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Simulation using Markov chain Monte Carlo is a mainstay of scientific computing; see,
e.g., [4, 5] for pointers to the literature. Thus the analysis and design of fast mixing Markov
chains, with given stationary distribution, has become a research area. In [2], we show how
to numerically find the fastest mixing Markov chain (i.e., the one with smallest second-
largest eigenvalue modulus) on a given underlying graph using tools of convex optimization,
in particular, semidefinite programming [8, 3]. The present note presents a simple, self
contained example where the optimal Markov chain can be identified analytically.

We consider a random walk on a path with n ≥ 2 nodes, labeled 0, 1, . . . , n − 1. There
are n − 1 edges connecting pairs of adjacent nodes; in addition, we allow a loop at each
node, as shown in figure 1. Let Pij denote the transition probability from node i to node j.
We consider symmetric transition probabilities, i.e., those that satisfy Pij = Pji. Since P
is symmetric, the uniform distribution is stationary. The requirement that transitions can
only occur along an edge or loop of the path is equivalent to Pij = 0 for |i− j| > 1, i.e., P
is tridiagonal. Thus, P is a symmetric, stochastic, tridiagonal matrix.
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Figure 1: A path with loops at every node, with transition probabilities labeled.

The eigenvalues of P are real (since it is symmetric), and no more than one in modulus
(since it is stochastic). We denote them in nonincreasing order:

1 = λ0(P ) ≥ λ1(P ) ≥ · · · ≥ λn−1(P ) ≥ −1.

The asymptotic rate of convergence of the Markov chain to the stationary distribution, i.e.,
its mixing rate, depends on the second-largest eigenvalue modulus of P , which we denote
µ(P ):

µ(P ) = max
i=1,...,n−1

|λi(P )| = max {λ1(P ), −λn−1(P )}.

∗Submitted to The American Mathematical Monthly, October 2003. Authors listed in alphabetical order.
†Information Systems Laboratory, Department of Electrical Engineering, Stanford University, CA 94305-

9510. E-mail addresses: boyd@stanford.edu, sunjun@stanford.edu, lxiao@stanford.edu.
‡Department of Statistics and Department of Mathematics, Stanford University, CA 94305-4065.

1



The smaller µ(P ) is, the faster the Markov chain converges to its stationary distribution. For
more rigorous statements and background, see, e.g., [6, 4, 1, 2] and references therein. The
second-largest eigenvalue modulus can also be expressed as the spectral norm of P restricted
to the subspace 1

⊥, i.e., the subspace of all vectors whose components have zero sum:

µ(P ) = ‖(I − (1/n)11T )P (I − (1/n)11T‖2 = ‖P − (1/n)11T‖2.

(Here 1 denotes the vector all of whose components are one, and ‖ · ‖2 denotes the spectral
norm, which is the maximum modulus eigenvalue here since the matrices are symmetric.)

The question we address is: What choice of P minimizes µ(P ) among all symmetric
stochastic tridiagonal matrices? In other words, what is the fastest mixing (symmetric)
Markov chain on a path? We will show that the transition matrix

P ? =



















1/2 1/2
1/2 0 1/2

. . . . . . . . .

1/2 0 1/2
1/2 1/2



















achieves the smallest possible value of µ(P ), cos(π/n), among all symmetric stochastic tridi-
agonal matrices. Thus, to obtain the fastest possible mixing Markov chain on a path, we
assign a probability of 1/2 of moving left, a probability 1/2 of moving right, and a probability
1/2 of staying at each end node. (For the nodes not at either end, the probability of staying
at the node is zero.) This optimal Markov chain is shown in figure 2. For n = 2, we have
µ(P ?) = cos(π/2) = 0, and this is clearly the optimal solution. For n ≥ 3, while P ? is the
transition matrix one would guess yields fastest mixing, we are not aware of a simpler proof
of its optimality than the one we give below.
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Figure 2: Fastest mixing Markov chain on a path.

Lemma. Let P ∈ R
n×n be a symmetric stochastic matrix, and suppose Y ∈ R

n×n and
z ∈ R

n satisfy

Y 1 = 0, Y = Y T , ‖Y ‖∗ ≤ 1, (1)

(zi + zj)/2 ≤ Yij if Pij 6= 0, (2)

where ‖Y ‖∗ =
∑n−1

i=0 |λi(Y )|. (‖ · ‖∗ is dual of the spectral norm.) Then we have µ(P ) ≥ 1
T z.

2



Proof. For any P , Y and z that satisfy the assumptions in the lemma, we have

µ(P ) = ‖P − (1/n)11T‖2

≥ ‖Y ‖∗‖P − (1/n)11T‖2

≥ trY
(

P − (1/n)11T
)

= trY P =
∑

i,j YijPij

≥ ∑

i,j(1/2)(zi + zj)Pij

= (1/2)(zTP1 + 1
TPz)

= 1
T z.

Here tr denotes the trace. The second inequality follows from the Hölder inequality for
matrix inner product and norms, trATB ≤ ‖A‖∗‖B‖2. For the last inequality, we use
assumption (2).

Theorem. The matrix P ? attains the smallest value of µ, cos(π/n), among all symmetric
stochastic tridiagonal matrices.

Proof. The result is clear for n = 2. We assume now that n > 2. The eigenvalues and
associated orthonormal eigenvectors of P ? are

λ0 = 1, v0 = (1/
√
n)1

λj = cos
(

jπ

n

)

, vj(k) =

√

2

n
cos

(

(2k + 1)jπ

2n

)

,
j = 1, . . . , n− 1

k = 0, . . . , n− 1.

(See, e.g.,[7, §16.3].) Therefore we have

µ(P ?) = λ1 = −λn−1 = cos(π/n).

We show that this is the smallest µ possible by constructing a pair Y and z that satisfy the
assumptions (1) and (2) in the lemma, for all symmetric tridiagonal stochastic matrices P ,
and 1

T z = cos(π/n).
We will take Y = v1v

T
1 . The entries of Y are Yij = v1(i)v1(j). Since Pij = 0 for |i−j| > 1,

we only need to list the diagonal and superdiagonal entries:

Yii = v1(i)v1(i) =
2

n
cos

(

(2i+ 1)π

2n

)

cos

(

(2i+ 1)π

2n

)

=
1

n

[

1 + cos

(

π(2i+ 1)

n

)]

, i = 0, . . . , n− 1

Yi,i+1 = v1(i)v1(i+ 1) =
2

n
cos

(

(2i+ 1)π

2n

)

cos

(

(2i+ 3)π

2n

)

=
1

n

[

cos
(

π

n

)

+ cos

(

π(2i+ 2)

n

)]

, i = 0, . . . , n− 2.
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The matrix Y has rank one. Its only nonzero eigenvalue is ‖v1‖2 = 1, so its dual norm is
‖Y ‖∗ = 1. Since v0 = (1/

√
n)1 and v1 ⊥ v0, we have Y 1 = 0. Thus, the assumptions (1)

hold.
We take z to be

zi =
1

n

[

cos
(

π

n

)

+ cos

(

π(2i+ 1)

n

)/

cos
(

π

n

)

]

, i = 0, . . . , n− 1.

It is easy to verify that 1
T z = cos(π/n).

It remains to check that Y and z satisfy (2) for all symmetric tridiagonal matrices P .
Let’s first check the superdiagonal entries. For i = 0, . . . , n− 2, we have

zi + zi+1

2
=

1

n

[

cos
(

π

n

)

+
1

2

(

cos

(

π(2i+ 1)

n

)

+ cos

(

π(2i+ 3)

n

))/

cos
(

π

n

)

]

=
1

n

[

cos
(

π

n

)

+ cos

(

π(2i+ 2)

n

)]

= Yi,i+1.

Therefore equality always holds for the superdiagonal (and subdiagonal) entries. For the
diagonal entries, we need to check (zi + zi)/2 = zi ≤ Yii, i.e.,

cos
(

π

n

)

+ cos

(

π(2i+ 1)

n

)/

cos
(

π

n

)

≤ 1 + cos

(

π(2i+ 1)

n

)

, i = 0, . . . , n− 1,

which is equivalent to

[

1− cos
(

π

n

)]

[

1− cos

(

π(2i+ 1)

n

)/

cos
(

π

n

)

]

≥ 0, i = 0, . . . , n− 1.

But this is certainly true because

cos

(

π(2i+ 1)

n

)

≤ cos
(

π

n

)

, i = 0, . . . , n− 1.

This completes the proof.

Our proof is based on duality theory for semdefinite programming, applied to the fastest
mixing Markov chain problem, as formulated in [2, 3]. The lemma below is exactly the
weak duality result for this problem, and the conditions in the Lemma are that Y and z are
feasible dual variables.
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