
The simplest way to choose Σ given training data is the empirical covariance, 
which maximizes the log-likelihood of the training data. More sophisticated esti-
mators of a constant covariance employ various types of regularization (Friedman 
et  al. 2008), or impose special structure on Σ , such as being diagonal plus low 
rank (Rubin and Thayer 1982) or having a sparse inverse (Dempster 1972; Fried-
man et al. 2008). Many of these predictors are fit by solving a convex optimiza-
tion problem, with variable Σ̂(x)−1 , the precision matrix.
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3.4 � Diagonal predictor

Another simple predictor has diagonal covariance, of the form

where A and b are the predictor parameters, and exp is elementwise. With this pre-
dictor the log-likelihood is a concave function of A and b. (In fact, the log-likelihood 
is separable across the rows of A and b.) Fitting a diagonal predictor by maximizing 
log-likelihood, minus a convex regularizer, is a convex optimization problem. This 
is a special case of Pourahmadi’s LDLT approach where L = I (Pourahmadi 1999). 
This covariance predictor for the special case of n = 1 was implemented in the R 
package lmvar (Posthuma Partners 2019).

This simple diagonal predictor can be used in an iterated covariance predic-
tor, preceded by a constant whitener. For example, we start with a constant base 
covariance Σconst , with eigenvalue decomposition Σconst = U����(�)UT . The iter-
ated predictor has the form

where ◦ denotes the elemementwise (Hadamard) product, and A and b are our pre-
dictor parameters. In this covariance prediction model we fix the eigenvectors of the 
(base, constant) covariance, and scale the eigenvalues based on the features. Fitting 
such a predictor is a convex optimization problem.

3.4.1 � Cholesky and LDLT predictors

Several authors use the Cholesky parametrization of positive definite matrices or 
the closely related LDLT factorization of Σ or Σ−1 . Perhaps the first to do this was 
Williams, who in 1996 proposed making the output of a neural network the lower 
triangular entries and logarithm of the diagonals of the Cholesky decomposition 
of the inverse covariance matrix (Williams 1996). He used the log-likelihood as 
the objective to be maximized, and provided the partial derivatives of the objec-
tive with respect to the network outputs. The associated fitting problem is not 
convex. Williams’s original work was repeated without citation in Dorta et  al. 
(2018). William’s original work was expanded upon and interpreted by Pourah-
madi in a series of papers (Pourahmadi 1999, 2000); a good summary of these 
papers can be found in Pourahmadi (2011). A number of regularization functions 
for this problem have been considered in Huang et  al. (2006). However, to the 
best of the authors’ knowledge, none of these problems is convex, but some are 
bi-convex, for example Pourahmadi’s LDLT formulation, which has a log-likeli-
hood that is concave in L, and also in the variables logDii , but not in both sets of 
variables. Some of the aforementioned methods have been implemented in the R 
package jmcm (Jianxin 2021).

(2)Σ̂(x) = ����(exp(Ax + b)),

Σ̂(x) = U����(𝜆◦ exp(Ax + b))UT ,
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3.4.2 � Linear covariance predictors

Some methods proposed by researchers to fit a constant covariance can be readily 
extended to fit a covariance predictor, i.e., one that depends on the feature vector x. 
For example, the linear covariance model (Anderson 1973) fits a constant covariance

where Σ1,… ,ΣK are known symmetric matrices and �1,… , �K ∈ R are coefficients 
that are fit to data. Of course, �1,… , �K must be chosen such that Σ is positive defi-
nite; a sufficient condition, when Σk ∈ Sn

++
 , is � ≥ 0 (elementwise), � ≠ 0 . This form 

is readily extended to be a covariance predictor by making the coefficients �i func-
tions of x, for example affine, � = Ax + b , where A and b are model parameters. (We 
ignore here the constraint on � , discussed in Sect. 4.1.) For this linear parametriza-
tion of the covariance matrix, the log-likelihood is not a concave function of � , so 
fitting such a predictor is not a convex optimization problem.

Using the inverse covariance or precision matrix, the natural parameter in the expo-
nential family representation of a Gaussian distribution, we do obtain a concave log-
likelihood function. The model for a constant covariance is

where �1,… , �K ∈ Sn
++

 , and �k are the parameters to be fit, with the constraint � ≥ 0 , 
� ≠ 0 . The log-likelihood for a sample x, y is

which is a concave function of � . This model is readily extended to give a covari-
ance predictor using � = Ax + b , where A and b are model parameters. (Here too we 
must address the issue of the constraints on � .) Fitting the parameters A and b is a 
convex optimization problem.

Several methods can be used to find a suitable basis Σ1,… ,ΣK or �1,… , �K . For 
example, we can run a k-means like algorithm that alternates between assigning data 
points to the covariance or precision matrix that has highest likelihood, and updating 
each matrix by maximizing likelihood (possibly minus a regularizer) using the data 
assigned to it.

3.4.3 � Log‑linear covariance predictors

Another example of a constant covariance method that can be readily extended to a 
covariance predictor is the log-linear covariance model. The 1992 paper by Leonard 
and Hsu Chiu et  al. (1996) propose using the matrix exponential, which maps the 

(3)Σ̂ =

K∑
k=1

𝛼kΣk,

Σ̂ =

(
K∑
k=1

𝛼k𝜃k

)−1

−n log(2�) + log det

(
K∑
k=1

�k�k

)
− yT

(
K∑
k=1

�k�k

)
y,
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vector space Sn ( n × n symmetric matrices) onto Sn
++

 , for the purpose of fitting a con-
stant covariance matrix. To extend this to covariance prediction, we take

where Z0,… , Zm are (symmetric matrix) model parameters.
The log-likelihood for a sample x, y is

which unfortunately is not concave in the parameters. In a 1999 paper, Williams 
proposed using the matrix exponential as the final layer in a neural network that pre-
dicts covariances (Williams 1999), i.e., the neural network maps x to (the symmetric 
matrix) Z(x).

3.4.4 � Hard regimes and modes

Covariance predictors can be built from a finite number of given covariance matri-
ces, Σk , k = 1,… ,K . The index k is often referred to as a (latent, unobserved) mode 
or regime. The predictor has the form

where � ∶ X → {1,… ,K} is a K-way classifier, tuned with some parameters. We do 
not know a parametrization of classifiers for which the log-likelihood is concave, but 
there are several heuristics that can be used to fit such a model. This regime model is 
a special case of a linear covariance predictor described above, when the coefficients 
� are restricted to be unit vectors.

One method proceeds as follows. Given the matrices Σ1,… ,ΣK , we assign to 
each data sample x, y the value of k that maximizes the likelihood, i.e., the regime 
that best explains it. We then fit the classifier � to the data pairs x, k. When the clas-
sifier is a tree, we obtain a covariance tree, with each leaf associated with one of the 
regime covariances.1

To also fit the regime covariance matrices Σ1,… ,ΣK , we fix the classifier, and 
then fit each Σk to the data points with �(x) = k . This procedure can be iterated, 
analogous to the k-means algorithm.

3.4.5 � Soft regimes or modes

We replace the hard classifier described above with a soft classifier

Σ̂(x) = expZ(x), Z(x) = Z0 +

m∑
i=1

xiZi,

−n log(2�) − ��Z(x) − yT (expZ(x))−1y,

Σ̂(x) = Σk, k = 𝜙(x),

� ∶ X → {� ∈ RK ∣ � ≥ 0, �T� = 1}.

1  Robert Tibshirani, personal communication.
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We can interpret �k as the probability of regime k, given x. We form our prediction 
as a mixture of the (given) regime precision matrices,

(which has the same form as a linear covariance predictor with precision matrices, 
described above). With this predictor, the log-likelihood is a concave function of 
�(x) , so when � is an affine function of x, i.e., �(x) = Ax + b , the fitting problem 
is convex. (Here we have �Tb = 1 and �TA = 0 , which implies that �T�(x) = 1 for 
all x, and we ignore the issue that we must have Ax + b ≥ 0 , which we address in 
Sect. 4.1.)

A more natural soft predictor is multinomial logistic regression, with

where A and b are parameters. With this parametrization, the log-likelihood is not 
concave in A and b, so fitting such a predictor is not a convex optimization problem.

3.4.6 � Laplacian regularized stratified covariance predictor

Laplacian regularized stratified models, described in Tuck et al. (2021a), Tuck et al. 
(2021b), Tuck and Boyd (2020), can be used to develop a covariance predictor. 
To do this, one bins x into K categories, and gives a possibly different covariance 
matrix for each of the K bins. (This is the same as a hard regime model with the bin-
ning serving as a very simple classifier that maps x to {1,… ,K} .) The predictor is 
parametrized by the covariance matrices Σ1,… ,ΣK ; the log-likelihood is concave in 
the precision matrices Σ−1

1
,… ,Σ−1

K
 . From the log-likelihood we subtract a Laplacian 

regularizer that encourages the precision matrices associated with neighboring bins 
to be close. Fitting such a predictor is a convex optimization problem.

3.4.7 � Local covariance predictors

We mention one more natural covariance predictor, based on the idea of a local 
model (Cleveland and Devlin 1988). We describe here a simple version. The predic-
tor uses the full set of training data, xi, yi , i = 1,… ,N . The covariance predictor is

where � ∶ R+ → R++ is a radial kernel function. The most common choice is the 
Gaussian kernel, �(u) = exp(−u2∕�2) , where � is a characteristic distance param-
eter. (One variation is to take �i = 1∕K for the K-nearest neighbors of x among 
x1,… , xN , and zero otherwise, with K n .) We recognize this as a special case of a 

Σ̂(x) =

(
K∑
k=1

𝜙(x)kΣ
−1
k

)−1

,

�(x) =
exp q

�T exp q
, q = Ax + b,

Σ̂(x) =

N�
i=1

𝛼iyiy
T
i
, 𝛼i =

𝜙(‖x − xi‖2)∑N

j=1
𝜙(‖x − xj‖2)

,
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linear covariance predictor (3), with a specific choice of the mapping from x to the 
coefficients, and Σi = yyy

T
i
.

3.5 � Time series covariance forecasters

Here we assume that i denotes time period or epoch. At time i, we know the previ-
ous realized values yi−1, yi−2,… , so functions of them can appear in the feature vec-
tor xi . We write Σ̂(xi) as Σ̂i.

3.5.1 � SMA

Perhaps the simplest covariance predictor for a time series (apart from the constant pre-
dictor) is the simple moving average (SMA) predictor, which averages M previous val-
ues of yiyTi  to form Σ̂i,

Here M is called the memory of the predictor. The SMA predictor follows the 
recursion

Fitting an SMA predictor does not explicitly involve solving a convex optimization 
problem, but it does maximize the (concave) log-likelihood of the observations yi−j , 
j = 1,… ,M.

3.5.2 � EWMA

The exponentially weighted moving average (EWMA) predictor uses exponentially 
weighted previous values of yiyTi  to form Σ̂i,

where � ∈ (0, 1] is the forgetting factor, often specified by the half-life 
Thalf = −(log 2)∕(log �) (Hawkins and Maboudou-Tchao 2008; Harper 2009). This 
predictor follows the recursion

The EWMA covariance predictor is widely used in finance (Longerstaey and Spen-
cer 1996; Menchero et  al. 2011). Like SMA, the EWMA predictor maximizes a 
(concave) weighted likelihood of past observations.

Σ̂i =
1

M

M∑
j=1

yi−jy
T
i−j
.

Σ̂i+1 = Σ̂i +
1

M
(yiy

T
i
− yi−My

T
i−M

).

(4)Σ̂i = 𝛼i

i−1∑
j=1

𝛾 i−jyjy
T
j
, 𝛼i =

(
i−1∑
j=1

𝛾 j

)−1

,

Σ̂i+1 = 𝛾
𝛼i+1

𝛼i
Σ̂i + 𝛼i+1yiy

T
i
.
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3.5.3 � ARCH

The autoregressive conditional heteroscedastic (ARCH) predictor (Engle 1982) is a 
variance predictor (i.e., n = 1 ) that uses features xi = (y2

i−1
,… , y2

i−M
) and has the form

where �j ≥ 0 , j = 0,… ,M , and M is the memory or order of the predictor. In 
the original paper on ARCH, Engle also suggested that external regressors could 
be used as well to predict the variance, which is readily included in the predictor 
above. A one-dimensional SMA model is a special case of an ARCH model with 
�0 = 0 and �j = 1∕M . The log-likelihood is not a concave function of the parameters 
�0,… , �M , so fitting an ARCH predictor requires solving a nonconvex optimization 
problem.

3.5.4 � GARCH

The generalized ARCH (GARCH) (Bollerslev 1986) model, originally introduced 
by Bollerslev, is a generalization of ARCH that includes prior predicted values of 
the variance in the features. It has the form

where �i and �i are nonnegative parameters. The SMA and EWMA models with 
n = 1 are both special cases of a GARCH model. Like ARCH, the log-likelihood 
function for the GARCH model is not concave, so fitting it requires solving a non-
convex optimization problem.

3.5.5 � Multivariate GARCH

While the original GARCH model is for one-dimensional yi , it has been extended 
to multivariate time series. For example, the diagonal GARCH model (Bollerslev 
et al. 1988) uses a separate GARCH model for each entry of yi , the constant correla-
tion GARCH model (Bollerslev 1990) assumes a constant correlation between the 
entries of yi , and the BEKK model (named after Babba, Engle, Kraft, and Kroner) 
(Engle and Kroner 1995) is a generalization of all of the above models. There exist 
many other GARCH variants (see, e.g., (Francq and Zakoian 2019) and the refer-
ences therein). None of these predictors have a concave log-likelihood, so fitting 
them involves solving a nonconvex optimization problem.

Σ̂i = 𝛼0 +

M∑
j=1

𝛼jy
2
i−j
,

Σ̂i = 𝛼0 +

M∑
j=1

𝛼jy
2
i−j

+

M∑
j=1

𝛽jΣ̂i−j,
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3.5.6 � Time‑varying factor models

In a covariance factor model, we regress yi on some factors wi , perhaps with expo-
nential weighting, to get yi = Fiwi + �i (Sect. 3, Grinold and Kahn 2000). Assuming 
wi ∼ N(0,Σfact) and �i ∼ N(0, ����(di)) , leads us to the time-varying factor covari-
ance model (Liangjun and Wang 2017)

The methods of this paper can be used to form a covariance predictor for the factors, 
which can also depend on features.

3.5.7 � Hidden Markov regime models

Hard regime models can be used in the context of time series, with a Markov 
model for the transitions among regimes (Bilmes 1998). One form for this predic-
tor estimates the probability distribution of the current latent state or regime, and 
then forms a weighted sum of the precision matrices as our estimate.

4 � Regression whitener

In this section we describe a simple feature-dependent whitener, in which L(x) is 
an affine function of x,

where ���� gives the vector of diagonal entries, and ������� gives the strictly lower 
triangular entries in some fixed order. The regression model coefficients are

with k = n2∕2 − n∕2 denoting the number of strictly lower triangular entries of an 
n × n matrix. The total number of parameters in our model is

Our model parameters can be assembled into a single n(n+1)
2

× (p + 1) parameter 
matrix

The top n rows of P give the diagonal of L; its last column gives the constant or off-
set part of the model, i.e., L(0).

The log-likelihood of the regression whitener is a concave function of the 
parameters (A,  b,  C,  d). We have already noted that the log-likelihood (1) is a 

Σ̂i = FiΣ
factFT

i
+ ����(di).

����(L(x)) = Ax + b, �������(L(x)) = Cx + d,

A ∈ Rn×p, b ∈ Rn, C ∈ Rk×p, d ∈ Rk,

(5)np + n + kp + k =
n(n + 1)

2
(p + 1).

P =

[
A b

C d

]
.
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concave function of L(x), which in turn is a linear function of the parameters 
(A, b, C, d). The composition of a concave function and a linear function is con-
cave and the sum (over the training samples) preserves concavity (Sect. 3.2, Boyd 
and Vandenberghe 2004).

With the regression whitener, the precision matrix Σ̂(x)−1 = L(x)L(x)T is a 
quadratic function of the feature vector x; its inverse, the covariance Σ̂(x) , is a 
more complex function of x.

4.1 � The issue of positive diagonal entries

To have L(x) ∈ L for all x ∈ X  , we need Ax + b > 0 (elementwise) for all x ∈ X  . 
When X = Rp , this holds only when A = 0 and b > 0 . Such a whitener, which has 
fixed diagonal entries but lower triangular entries that can depend on x, can still 
have value, but this is a strong restriction. The condition that Ax + b > 0 for all 
x ∈ X  is convex in (A, b), and leads to a tractable constraint on these coefficients 
for many choices of the feature set X .

4.1.1 � Box features

Perhaps the simplest case is X = {x ∣ ‖x‖∞ ≤ 1} , i.e., the unit box. This means 
that all features lie between −1 and 1. This can be ensured in several reasonable 
ways. First, we can simply clip or Winsorize our raw features x̃ , using

(interpreted elementwise). Another reasonable approach is to map the values of x̃i 
(the ith component of x) into [−1, 1] , for example, by taking xi = (2)quantilei(x̃i) − 1 , 
where quantilei(x̃i) is the quantile of x̃i . Another approach is to scale the values of x̃i 
by its minimum and maximum by taking

where mi and Mi are the smallest and largest values (elementwise) of xi in the 
training data. (When this is used on data not in the training set we would also 
clip the result of the scaling above to [−1, 1] .) We will assume from now on that 
X = {x ∣ ‖x‖∞ ≤ 1}.

As a practical matter we work with the non-strict inequality Ax + b ≥ � for 
all x ∈ X  , where 𝜖 > 0 is given, and the inequality is meant elementwise. The 
requirement that Ax + b ≥ � for all ‖x‖∞ ≤ 1 is equivalent to

where ‖A‖row,1 ∈ Rn
+
 is the vector of �1 norms of the rows of A, i.e.,

x = clip(x̃) = min{1,max{−1, x̃}}

xi = 2
x̃i − mi

Mi − mi

− 1,

(6)‖A‖row,1 ≤ b − �,
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The constraint (6) is a convex (polyhedral) constraint on (A, b).

4.2 � Fitting

Consider a training data set x1,… , xN , y1,… , yN . We will choose (A,  b,  C,  d) 
to maximize the log-likelihood of the training data, minus a convex regularizer 
R(A, b, C, d), subject to the constraint (6).

This leads to the convex optimization problem

with variables A, b, C, d. We note that the first term in the objective guarantees 
that L(x)jj > 0 for all training feature values x = xi ; the last and stronger constraint 
ensures that L(x)jj ≥ � for any feature vector in X  , i.e., ‖x‖∞ ≤ 1.

4.3 � Regularizers

There are many useful regularizers for the covariance prediction problem (7), a 
few of which we mention here.

4.3.1 � Trace inverse regularization

Several standard regularizers used in covariance fitting can be included in R. For 
example trace regularization of the precision matrix, on the training data, is given 
by

where 𝜆 > 0 is a hyper-parameter. This can be expressed in terms of our coefficients 
as

�‖A‖row,1
�
i
=

p�
j=1

�Aij�.

(7)

maximize (1∕N)
∑N

i=1

�∑n

j=1
log(Li)jj − (1∕2)‖LT

i
yi‖22

�
− R(A, b,C, d)

subject to ����(Li) = Axi + b, i = 1,… ,N,

�������(Li) = Cxi + d, i = 1,… ,N,

‖A‖row,1 ≤ b − �,

𝜆
1

N

N∑
i=1

��Σ̂(xi)
−1,

R(A, b,C, d) = �
1

T

T�
t=1

‖Li‖2F,
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i.e., �2-squared regularization on Li . This can be expressed directly in terms of 
A, b, C, D as

We can simplify this regularizer, and remove its dependence on the training data, 
by assuming that the entries of the features are approximately independent and uni-
formly distributed on [−1, 1] . This leads to the approximation (dropping a constant 
term)

This exactly the traditional ridge or quadratic regularizer on the model coefficients, 
not including the offset.

4.3.2 � Feature selection

The regularizer

where ai and ci are the ith columns of A and C, is the sum of the norms of the first p 
columns of P. This is a well-known sparsifying regularizer, that tends to give coeffi-
cients with (ai, ci) = 0 , for many values of i (Meier et al. 2008). This means that the 
feature entry xi is not used in the model.

4.3.3 � Dual norm regularization

The total number of parameters in our model, given by (5), can be quite large if n 
is moderate or p is large. An interesting regularizer that leads to a more interpret-
able covariance predictor can be obtained with dual norm regularization (also called 
trace or nuclear norm regularization),

where ‖ ⋅ ‖∗ is the dual of the �2 norm of a matrix, i.e., the sum of the singular val-
ues, and 𝜆 > 0 is a hyper-parameter. This regularizer is well known to encourage its 
argument to be low rank (Vandenberghe and Boyd 1996; Recht et al. 2010).

When 
[
A

C

]
 is (say) rank r, it can be expressed as the product of two smaller 

matrices,

�
1

T

T�
t=1

�‖Axi + b‖2
2
+ ‖Cxi + d‖2

2

�
.

R(A, b,C, d) = �
n

12

‖‖‖‖‖

[
A

C

]‖‖‖‖‖

2

F

.

R(A, b,C, d) = �

p�
i=1

‖(ai, ci)‖2,

�
‖‖‖‖‖

[
A

C

]‖‖‖‖‖∗
,
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where U ∈ Rn+k×r and V ∈ Rr×p . For notational convenience, we let Li = ���(Ui) , 
where Ui is the ith column of U and ��� ∶ Rn+k

→ L takes the diagonal and strictly 
lower triangular entries and gives the corresponding lower triangular matrix in L . 
We also let L0 = ���(b, d) . Finally, we let Vi denote the ith row of V.

With this low rank coefficient matrix, the process of prediction can be bro-
ken down into two simple steps. We first compute r latent factors li = VT

i
xi , 

i = 1,… , r , which are linear in the features. Then L(x) is a sum of L0,… , Lr , 
weighted by l1,… , lr,

Thus our whitener L(x) is always a linear combination of L0,… , Lr.

4.4 � Ordering and permutation

The ordering of the entries in the data y matters. That is, if we fit a model Σ̂1 
with training data yi , then fit another model Σ̂2 to Qyi , where Q is a permutation 

matrix, we generally do not have Σ̂1(x) = QT Σ̂2(x)Q . This was noted previously 
in (Sect.  2.2.4, Pourahmadi 2011), where the author states that “the factors of 
the Cholesky decomposition are dependent on the order in which the variables 
appear in the random vector yi ”. This has been noted as a pitfall of Cholesky-
based approaches and can lead to significant differences in forecast performance 
(Heiden 2015), although on problems with real data we have not observed large 
differences.

This dependence of the prediction model on the ordering of the entries of y is 
unattractive, at least theoretically. It also immediately raises the question of how 
to choose a good ordering for the entries of y. We have observed only small dif-
ferences in the performance of covariance predictors obtained by permuting the 
entries of y, so perhaps this is not an issue in practice. A reasonable approach is 
to order the entries in such a way that correlated entries (say, under a base con-
stant model) are near each other (Rothman et al. 2010). But we consider the ques-
tion of how to order the variables in a regression whitener to be an open question.

There are a number of simple practical ways to deal with this issue. One is to 
fit a number of models with different orderings of y, and choose the model with 
the best out of sample likelihood, just as we might do with regularization. In this 
case we are treating the ordering as a hyper-parameter.

A practical method to obtain a model that is at least approximately invariant 
under ordering of the entries of y is to fit a number of models Σ̂1,… , Σ̂K that 
using different orderings, and then to fuse the models via

[
A

C

]
= UV ,

L(x) = L0 +

r∑
i=1

liL
i.
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Finally, we note that a permutation can be thought of as a very simple whitener in an 
iterated whitener. It evidently does not whiten the data, but when iterated whitening 
is done, the permutation can affect the performance of downstream whiteners, such 
as our regression whitener, that depends on the ordering of the entries of y.

4.5 � Implementation

Many methods can be used to solve the convex optimization problem (7). Here we 
describe some good choices, which are used in our implementation.

4.5.1 � L‑BFGS

We have observed that with reasonably chosen regularization, the constraint 
‖A‖row,1 ≤ b − � is rarely active at the solution of (7). This suggests that we ignore 
the constraint, solve the problem, and check at the end if it is active. When the regu-
larizer R is differentiable, the limited-memory Broyden Fletcher Golbfarb Shanno 
(L-BFGS) method is well suited to solving this problem, after eliminating Li . The 
gradients of the objective with respect to (A, b, C, d) are straightforward to work out.

4.5.2 � L‑BFGS‑B formulation

We can use L-BFGS-B (L-BFGS with box constraints) (Liu and Nocedal 1989) to 
efficiently solve the constrained problem (7), when R is differentiable. We reformu-
late it as the smooth box-constrained problem

with variables A+ , A− , b+ , C, d. Here we have split A into its positive and negative 
parts, and take b = (A+ + A−)� + � + b+.

4.5.3 � Implementation

We have developed a Python-based object-oriented implementation of the ideas 
described in this paper, which is freely available online at

Σ̂(x) =

(
1

K

K∑
i=1

Σ̂i(x)
−1

)−1

.

maximize (1∕N)
∑N

i=1

�
�T log(����(Li)) − (1∕2)‖LT

i
yi‖22

�
− R(A, b,C, d)

subject to ����(Li) = (A+ − A−)xi + (A+ + A−)� + � + b+, i = 1,… ,N,

�������(Li) = Cxi + d, i = 1,… ,N,

A+ ≥ 0, A− ≥ 0, b+ ≥ 0,

A = A+ − A, b = (A+ + A−)� + � + b+,

���.������.���∕������∕�������.
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The only dependencies are numpy and scipy, and we use scipy’s built-in 
LBFGS-B implementation. The central object in the package is the Whitener 
class, which has three methods: fit, whiten, and score. The fit method takes 
a training dataset given as numpy matrices, and fits the parameters of the whitener. 
The whiten method takes a dataset and returns a whitened version of the outcome 
as well as L(xi) and Σ̂(xi) for each element of the dataset. The score method com-
putes the log-likelihood of a dataset using the whitener. The current implementation 
includes the following Whiteners:

•	 ConstantWhitener, a constant Σ.
•	 DiagonalWhitener, as described in (2).
•	 SMAWhitener and EWMAWhitener, as described in Sect. 3.5.
•	 RegressionWhitener, described in Sect. 4.
•	 PermutationWhitener, permutes the entries in y given a permutation.
•	 IteratedWhitener, described in Sect.  2, takes a list of whiteners, and 

applies them one by one.

These take arguments as appropriate, e.g., the memory for the SMA whitener, and 
the choice of regularization for the regression whitener. The examples we present 
later were implemented using this package, with the code available in the exam-
ples folder of the package linked above.

5 � Variations and extensions

Here we list some variations on and extensions of the methods described above.

5.1 � Multiple outcomes

Each data record has the feature vector x and a set of outcomes, possibly of varying 
cardinality. (This reduces to our formulation when there is always just one outcome 
per record.) This is readily handled by simply replicating the data for each of the 
outcomes. We transform the single record x, y1,… , yq into q records of the form 
(x, y1),… , (x, yq) . The methods described above can then be applied. If q can be 
large compared to n, it might be more efficient to transform the data to outer prod-
ucts, i.e., replace the multiple outcomes y1,… , yq into Y =

∑q

i=1
yiy

T
i
.

5.2 � Handling a nonzero mean

One simple extension is when the outcome vector y has a nonzero mean, and we 
model its distribution, conditioned on x, as y ∣ x ∼ N(𝜇̂(x), Σ̂(x)) . One simple 
approach is sequential: we first fit a model 𝜇̂(x) of y ∣ x , for example by regression, 
subtract it from y to create the prediction residuals or regression errors, and then fit a 
covariance prediction to the residuals.
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5.2.1 � Joint prediction of conditional mean and covariance

It is also possible to handle the mean and covariance jointly, using convex optimiza-
tion. With a nonzero mean 𝜇̂(x) , the log-likelihood (1) becomes

where, as above, L(x) = chol(Σ̂(x)−1) . This is concave in L(x) and in 𝜇̂(x) , but not 
jointly.

A change of variables, however, results in a jointly concave log-likelihood. Chang-
ing the mean estimate variable 𝜇̂(x) to 𝜈(x) = L(x)T 𝜇̂(x) , we obtain the log-likelihood 
function

which is jointly concave in L(x) and �(x) . We reconstruct the prediction of the mean 
and covariance of y given x as

This trick is similar to, but not the same as, parametrizing a Gaussian using the natu-
ral parameters in the exponential form, (Σ−1,Σ−1�) , which results in a jointly con-
cave log-likelihood function. Our parametrization replaces the precision matrix Σ−1 
with its Cholesky factor L, and uses the parameters

but we still obtain a concave log-likelihood function.
To carry out joint mean and covariance prediction with the regression whit-

ener, we introduce two additional predictor parameters E ∈ Rn×p and f ∈ Rn , 
with �(x) = Ex + f  . Maximizing the log-likelihood minus a convex regularizer on 
(A, b, C, d, E, f) is a convex problem, solved using the same methods as when the mean 
of y is presumed to be zero.

We note that while our prediction �(x) is an affine function of x, our prediction of the 
mean 𝜇̂(x) is a nonlinear function of x.

5.3 � Structured covariance

A few constraints on the inverse covariance matrix can be expressed as convex con-
straints on L, and therefore directly handled; others can be handled heuristically. As an 
example, consider the constraint that Σ̂−1 be banded, say, tri-diagonal. This is equiva-
lent to L(x) having the same bandwidth (and also, of course, being lower triangular), 
which in turn translates to rows of C and d corresponding to entries in L outside the 
band being zero. This can be exactly handled by convex optimization.

−(n∕2) log(2𝜋) +

n�
j=1

log L(x)jj − (1∕2)‖L(x)T (y − 𝜇̂(x))‖2
2
,

−(n∕2) log(2𝜋) +

n�
j=1

log L(x)jj − (1∕2)‖L(x)Ty − 𝜈̂(x)‖2
2
,

𝜇̂(x) = L(x)−T𝜈(x), Σ̂(x) = L(x)−TL(x)−1.

(L, �) = (chol(Σ−1), chol(Σ−1)T�),
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Sparsity of Σ̂−1 (which corresponds to many pairs of the components of y being 
independent, conditioned on all others) can be approximately handled by insisting that 
L(x) be very sparse, which in turn can be heuristically handled by using a regularization 
that encourages row sparsity in C and d, for example a sum of row norms. Similar regu-
larization functions have been used in the context of regularizing covariance predictors 
(Huang et al. 2006).

6 � Example: financial factor returns

In this section we illustrate the methods described above on a financial vector 
time series, where the outcome consists of four daily returns, and the feature vec-
tor is constructed from a volatility index as well as past realized volatilities.

6.1 � Outcome and features

6.1.1 � Outcome

We take n = 4 , with yi the daily returns of four Fama-French factors (Fama and 
French 1992):

•	 Mkt-Rf, the market-cap weighted return of US equities minus the risk free 
rate,

•	 SMB, the return of a portfolio that is long small stocks and short big stocks,
•	 HML, the return of a portfolio that is long value stocks and short growth 

stocks, and
•	 Momentum, the return of a portfolio that is long high momentum stocks and 

short low (or negative) momentum stocks.

The daily returns have small enough means that they can be ignored.
Our dataset runs from 2000 to 2020. We split the dataset into a training data-

set from 2000 to 2018 (4541 samples) and a test dataset from 2018 to 2020 (700 

Fig. 1   The cumulative return 
of the four factors from 2000 
to 2020. The vertical black line 
denotes the split between the 
train and test samples
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samples). The cumulative return of these four factors (i.e., 
∏t

�=1
(1 + (y�)i) ) from 

2000 to 2020 is shown in Fig. 1.

6.1.2 � VIX features

Our covariance models use several features derived from the CBOE volatility 
index (VIX), a market-derived measure of expected 30-day volatility in the US 
stock market. We use the previous close of VIX as our raw feature. We perform 
a quantile transform of VIX based on the training dataset, mapping it into [−1, 1] 
as described in Sect. 4. We will also use 5, 20, and 60 day trailing averages of 
VIX (which correspond to one week, around one month, and around one quarter). 
These features are also quantile transformed to [−1, 1] . These four features are 
shown, before quantile transformation, in Fig. 2.

6.1.3 � VOL features

We use several features derived from previous realized returns, which measure vola-
tility. One is the sum of the absolute daily returns of the four factors over the previ-
ous day, i.e., ‖yi−1‖1 . We also use trailing 5, 20, and 60 day averages of this quantity. 

Fig. 2   The four VIX features 
over the test set

Fig. 3   The four VOL features 
over the test set
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These four features are each quantile transformed and mapped into [−1, 1] . These 
four features are shown in Fig. 3, before quantile transformation.

6.2 � Covariance predictors

We experiment with seven covariance prediction methods, organized into three 
groups.

6.2.1 � Simple predictors

•	 Constant Fit a single covariance matrix to the training set.
•	 SMA We use memory M = 50 , which achieved the highest log-likelihood on 

the training set.

6.2.2 � Regression whitener predictors

These predictors are based off the whitener regression approach described in 
Sect. 4; we use the regularization function

for 𝜆1, 𝜆2 > 0 . The hyper-parameters �1, �2 are selected via a coarse grid search. In 
all cases, we use � = 10−6.

•	 VIX. A regression whitener predictor with one feature, VIX. We use �1 = �2 = 0.
•	 TR-VIX. A regression whitener predictor with four features: VIX, and 5/20/60-

day trailing averages of VIX. We use �1 = 10−5 and �2 = 0.
•	 TR-VIX-VOL. A whitener regression predictor with eight features: VIX and 

5/20/60-day trailing averages of VIX, and also ‖yi−1‖1 , and 5/20/60 day trail-
ing averages. We use �1 = 10−5 and �2 = 0.

�1(‖A‖2F + ‖C‖2
F
) + �2(‖b − �‖2

2
+ ‖d‖2

2
),

Table 1   Performance of seven 
covariance predictors on train 
and test sets

Predictor Train log-likelihood Test 
log-like-
lihood

Constant 13.60 12.18
SMA (50) 14.81 13.59
VIX 14.37 13.23
TR-VIX 14.40 13.32
TR-VIX-VOL 14.64 13.48
SMA, then TR-VIX-VOL 14.87 13.78
TR-VIX-VOL, then SMA 15.03 14.10
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6.2.3 �  Iterated predictors

•	 SMA, then TR-VIX-VOL. We first whiten with SMA with memory 50, then 
with regression using TR-VIX-VOL. For the regression predictor, we use 
�1 = 10−5 and �2 = 104.

•	 TR-VIX-VOL, then SMA. We first whiten with a regression with TR-VIX-
VOL, then with SMA, with memory 50. For the regression predictor, we use 
�1 = 10−5 and �2 = 0.

6.3 � Results

The train and test log-likelihood of the seven covariance predictors are reported 
in Table 1. We can see that a simple moving average with memory 50 does well, 
in fact, better than the basic predictors based on whitener regressions of VIX and 
features derived from VIX. However, the iterated whitening predictors, SMA fol-
lowed by TR-VIX, does somewhat better, with TR-VIX followed by SMA doing 
the best. This predictor gives an increase in likelihood over the SMA predictor of 
exp(14.1 − 13.59) = 1.67 , i.e., a 67% lift.

6.3.1 � Predicted covariances

Figure 4 shows the predicted volatilities and correlations of three of the covariance 
predictors over the test set, with the volatilities given in annualized percent, i.e., 
100

√
250Σii . (The number of trading days in one year is around 250.) The ones that 

achieve high test log-likelihood vary considerably, with several correlations chang-
ing sign over the test period.

Fig. 4   Predicted annualized volatilities (on the diagonal) and correlations (on the off-diagonal) of the 
four factors from some of the methods
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6.3.2 � Effect of ordering outcome components

Five of the predictors used in this example include the regression whitener, which 
as mentioned above depends on the ordering of the components in y. In each case, 
we tried all 4! = 24 permutations (using the permutation whitener class), and found 
only negligible differences among them. For all 24 permutations, the TR-VIX-VOL, 
then SMA predictor, achieved the top test performance log-likelihood, with test log-
likelihood ranging from 14.072 to 14.105.

6.3.3 � The simple VIX regression predictor

The simple VIX regression model is readily interpretable. Our predictor is

where x ∈ [−1, 1] is the (transformed) quantile of VIX. The lefthand matrix is the 
whitener when x = 0 , i.e., VIX takes its median value. The righthand matrix shows 
how the whitener changes with x. For example, as x varies over its range [−1, 1] , 
(L)11 varies over the range [38.9, 220.0], a factor of around of 5.7. We can easily 
understand how the predicted covariance changes as x (the quantilized shifted VIX) 
varies. Figure 5 shows the predicted volatilities (on the diagonal) and correlations 
(on the off-diagonals) as the VIX feature ranges over [−1, 1] . We see that as VIX 
increases, all the predicted volatilities increase. But we can also see that VIX has an 

⎡⎢⎢⎢⎣

129.4 0 0 0

−58.3 184.2 0 0

14.8 − 1.0 205.1 0

0.8 − 15.9 26.4 135.7

⎤⎥⎥⎥⎦
+ x

⎡⎢⎢⎢⎣

−90.5 0 0 0

64.6 − 73.2 0 0

−1.8 − 13.1 − 128.2 0

43.1 12.7 − 2.7 − 92.5

⎤⎥⎥⎥⎦
,

Fig. 5   Predicted annualized volatilities (on the diagonal) and correlations (off-diagonal) of the four fac-
tors versus VIX quantile, for the VIX regression covariance predictor. The dot represents the volatility or 
correlation when VIX is at its median



2069

1 3

Covariance prediction via convex optimization﻿	

effect on the correlations. For example, when VIX is low, the momentum factor is 
positively correlated with the market factor; when VIX is high, the momentum fac-
tor becomes negatively correlated with the market factor, according to this model.

6.4 � Multi‑day covariance predictions

The covariance predictors above predict the covariance of the return over the next 
trading day, i.e., yi . In this section we form covariance predictors for the next 1, 20, 
60, and 250 trading days. (The last three correspond to around one calendar month, 
quarter, and year.) As mentioned in Sect.  5.1, this is easily done with the same 
model, by replicating each data point. For example, to predict a covariance matrix 
for the next 5 days, we take the data record (xi, yi) and form five data records,

and then use our method to predict the covariance.
We form multi-day covariance predictions over the next 1, 20, 60, and 250 train-

ing days for the VIX regression predictor. We report the train and test log-likelihoods 

(xi, yi), (xi, yi+1), … , (xi, yi+4),

Table 2   Train and test log-
likelihood of the 1, 20, 60, and 
250-day predictors

Days Train log-likelihood Test 
log-like-
lihood

1 14.36 13.29
20 14.24 12.83
60 14.09 11.93
250 13.91 11.75

Fig. 6   Predicted annualized volatilities (on the diagonal) and correlations (off-diagonal) of the four fac-
tors versus VIX quantile, for the VIX regression covariance predictor for four horizons: 1, 20, 60, and 
250 days. The dot represents the predicted volatility or correlation when VIX is at its median
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of each of these predictors in Table 2. As expected, the log-likelihood decreases as 
the number of days ahead we need to predict increases. Figure 5 shows the predicted 
volatilities (on the diagonal) and correlations (on the off-diagonals) as the VIX fea-
ture ranges over [−1, 1] for the 1, 20, 60, and 250-day predictors. We see that the 
predicted volatility for the market factor over the next day is much more sensitive to 
VIX than the predicted volatility over the next 250 days. This suggests that volatility 
is mean-reverting, i.e., over the long run, volatility tends to return to its mean value. 
We also observe a similar phenomenon with the correlations, although it is less pro-
nounced; for example, the correlation between the HML and momentum factor can 
go from −0.2 to −0.5 based on VIX on up to 60-day horizons, but stays more or less 
constant at −0.3 over the 250-day horizon (Fig. 6).

7 � Example: machine learning residuals

In this section we present an example where the predicted covariance is of the pre-
diction error or residuals of a point predictor.

7.1 � Outcome and features

7.1.1 � Dataset

We consider the “Communities and Crime” dataset from the UCI machine learning 
repository [43,44,45] (Redmond and Baveja 2002; Asuncion and Newman 2007). 
The dataset consists of 128 attributes of 1994 communities within the United States. 
These attributes describe the demographics of the community, as well as the socio-
economic conditions and crime statistics. We removed the attributes that are cat-
egorical or have missing values, leaving 100 attributes. All attributes came normal-
ized in the range [0, 1]. We randomly split the dataset into a 1495-sample training 
dataset and a 499-sample test dataset.

7.1.2 � Outcome

We choose the following two attributes to be the outcome:

•	 agePct65up. The fraction of the population age 65 and up.
•	 pctWSocSec. The fraction of the population that has social security income.

(These were intentionally picked because they have non-trivial correlation.) We map 
each of these two attributes to have unit normal marginals on the training set by 
quantilizing each feature and then applying the inverse CDF of the unit normal.
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7.1.3 � Features

We use the remaining 98 attributes as the features. We use a quantile transformation 
for each of these using the training set, and map the resulting features in the train 
and test set to [−1, 1].

7.2 � Regression residual covariance predictors

In our first example we take the simple approach mentioned in Sect. 5.2, where we 
first form a predictor of the mean, and then form a model of the covariance of the 
residuals.

7.2.1 � Ridge regression model

We fit a ridge regression model to predict the two output attributes from the 98 
input attributes, using cross validation on the training set to select the regulariza-
tion parameter. The root mean squared error (RMSE) of this model on the train-
ing set was 0.352 and on the test set was 0.359.

7.2.2 � Regression residuals

We use the residuals from the regression model as yi . That is, if ytrue
i

 is the true 
outcome, and our regression model predicts ŷi , then we let yi = ytrue

i
− ŷi . Our 

goal is to model the covariance of the residuals yi using xi as features.
We experiment with seven covariance prediction methods, organized into three 

groups.

7.2.3 � Constant predictor

Fit a single covariance matrix to the training set. This covariance matrix was

7.2.4 � Regression whitener predictors

Hyper-parameters were selected via a very coarse grid search.

•	 Diagonal. The diagonal predictor in (2) with the regularization function 
(0.1)‖A‖2

F
.

•	 Regression. The regression whitener predictor in Sect. 4 with � = 10−2 and the 
regularization function (0.01)(‖A‖2

F
+ ‖C‖2

F
).

Σ =

[
0.14 0.08

0.08 0.11

]
.
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7.2.5 � Iterated predictors

Hyper-parameters were selected via a very coarse grid search.

•	 Constant, then diagonal. The constant predictor, followed by a diagonal pre-
dictor with the regularization function (0.1)‖A‖2

F
.

•	 Diagonal, then constant. The diagonal predictor with the regularization func-
tion (0.1)‖A‖2

F
 , followed by a constant predictor.

•	 Constant, then regression. The constant predictor, followed by a whit-
ener regression predictor with � = 10−2 and the regularization function 
‖A‖2

F
+ ‖C‖2

F
+ ‖b − 1‖2

2
+ ‖d‖2

2
.

•	 Regression, then constant. The whitener regression predictor with � = 10−2 
and the regularization function (0.1)(‖A‖2

F
+ ‖C‖2

F
) , followed by a constant 

predictor.

Table 3   Performance of seven 
covariance predictors on train 
and test sets

Predictor Train log-like-
lihood

Test log-
likelihood

Constant −0.47 −0.44
Diagonal −0.37 −0.55
Regression −0.05 −0.14
Constant, then diagonal −0.45 −0.69
Diagonal, then constant 0.00 −0.18
Constant, then regression −0.26 −0.33
Regression, then constant 0.01 −0.11

Fig. 7   Log volume of the 
regression, then constant predic-
tor over the test set. The blue 
vertical line is the average log 
volume, and the black vertical 
line is the log volume of the 
constant predictor
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7.3 � Results

The train and test log-likelihood of the seven covariance predictors are reported in 
Table 3. We can see that the diagonal predictor does the worst, likely because the 
diagonal predictor fails to model the substantial correlation between the outcomes. 
The whitener regression predictor does much better than the constant predictor, with 
a lift of 35% in likelihood. The best predictor was the regression whitener, then con-
stant predictor, with a lift of 39% in likelihood over the constant predictor.

7.3.1 � Covariance variation

The regression, then constant predictor predicts a different covariance matrix for each 
residual, which varies significantly over the test dataset. The standard deviation of the 
first component varies over the range [0.19, 1.16], and the standard deviation of the 
second component varies over the range [0.18, 0.88]. The correlation between the two 
components varies over the range [−0.045, 0.908] , i.e., from slightly negatively corre-
lated to strongly correlated.

Fig. 8   Confidence ellipsoid of a 
test sample for three covari-
ance predictors, and the actual 
outcome

Fig. 9   Some extreme confidence 
ellipsoids on the test set for 
the ‘regression, then constant’ 
predictor
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7.3.2 � Volume of the confidence ellipsoids

The confidence regions of a multivariate Gaussian are ellipsoids, with volume propor-
tional to det(Σ)1∕2 . In Fig. 7 we plot the log volume (which here is area since n = 2 ) 
plus a constant of the ‘regression, then constant’ predictor over the test set, along with 
the equivalent log volume of the constant predictor. Most of the time, the volume of the 
confidence ellipsoid predicted by the best predictor is smaller than the constant predic-
tor. Indeed, on average, the confidence ellipsoid occupies 62% of the area.

7.3.3 � Visualization of confidence ellipsoids

In Fig. 8 we plot the one-� confidence ellipsoids of predictions, on a particular sample 
from the test dataset. We see that the area of the constant ellipsoid is much larger than 
the two other predictors, and that the diagonal predictor does not predict any correlation 
between the outcomes. However, the regression predictor does predict a correlation, 
and significantly less standard deviation in both outcomes. For this particular example, 
the regression predictor confidence region is 51% the area of the constant predictor. In 

Fig. 10   Test set residuals for the 
regression predictor and joint 
mean-covariance predictor

Fig. 11   The nonlinear effect of 
a particular feature on the mean 
prediction in the joint mean-
covariance model
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Fig. 9 we visualize some extreme one-� confidence ellipsoids of the ‘regression, then 
constant’ predictor on the test set, demonstrating how much they vary.

7.4 � Joint mean‑covariance prediction

In this section we perform joint prediction of the conditional mean and covariance as 
described in Sect. 5.2. We solve the convex problem

with variables (A, b, C, d, E, f) using L-BFGS-B.
By jointly predicting the conditional mean and covariance, we actually achieve a 

better test RMSE than predicting just the mean. The train RMSE of this model was 
0.273 and the test MSE was 0.331, whereas the RMSE of the ridge regression model 
was 0.352 on the training set and 0.359 on the test set. Thus, jointly modeling the 
mean and covariance results in a 7.8% reduction in RMSE on the test set.

In Fig. 10 we visualize the residuals of the ridge regression model and the joint 
mean-covariance model on the test set. We observe that the joint mean-covariance 
residuals seem to be on average closer to the origin. In terms of Gaussian log-like-
lihood, the ridge regression model with a constant covariance achieves a train log-
likelihood of 0.054 and a test log-likelihood of 0.088. In contrast, the joint mean-
covariance model achieves a train log-likelihood of 1.132 and a test log-likelihood 
of 1.049, representing a lift on the test set of 161%.

Recall that the prediction of the mean by the joint mean-covariance model is non-
linear in the input. In Fig. 11 we visualize this effect for a particular test point, by 
varying just the ‘pctWWage’ feature from −1 to 1, and visualizing the change in the 
mean prediction for the ‘agePct65up’ output. The nonlinearity is evident.

8 � Conclusions and future work

Many covariance predictors, ranging from simple to complex, have been developed. 
Our focus has been on the regression whitener, which has a concave log-likelihood 
function, so fitting reduces to a convex optimization problem that is readily solved. 
The regression whitener is also readily interpretable, especially when the number 
of features is small, or a rank-reducing regularizer results in a low rank coefficient 
matrix in the predictor. Among other predictors that have been proposed, the only 
other ones that share the property of having a concave log-likelihood is the diago-
nal (exponentiated) covariance predictor and the Laplacian regularized stratified 
predictor.

(8)

maximize (1∕N)
∑N

i=1

�∑n

j=1
log(Li)jj − (1∕2)‖LT

i
yi − �i‖22

�
− (0.1)(‖A‖2

F
+ ‖C‖2

F
)

subject to ����(Li) = Axi + b, i = 1,… ,N,

�������(Li) = Cxi + d, i = 1,… ,N,

�i = Exi + f , i = 1,… ,N,

‖A‖row,1 ≤ b − �,
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We observed that covariance predictors can be iterated; our examples show that 
simple sequences of predictors can indeed yield improved performance. While iter-
ated covariance prediction can yield better covariance predictors, it raises the ques-
tion of how to choose the sequence of predictors. At this time, we do not know, and 
can only suggest a trial and error approach. We can hope that this question is at least 
partially answered by future research.

As other authors have observed, it would be nice to identify an unconstrained 
parametrization of covariance matrices, i.e., an inverse link mapping that maps all of 
Rp onto Sn

++
 . (Our regression whitener requires the constraint ‖x‖∞ ≤ 1 .) One candi-

date is the matrix exponential, which maps symmetric matrices onto Sn
++

 . Unfortu-
nately, this parametrization results in a log-likelihood that is not concave. As far as 
we know, the existence of an unconstrained parametrization of covariance matrices, 
with a concave log-likelihood, is still an open question.

Finally, we mention one more issue that we hope will be addressed in future 
research. The dependence of the regression whitener on the ordering of the entries 
of y certainly detracts from its aesthetic and theoretical appeal. In our examples, 
however, we have obtained similar results with different orderings, suggesting that 
the dependence on ordering is not a large problem in practice, though it should still 
be checked. Still, some guidelines as to how to choose the ordering, or otherwise 
address this issue, would be welcome.
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