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Abstract—We consider the problem of computing the smallest
contact forces, with point-contact friction model, that can hold an
object in equilibrium against a known external applied force and
torque. It is known that the force optimization problem (FOP)
can be formulated as a semidefinite programming problem (SDP)
or a second-order cone problem (SOCP), and thus, can be solved
using several standard algorithms for these problem classes. In this
paper, we describe a custom interior-point algorithm for solving the
FOP that exploits the specific structure of the problem, and is much
faster than these standard methods. Our method has a complexity
that is linear in the number of contact forces, whereas methods
based on generic SDP or SOCP algorithms have complexity that is
cubic in the number of forces. Our method is also much faster for
smaller problems. We derive a compact dual problem for the FOP,
which allows us to rapidly compute lower bounds on the minimum
contact force and certify the infeasibility of a FOP. We use this dual
problem to terminate our optimization method with a guaranteed
accuracy. Finally, we consider the problem of solving a family of
FOPs that are related. This occurs, for example, in determining
whether force closure occurs, in analyzing the worst case contact
force required over a set of external forces and torques, and in the
problem of choosing contact points on an object so as to minimize
the required contact force. Using dual bounds, and a warm-start
version of our FOP method, we show how such families of FOPs
can be solved very efficiently.

Index Terms—Convex optimization, force closure, friction cone,
grasp force, interior-point method, second-order cone program
(SOCP).

I. INTRODUCTION

A FUNDAMENTAL problem in robotics is choosing a set of
grasping (contact) forces for an object (see, e.g., the survey

[1]). The most basic requirement is the ability to restrain an
object against a specified external wrench [2], such as that due to
gravity. A generalization is the ability to resist external wrenches
in a “task wrench space” [3] or any wrench due to a force applied
at the boundary of the object [4]. The ability to resist an arbitrary
external wrench is called force closure [5], [6]. In this paper, we
first focus on the basic requirement, i.e., the ability of the contact
forces to resist a specified external wrench; we then show how
to efficiently handle some of these generalized contact force
requirements, such as determining force closure.

Among the contact forces that can hold the object in equilib-
rium against the external wrench, we seek one with minimum
force, as measured by the maximum magnitude of the con-
tact forces. The problem of finding such a set of forces is the
force optimization problem (FOP). Early papers on this topic in-
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clude [2] and [7], where the FOP is formulated (approximately)
as a linear program (LP), by approximating the friction force
limit constraints as linear inequalities; other papers taking the
same approach include [8] and [9]. Mishra [10] describes several
types of FOPs, algorithms for determining feasible or optimal
forces, and points out the underlying convexity of the problem.
Other researchers have proposed neural network methods [11],
[12], probabilistic algorithms [13], and various other methods.

The FOP comes up in several applications and settings, such
as grasp optimization (which might involve the selection of
the contact points as well as forces) [14]–[18], or real-time
grasp control [19], [20], and force optimization for the legs of
a quadruped robot [21]. Some experimental results for force
optimization are reported in, e.g., [22].

In the late 1990s, several exact formulations of the FOP were
obtained by expressing it as a convex optimization problem in-
volving matrix inequalities or second-order cone inequalities.
The FOP is expressed in [24]–[27] using (linear) matrix in-
equalities, so the resulting optimization problem is a semidefi-
nite programming problem (SDP). The FOP is formulated as a
second-order cone problem (SOCP) in [28].

These formulations reduce the problem to (what is now) a
standard convex optimization problem. This means the prob-
lems can be solved, globally and efficiently, by a variety of
methods for nonlinear convex optimization developed in the
1990s (see, e.g., [29]). General-purpose LP, SOCP, and SDP
software is now widely available (see, e.g., [30] for compar-
ative benchmarking of some recent codes). These solvers can
reliably and efficiently solve FOPs. A typical FOP, with five
contact points and one external wrench, can be solved in well
under a second, on the order of 100 ms on a current typical
desktop PC (for example, a 3-GHz Pentium IV). Several au-
thors have developed custom solvers for the FOP that are faster
than generic SDP or SOCP solvers. Buss et al. [25] developed
a Dikin-type algorithm for the FOP, and Helmke et al. [27] de-
veloped a quadratically convergent algorithm. Our research is
similar in spirit to these.

The need to solve the FOP quickly arises in several applica-
tions, for example, when the FOP must be solved many times.
Suppose we are given a lower and an upper bound on the exter-
nal force and torque components, i.e., a box in wrench space,
and wish to find the maximum value of minimum contact force
required to resist any wrench in this wrench box. (This includes
the more basic problem of determining whether or not each
wrench in the box can be resisted by some contact forces; by
finding the maximum value of minimum force required, we ob-
tain a quantitative measure of the ability to resist wrenches in
the box.) We can do this by solving the FOP for each of the
26 = 64 vertices of the wrench box. The maximum of the opti-
mal forces over these vertices is, in fact, the maximum contact
force required over all wrenches in the box, since the optimal
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force required is a convex function of the wrench. So, here, we
have an example where 64 FOPs must be solved. A similar ex-
ample is provided by the problem of determining force closure.
As we will see in Section II-F, this can be done by solving a set
of seven (or more) FOPs.

As another example where many FOPs must be solved, con-
sider the problem of optimizing the position and orientation of
a manipulator, relative to an object, using the minimum force
required to grasp the object as the objective (see, e.g., [6]). This
is the (nonconvex) problem of optimizing the contact points at
which to grasp a given object. This can be done using an outer
search loop that generates candidate manipulator positions and
orientations; for each candidate, we find the resulting contact
points, and then, solve the associated FOP to determine the min-
imum force required to grasp the object. Such an algorithm can
require the solution of hundreds of FOPs.

Applications that involve the solution of many FOPs, such
as finding the worst case contact force over a wrench box or
contact point optimization, benefit directly from a very fast
FOP solver like the one we describe in this paper. We will
also consider methods for obtaining even more efficiency when
solving a family of related FOPs, using warm-start optimization
techniques, and “short-circuiting,” i.e., early termination.

In this paper, we describe a method for solving the FOP that
is substantially faster than a general-purpose solver for SDP
or SOCP. Despite the speed of our method, its termination is
entirely nonheuristic; our method terminates with a provable
bound on the suboptimality of the computed contact forces
(when the problem is feasible), or with a certificate proving
infeasibility of the problem, when the problem is infeasible.

We obtain the speedup by exploiting special structure in the
FOP to compute the search direction in each iteration of an
interior-point method. The computational effort of our method
scales linearly with M , the number of contact points; for a
generic SDP or SOCP, however, the computational effort grows
as M 3 . Our method is much faster for small problems as well.
For a typical grasping problem with M = 5 contact points,
our method solves the FOP in around 400 µs, on a 3 GHz
Pentium IV, with a not particularly optimized C++ implemen-
tation. This means that 2500 FOPs can be solved in 1 s. By
exploiting warm-start techniques, the typical time to solve a
FOP drops to around 200 µs, many hundreds of times faster
than generic SDP or SOCP solvers.

It is difficult to make a direct speed comparison between our
method and those of Buss et al. [25] and Helmke et al. [27],
since these methods have different stopping criteria, not based
on an explicit dual bound, and the run time depends very
much on the details of the implementation. In fact, many of the
methods in this paper can be used in both of these algorithms.
For example, our dual-based stopping criterion is easily used in
both algorithms; moreover, our method for a fast solution of the
linear equations that must be solved in each step can be used
to speed up the iterations in the Dikin method as well. In any
case, there is not much room for significant speed improvement
over our method, by any other method at all, since our method
requires around eight or so iterations, each of which entails a
few hundred M floating point operations. To put this in context,

we note that our method requires only around a factor of
10 times more effort than simply verifying that equilibrium
holds.

The outline of this paper is as follows. In Section II, we de-
scribe the basic contact FOP, formulated as a conic problem, i.e.,
a convex optimization problem with linear objective and equal-
ity constraints, and convex cone constraints on the variables.
In Section III, we derive a compact dual problem for the FOP,
which allows us to rapidly compute lower bounds on the min-
imum grasping force and certify the infeasibility of a FOP. We
use this dual problem to terminate our optimization method with
a guaranteed accuracy. In Section IV, we describe the barrier
subproblem associated with a primal interior-point method for
the FOP, and in Section V, we show how the special structure of
the FOP can be exploited to compute the search direction very
efficiently. We describe the overall algorithm in Section VI, and
methods for efficiently solving a family of FOPs in Section VII.
We give numerical results in Section VIII, and describe some
variations and extensions on the problem in Section IX.

Finally, we describe our (fairly standard) notation. We de-
note the set of real numbers by R, the set of real n-vectors as
Rn , and the set of real m × n matrices as Rm×n . We use the
notation (a, b, c) (for example) to denote a column vector with
components, and c, which we also write as




a
b
c



 .

When a, b, and c are reals, this is a vector in R3 . We use the
same notation when a, b, and c are themselves (column) vectors,
in which case (a, b, c) is the column vector obtained by stacking
a on top of b on top of c.

II. GRASP FORCE OPTIMIZATION PROBLEM

The rigid object is grasped at M contact points, which have
positions p(i) ∈ R3 (in the global coordinate system), for i =
1, . . . ,M . We will use a point contact with friction model. (In
Section IX-C, however, we explain how our methods can be
extended to handle other friction models, e.g., a soft contact
point that can exert a torque on the object.) The force applied at
a contact point p(i) will be denoted by f (i) ∈ R3 , and is given
in a local coordinate system, with x-axis and y-axis tangent
to the object surface at p(i) , and z-axis normal to the object
surface at p(i) and pointing inward. We denote its components as
f (i) = (f (i)

x , f (i)
y , f (i)

z ). Thus, f (i)
z is the normal (inward) force

applied at contact point p(i) , and (f (i)
x , f (i)

y ) is the tangential
force applied at contact point p(i) .

A. Friction Cone Constraints

The point contact friction model requires the contact forces
to satisfy the friction cone constraints

‖(f (i)
x , f (i)

y )‖ =
√

f (i)2
x + f (i)2

y ≤ µif
(i)
z , i = 1, . . . ,M

(1)
where µi > 0 is the friction coefficient at contact point p(i) .
This constraint states that the magnitude of the tangential force
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does not exceed the friction coefficient times the normal force.
(In particular, it implies that the normal forces f (i)

z must be
nonnegative.) The friction cone constraints are second-order
cone constraints [29, Sec. 4.4.2] [28]. We introduce the friction
cones K1 , . . . ,KM ⊆ R3 , defined as

Ki =
{

x ∈ R3
∣∣∣∣
√

x2
1 + x2

2 ≤ µix3

}
, i = 1, . . . ,M.

(2)
Using this notation, we can express the friction cone constraints
(1) compactly as

f (i) ∈ Ki, i = 1, . . . ,M. (3)

B. Equilibrium Constraints

Let Q(i) ∈ SO(3) be the 3× 3 orthogonal matrix that trans-
forms forces in the local coordinate system at p(i) into the global
coordinate system. Thus, the force on the object due to the con-
tact force at p(i) is Q(i)f (i) (in the global coordinate system).
The force equilibrium condition is

Q(1)f (1) + · · · + Q(M )f (M ) + f ext = 0 (4)

where f ext ∈ R3 is the total external force that acts on the object
(in the global coordinate system).

The torque applied to the object by the force at contact point
p(i) is given by

p(i) ⊗ Q(i)f (i)

(in the global coordinate system). The torque equilibrium
condition is

p(1) ⊗ Q(1)f (1) + · · · + p(M ) ⊗ Q(M )f (M ) + τ ext = 0

where τ ext ∈ R3 is the total external torque that acts on the
object (in the global coordinate system). Then, we can write the
torque equilibrium condition as

S(1)Q(1)f (1) + · · · + S(M )Q(M )f (M ) + τ ext = 0 (5)

where

S(i) =




0 −p(i)

z p(i)
y

p(i)
z 0 −p(i)

x

−p(i)
y p(i)

x 0



 ∈ skew(3)

is the skew-symmetric matrix that satisfies S(i)x = p(i) ⊗ x.
We now introduce some more compact notation for the

equilibrium constraints. We define the contact force vector
f ∈ R3M as

f = (f (1) , . . . , f (M ))

the vector of all the contact forces. We define contact matrices
Ai ∈ R6×3 as

Ai =
[

Q(i)

S(i)Q(i)

]
, i = 1, . . . ,M

and the (overall) contact matrix A = [A1 · · ·AM ] ∈ R6×3M .
We collect the external force and torque into a single external
wrench ωext = (f ext , τ ext) ∈ R6 . Note that A(i)f gives the
wrench on the object due to the force at contact point p(i) and Af

gives the total wrench on the object from all the contact forces.
Thus, we can write the equilibrium conditions (4) and (5) as

Af + ωext = 0. (6)

This is a set of six linear equations in the 3M contact forces f .

C. Contact Force Constraints

In many practical problems, there are further constraints on
the contact forces due to actuator limits, kinematic constraints,
and other limits, which we can describe as

f ∈ Cother .

These constraints are typically convex, and often polyhedral,
i.e., Cother is described by a set of linear equalities and inequali-
ties on the contact forces. In the main development of this paper,
we will ignore these constraints; but we will make occasional
comments about how our methods can be extended to handle
these constraints.

D. Force Optimization Problem

The FOP is to find a set of contact force vectors f (i)’s that
are as small as possible, while satisfying the friction cone con-
straints (3) and the force and torque equilibrium conditions (6).
We will measure the size of the set of contact forces by the
maximum magnitude of the M contact forces:

Fmax = max{‖f (1)‖, . . . , ‖f (M )‖}

= maxi=1,...,M

√
f (i)2

x + f (i)2
y + f (i)2

z .

Our problem can be expressed as

minimize Fmax

subject to f (i) ∈ Ki, i = 1, . . . ,M
Af + ωext = 0.

(7)

The optimization variables are the contact forces, i.e., f ∈ R3M ;
the problem data are A (which describe the geometry of the con-
tact points), ωext (the externally applied wrench), and Ki (the
friction cones, which depend on problem data µi , the friction
coefficients). We note for future reference that A has rank 6, pro-
vided M ≥ 3, and the contact points are not collinear (which
we assume).

The problem (7) is convex, since the objective is a convex
(although nondifferentiable) function of f , and the constraints
consist of linear equalities and (convex) cone constraints. The
problem remains convex if we add additional (convex) force
constraint f ∈ Cother .

E. Conic Formulation

The FOP (7) can be expressed in conic form, indeed, as an
SOCP, by introducing a new scalar variable F that bounds the
magnitude of the contact forces:

minimize F
subject to (f (i) , F ) ∈ K, i = 1, . . . ,M

f (i) ∈ Ki, i = 1, . . . , M
Af + ωext = 0.

(8)
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Here, K denotes the standard second-order cone in R4

K =
{

x ∈ R4
∣∣∣∣
√

x2
1 + x2

2 + x2
3 ≤ x4

}

so (f (i) , F ) ∈ Ki means
√

f (i)2
x + f (i)2

y + f (i)2
z ≤ F.

In the problem (8), there are 3M + 1 (scalar) variables: the con-
tact forces f ∈ R3M and F , the new scalar variable introduced
to bound the maximum force magnitude.

Although we will not use the SDP formulation, we mention
that it is readily derived from the conic formulation of the FOP,
by expressing the second-order cone constraints as linear matrix
inequalities (LMIs). For example, we can express f (i) ∈ Ki as
the LMI




µif

(i)
z 0 f (i)

x

0 µif
(i)
z f (i)

y

f (i)
x f (i)

y µif
(i)
z



 ) 0

where ) denotes matrix inequality. This gives the SDP (or LMI)
formulation of the FOP [26]. A more compact formulation,
which uses only 2 × 2 LMIs, is given in [27].

F. Force Closure

Force closure occurs if, for every wrenchω ∈ R6 , there exists
a set of contact forces f (i) ∈ Ki for which Af + ω = 0. We can
describe this condition in terms of cones. Define

W = {−Af | f (i) ∈ Ki} (9)

which is the cone of wrenches that can be resisted. Force closure
is equivalent to W = R6 .

We can determine force closure by solving a set of FOPs. Let
ω1 , . . . ,ωK ∈ R6 be a set of wrenches with 0 in the interior of
their convex hull, i.e., there exist positive λ1 , . . . , λK such that

λ1ω1 + · · · + λKωK = 0. (10)

(The minimum possible value of K is 7.) Force closure occurs
if and only if each of these wrenches can be resisted, i.e., the
associated K FOPs are all feasible.

If any of these FOPs is infeasible, then evidently force closure
does not occur. On the other hand, suppose that each of these K
FOPs is feasible, with optimal force vectors f1 , . . . , fK ∈ R3M .
Given any ω ∈ R6 , we can write it as a nonnegative linear
combination of the vectors ω1 , . . . ,ωK :

ω = β1ω1 + · · · + βKωK , β1 , . . . ,βK ≥ 0.

It follows that the force vector

f = β1f1 + · · · + βK fK

is feasible, i.e., satisfies the friction cone constraints and resists
the external wrench ω.

We describe two simple methods for constructing a set of
wrenches with the required property. The first method constructs
a minimal set, i.e., a set of seven wrenches. In particular, it
constructs the wrenches as the vertices of a regular simplex in
R6 , centered at 0, so the sum of the wrenches is zero. Moreover,

the wrenches all have unit norm, and are maximally equidistant
on the unit sphere.

We start with the 7 × 7 matrix Z = I − (1/7)11T , where
1 ∈ R7 is the vector with all entries one. This matrix has
value 6/7 on its diagonal and −1/7 for each off-diagonal en-
try. Its eigenvalues are 0 (with multiplicity 1) and 1 with mul-
tiplicity 6. Therefore, we can factor it as V T V = Z, where
V ∈ R6×7 (for example, using the eigenvalue decomposition).
Let v1 , . . . , v7 denote the seven columns of V . From V T V = Z,
we conclude that ‖vi‖ =

√
6/7, and that vT

i vj = −1/7 for
i *= j, so * (vi, vj ) = cos−1(−1/6) ≈ 100◦ for i *= j. We can
take ωi =

√
7/6vi .

There are several ways to express a generalω as a nonnegative
linear combination ofω1 , . . . ,ωK . One method is to first express
ω as a linear combination

ω = β̂1ω1 + · · · + β̂KωK

for example, as β̂ = [ω1 · · ·ωK ]†ω, where † denotes pseudo-
inverse. Then, we take β = β̂ + ρλ, where λ is from (10), and ρ
is chosen large enough such that all entries of β are nonnegative.

The second method we describe involves a set of 12 wrenches,
but has the advantage that no computation is involved in ex-
pressing a general wrench as a positive linear combination of
the given wrenches. The wrenches are

±e1 , . . . ,±e6

where ei is the ith unit vector in R6 . The sum of these wrenches
is zero, so the condition (10) holds with λi = 1. Suppose we
solve the 12 associated FOPs, which are all feasible (so force
closure occurs). Let f+

i be an optimal contact force for wrench
ωext = ei , and let f−

i be an optimal contact force for wrench
ωext = −ei . Once we have computed this set of 12 contact
forces, we can very easily construct a feasible contact force
vector for any wrench ω ∈ R6 , as follows:

f = (ω1)+f+
1 + (ω1)−f−

1 + · · · + (ω6)+f+
6 + (ω6)−f−

6
(11)

where (u)+ = max{0, u} and (u)− = max{0,−u} are the pos-
itive and negative parts of u ∈ R, respectively, and here, ωi de-
notes the ith component of ω. Thus, once we have solved the
12 FOPs, we can instantly generate a feasible (but suboptimal)
contact force vector for any external wrench, using the formula
(11) that describes a piecewise-linear mapping from ω into f ,
with 12 regions, i.e., the orthants in R6 .

As a consequence, we find that the minimum grasping force
required to resist the wrench ω is no more than G‖ω‖1 , where
G is the maximum of the optimal value of the 12 FOPs, and
‖ω‖1 = |ω1 | + · · · + |ω6 |. Thus, the number G, the maximum
of the optimal grasping forces for the wrenches ±ei , gives a
quantitative measure of force closure.

There are several other uses of the formula (11). Suppose we
have computed an optimal contact force vector f for a wrench
ω, and we wish to compute a contact force vector f̃ for a nearby
wrench ω̃. (In fact, ω̃ does not have to be close to ω.) To do
this, we use the formula (11) to find a feasible contact force
vector δf that resists the external wrench ω̃ − ω. Then, the
contact force vector f + δf satisfies the cone constraints, and
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resists the wrench ω̃. This contact force vector can be computed
almost instantly; moreover, if ω and ω̃ are not too far from each
other, the force vector will not be too suboptimal.

We mention one important feature of (11). The original FOP
is invariant under a change of the global geometric coordinate
system. If we change the global coordinate system, we will
change ω and the matrices Ai , and therefore, the basic FOP also.
But the solution of this FOP will be the same as the solution
of the original FOP. This property does not hold for (11), i.e., a
change of the global coordinate system will, in general, change
the force vector f computed from (11). (This is obvious since
(11) depends on an expansion of the external wrench in a specific
basis.) We have found that (11) gives good results when the zero
coordinate of the global coordinate system is chosen to be near
the contact point locations, e.g., their average.

III. DUAL PROBLEM AND INFEASIBILITY CONDITIONS

A. Dual Force Optimization Problem

In this section, we derive a dual problem for the FOP (7). (For
a general reference on Lagrange duality, see [29, Ch. 5].) We
introduce Lagrange multiplier vectors zi ∈ R3 for the friction
cone constraints and Lagrange multiplier vectors (ui, vi) ∈ R4

with ui ∈ R3 and vi ∈ R, for the constraints involving K, and
ν ∈ R6 for the equality constraint. The Lagrangian is then

L(f, F, z, u, v, ν)

= F −
M∑

i=1

zT
i f (i) −

M∑

i=1

(ui, vi)T (f (i) , F )

+ νT (Af + ωext)

=

(
1 −

M∑

i=1

vi

)
F −

M∑

i=1

(zi + ui − AT
i ν)T f (i) + νT ωext .

To obtain the dual function, we minimize L over the primal
variables F and f . When we minimize L over F , we find that
the minimum is −∞, unless

∑M
i=1 vi = 1. Minimizing L over

f (i) yields −∞ unless AT
i ν = ui + zi for i = 1, . . . ,M . The

dual function is, therefore, given by

g(z, u, v, ν)

= inf
f , F

L(f, F, z, u, v, ν)

=
{
νT ωext ,

∑M
i=1 vi = 1, AT

i ν = ui + zi, i = 1, . . . ,M
−∞, otherwise.

Thus, we can write the dual of the FOP (see, e.g., [29, Sec. 5.9])
as

maximize νT ωext

subject to zi ∈ K∗
i , i = 1, . . . ,M

(ui, vi) ∈ K∗, i = 1, . . . , M∑M
i=1 vi = 1

AT
i ν = ui + zi, i = 1, . . . ,M

with variables z, u, v, and ν; K∗ denotes the dual of the standard
second-order cone in R4 and K∗

i denotes the dual of the friction
cone Ki . The standard second-order cone is self-dual, i.e., we

have K∗ = K; the dual friction cones are given by

K∗
i =

{
y ∈ R3

∣∣∣∣
√

y2
1 + y2

2 ≤ (1/µi)y3

}
. (12)

(This follows from the general fact that, for any cone K and
any nonsingular matrix C, we have (CK)∗ = C−T K∗.) We can
considerably simplify the basic Lagrange dual problem men-
tioned earlier, by eliminating all variables except ν ∈ R6 . Since
(ui, vi) ∈ K∗ = K is the same as ‖ui‖ ≤ vi , we can eliminate
the variables vi and express the dual as

maximize νT ωext

subject to zi ∈ K∗
i , i = 1, . . . , M

∑M
i=1 ‖ui‖ ≤ 1

AT
i ν = ui + zi, i = 1, . . . , M.

We now eliminate the variables ui , using ui = AT
i ν − zi , to

obtain

maximize νT ωext

subject to zi ∈ K∗
i , i = 1, . . . ,M∑M

i=1 ‖AT
i ν − zi‖ ≤ 1.

(13)

Finally, we eliminate the variables zi . The optimal zi in the
aforementioned problem is the one that minimizes ‖AT

i ν − zi‖
over zi ∈ K∗

i , i.e., the (Euclidean) projection of AT
i ν onto K∗

i :

zi = PK ∗
i
(AT

i ν)

and the associated minimum value is

minzi ∈K ∗
i
‖AT

i ν − zi‖ = dist(AT
i ν,K

∗
i )

the distance from AT
i ν to K∗

i . Thus, we can write the dual FOP
as

maximize νT ωext

subject to
∑M

i=1 dist(AT
i ν,K

∗
i ) ≤ 1 (14)

with variables ν ∈ R6 .
We can give an explicit formula for the projection of a point

(x, y), with x ∈ R2 and y ∈ R, onto the cone K∗
i :

PK ∗
i
(x, y) =






(x, y), y ≥ µi‖x‖
β(x, µi‖x‖), −(1/µi)‖x‖ ≤ y ≤ µi‖x‖
0, y ≤ −(1/µi)‖x‖

where

β =
µiy + ‖x‖

(1 + µ2
i )‖x‖

.

The corresponding distance is given by

dist((x, y),K∗
i )

=






0, y ≥ µi‖x‖
(µi‖x‖ − y)/

√
1 + µ2

i , −(1/µi)‖x‖ ≤ y ≤ µi‖x‖
‖(x, y)‖, y ≤ −(1/µi)‖x‖.

(15)

This gives us an explicit formula for dist(AT
i ν,K

∗
i ), so the dual

(14) is completely explicit.
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The dual FOP (14) satisfies the following properties.
1) Weak duality: Suppose ν is dual feasible, i.e.,∑M

i=1 dist(AT
i ν,K

∗
i ) ≤ 1. Then, the dual objective value

νT ωext is a lower bound on F ' , the optimal value of the
(primal) FOP (7).

2) Strong duality: Suppose the primal FOP (7) is strictly
feasible, i.e., there exists (f, F ) with Af + ωext = 0,
(f (i) , F ) ∈ intK, and f (i) ∈ int Ki . (int S denotes the
interior of the set S.) Then, there exists a dual feasible ν'

for which ν'T ωext = F ' . (In fact, ν' is optimal for the
dual FOP (14).)

Since the dual objective νT ωext and the dual constraint
function

∑K
i=1 dist(AT

i ν,K
∗
i ) are both homogeneous, we

can scale any ν for which
∑K

i=1 dist(AT
i ν,K

∗
i ) *= 0 so that∑K

i=1 dist(AT
i ν,K

∗
i ) = 1. This gives the lower bound

F dual =
νT ωext

∑K
i=1 dist(AT

i ν,K
∗
i )

≤ F ' (16)

valid for
∑K

i=1 dist(AT
i ν,K

∗
i ) *= 0. (This lower bound is inter-

esting only when νT ωext > 0; otherwise, it gives a worse lower
bound than the trivial one 0 ≤ F ' .)

B. Sensitivity Interpretation

The optimal dual variable ν' is useful as a measure of the
sensitivity of the optimal grasping force with respect to changes
in the external wrench. Assuming that F ' is a differentiable
function of ωext (which is not always the case), we have

∂F '

∂ωext
i

= ν'i .

For example, ν'1 gives us (approximately) the change in min-
imum required grasping force, per Newton of increase in the
x-component of the externally applied force. Thus, if ν' is
large, small changes in externally applied wrench can lead to
large changes in the minimum required grasping force.

C. Infeasibility Conditions

The FOP (7) is feasible when there exists a force vector f
that satisfies the friction cone and equilibrium constraints, i.e.,

f (i) ∈ Ki, i = 1, . . . , M, Af + ωext = 0 (17)

a set of M second-order cone constraints and six linear equality
constraints. The associated set of alternative constraints give
the conditions under which (17) is infeasible:

AT
i ν ∈ K∗

i , i = 1, . . . ,M, νT ωext > 0 (18)

a set of M second-order cone constraints for the dual variable
ν ∈ R6 . The conditions (17) and (18) are strong alternatives: for
any problem data, exactly one of them is feasible [29, Sec. 5.9.4].
Thus, feasibility of either set of conditions implies infeasibility
of the other set of conditions.

It is easy to verify weak duality, i.e., that (17) and (18) cannot
both be feasible. If they were both feasible, say with f and ν,
then we would have

0 = νT (Af + ωext) =
M∑

i=1

(AT
i ν)T f (i) + νT ωext > 0

since AT
i ν ∈ K∗

i and f (i) ∈ Ki imply (AT
i ν)T f (i) ≥ 0.

The infeasibility conditions (18) are closely related to the
dual FOP (14): if ν satisfies the alternative constraints (18),
then for any α > 0, αν is feasible for the dual problem (14),
since dist(AT

i (αν),K∗
i ) = 0. Therefore, ανT ωext is a lower

bound on F ' , for any α > 0. Since this can be made arbitrarily
large, we must have F ' = ∞, i.e., the FOP (7) is infeasible.

We can interpret the infeasibility conditions (18) in terms
of energy supplied to the object by the external wrench, when
the object is displaced by a small amount. We think of the
dual variable ν ∈ R6 as representing a small displacement and
rotation of the object; νT ωext > 0 means that some positive
energy is supplied to the object by the external force. The vectors
AT

i ν give the displacement, to first order, of the contact points, in
the local coordinates. Since AT

i ν and f (i) are in dual cones, we
have (AT

i ν)T f (i) ≥ 0 for any feasible set of forces. This means
that if the contact forces satisfy the friction cone constraints,
each one provides zero or positive energy to the object. But the
total energy supplied to the object, by the external wrench and
the contact forces, must be zero. We conclude that no feasible
contact forces exist.

D. Force Nonclosure

We can now give similar necessary and sufficient conditions
for the absence of force closure. This is the condition that the
FOP is infeasible for some external wrench; by the earlier results,
this is equivalent to

AT
i ν ∈ K∗

i , i = 1, . . . ,M, ν *= 0. (19)

Given such a ν, we can easily construct an external wrench that
cannot be resisted; for example, ωext = ν. More generally, a ν
that satisfies the no-force-closure conditions (19) gives us an
entire half-plane of wrenches that cannot be resisted, i.e., any
ωext with νT ωext > 0.

We also note that −ν can be interpreted as a tangent plane, at
0, to the cone W of resistable wrenches [defined in (9)], i.e., for
each nonzero ω ∈ W , we have νT ω ≤ 0. Indeed, −ν ∈ W ∗, the
dual of the cone of resistable wrenches; this establishes that force
closure fails, since force closure is equivalent to W ∗ = {0}.

IV. BARRIER SUBPROBLEM

In this section, and then, next, we describe and analyze the
barrier subproblem associated with the FOP (8), and Newton’s
method, which is used to solve it. This subproblem arises di-
rectly in interior-point methods such as primal barrier methods,
including the algorithm we will describe, and also indirectly in
all others, e.g., primal-dual methods. The Dikin search direc-
tion [25] can also be expressed in terms of the barrier subprob-
lem: it is the Newton search direction for the subproblem, in the
limit t → ∞ (and suitably scaled).

The barrier subproblem is

minimize tF + φ
subject to Af + ωext = 0 (20)
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where t > 0 is a parameter and φ is the log barrier for the cone
constraints. The log barrier is given by

φ(f, F ) =
M∑

i=1

φi(f (i) , F )

where

φi(f (i) , F ) = − log(F 2 − f (i)2
x − f (i)2

y − f (i)2
z )

− log(µ2
i f

(i)2
z − f (i)2

x − f (i)2
y )

if (f (i) , F ) satisfies the cone constraints strictly, i.e.,

(f(i), F ) ∈ intK, f(i) ∈ intKi (21)

and +∞ otherwise. The log barrier is a smooth convex function,
so the subproblem (21) is a smooth convex problem. (For more
on log barriers for convex cones, see [29] and [31].)

Unless stated otherwise, we will assume that the subprob-
lem is feasible, i.e., there exists a point (f, F ) that satisfies
Af + ωext = 0 and (21). This assumption is slightly more than
assuming that the original FOP (8) is feasible; it means that
the original FOP is strictly feasible. This assumption can be
simplified as follows: there exists f ∈ R3M that satisfies

Af + ωext = 0, f (i) ∈ intKi, i = 1, . . . , M.

(We can always choose F large enough to satisfy the other cone
constraints strictly.)

Before getting into details, we mention the most important
facts about the barrier subproblem (20). First, it is a convex
optimization problem, with smooth objective and equality con-
straints, so it can be solved by Newton’s method. Second, it
gives an approximate solution of the FOP (8): the solution
(f, F ) of the barrier subproblem is guaranteed to be at most
4M/t-suboptimal for the original FOP (8).

A. Barrier Subproblem Optimality Conditions

Suppose (f, F ) strictly satisfies the cone constraints, i.e., (21)
holds. The primal residual is

rp = Af + ωext ∈ R6

which is the error in the equilibrium force and torque balance
condition. The dual residual is

rd =
[

rf

rF

]
=

[
∇fφ(f, F ) + AT ν
t + ∂φ(f, F )/∂F

]
∈ R3M +1

where ν ∈ R6 is the Lagrange multiplier associated with the
equality constraints. Here, rf ∈ R3M is the component of the
dual residual associated with the force vector f , and rF ∈ R is
the component of the dual residual associated with F .

We can further divide rf into components corresponding to
the individual contact points, as

rf =




r(1)

...
r(M )



 =




∇f ( 1 ) φ1(f (1) , F ) + AT

1 ν
...

∇f (M ) φM (f (M ) , F ) + AT
M ν



 .

Here, r(i) ∈ R3 is the portion of the dual residual associated
with contact point i. We will give more explicit formulas for
these in Section IV-D.

The optimality conditions for the barrier subproblem (20) can
be expressed in terms of the primal and dual residuals as

rp = 0, rd = 0.

(See, e.g., [Ch. 10].)

B. Dual Feasible Points From Subproblem Solution

If (f ' , F ' , ν') are optimal for the barrier subproblem, then
ν'/t is feasible for the dual FOP (14). The associated dual
objective value is

ν'T ωext

t
= F ' − 4M

t
.

This can be shown by direct computation, or from general facts
about conic problems and logarithmic barriers, since here we
have 2M second-order cones, each with a θ-value of 2 (see [Sec.
11.6], [31]). It follows that the solution of the barrier subproblem
is at most 4M/t suboptimal for the FOP (8).

C. Newton Method

We use an infeasible start Newton method to solve the barrier
subproblem (20) [Sec. 10.3]. The Newton method starts with,
and maintains, (f, F, ν) ∈ R3M × R × R6 , with (f, F ) strictly
satisfying the cone constraints [i.e., (21)], but not necessarily the
equality constraints Af + ωext = 0. Within a finite number of
steps, however, the equality constraints become satisfied, and
once satisfied, they remain satisfied at all subsequent iterations.
In particular, if the infeasible start Newton method is started at
(f, F, ν) with the equality constraints Af + ωext = 0 satisfied,
the equality constraints will be satisfied at all future iterates.

At each iteration of the Newton method, we compute the
Newton step (df, dF, dν) at the current point (f, F, ν). We then
carry out a backtracking line search to find a step length γ,
based on the merit function ‖rd‖2 + ‖rp‖2 . The backtracking
line search algorithm chooses γ = βk , where β ∈ (0, 1) is an
algorithm parameter, and k is the smallest nonnegative integer
for which

(
‖r̂d‖2 + ‖r̂p‖2)1/2 ≤ (1 − αγ)

(
‖rd‖2 + ‖rp‖2)1/2

holds, where r̂d and r̂p are the primal and dual residuals
evaluated at the tentative point (f + γdf, F + γdF, ν + γdν),
and α ∈ (0, 1/2) is another algorithm parameter. (In particu-
lar, we require that (f + γdf, F + γdF ) strictly satisfies the
cone constraints.) The parameters must satisfy 0 < β < 1 and
0 < α < 1/2. Common choices for the parameters are β = 1/2,
α = 0.1. (The Newton method is fairly insensitive to the choice
of these parameters.)

After the line search, we update the new point as

f := f + γ df, F := F + γ dF, ν := ν + γ dν.

The Newton method is terminated when the norm of the resid-
ual is small enough, or when some other exit criterion is sat-
isfied. Once a full Newton step is taken (i.e., the line search
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gives γ = 1), the primal residual becomes zero, and remains
zero (to within numerical accuracy) from that step on; see
[29, Sec. 10.3.2].

The main effort of the algorithm is in computing the Newton
step (df, dF, dν) ∈ R3M +7 , which is given by the solution of
the Karush–Kuhn–Tucker (KKT) system





∂2φ

∂f 2
∂2φ

∂f∂F
AT

∂2φ

∂F∂f

∂2φ

∂F 2 0

A 0 0








df

dF

dν



 = −




rf

rF

rp





a set of 3M + 7 equations in 3M + 7 variables. Since the log
barrier is a sum of functions of each f (i) , the second derivative
appearing in the upper left entry of the KKT matrix is block
diagonal, so we can express the KKT system as





H1 q1 AT
1

. . .
...

...

HM qM AT
M

qT
1 · · · qT

M HF 0
A1 · · · AM 0 0









df1

...

dfM

dF

dν




= −





r1
...

rM

rF

rp




(22)

where

Hi =
∂2φi

∂f (i)2 ∈ R3×3

HF =
∂2φ

∂F 2 ∈ R

qi =
∂2φi

∂f (i)∂F
∈ R3 . (23)

Explicit formulas for these will be given in the next section; for
now, we note the sparsity pattern of the KKT system, which
consists of a block diagonal part, with M 3× 3 blocks (each
associated with a contact point), bordered by seven dense rows
and columns (corresponding to the objective variable F and dual
variable ν).

The infeasible start Newton method always converges to the
optimal point for the barrier subproblem, provided the original
FOP is strictly feasible. When the original FOP problem is
not strictly feasible, the barrier subproblem is not feasible, and
the Newton method does not converge; the residuals do not
converge to zero. Moreover, the Newton method cannot take
a step size γ = 1 (because if it did, the next iterate would be
strictly feasible).

The convergence of Newton’s method is quadratic, so ter-
minal convergence is extremely fast. For the same reason, if
the method is started at an initial point with primal and dual
residuals not too large, convergence to high accuracy can be ob-
tained within a few steps. The total number of Newton steps can
be bounded using the theory of self-concordance [31], but the
bounds obtained are usually far larger than the actual number
required in practice, which is often fewer than ten, and rarely
more than a few tens. When the starting point is good, i.e., the
starting residuals are small, convergence typically occurs in just
a few steps.

D. Barrier Gradient and Hessian Formulas

In this section, we give explicit expressions for the gradient
and Hessian of the log barrier, which are needed to define the
dual residuals, and the coefficient matrix in the KKT system
(23).

The log barrier φ is a sum of 2M terms, each of which is
the negative log of a quadratic form. So, we first give a general
formula for the gradient and Hessian of the function

ψ(u) = − log(uT Pu)

where P is a symmetric matrix. (We assume that uT Pu > 0.)
We have

∇ψ = − 2
uT Pu

Pu

∇2ψ = − 2
uT Pu

P +
(

2
uT Pu

)2

(Pu)(Pu)T . (24)

Using this formula (or by direct differentiation), we have

∂φi

∂f (i)
x

=
2f (i)

x

F 2 − f (i)2
x − f (i)2

y − f (i)2
z

+
2f (i)

x

µ2
i f

(i)2
z − f (i)2

x − f (i)2
y

= (ai + bi)f (i)
x

where we define

ai =
2

F 2 − f (i)2
x − f (i)2

y − f (i)2
z

bi =
2

µ2
i f

(i)2
z − f (i)2

x − f (i)2
y

.

We have similar expressions for the partial derivative with re-
spect to f (i)

y , with f (i)
x changed to f (i)

y in the numerators. The
partial derivative with respect to f (i)

z is

∂φi

∂f (i)
z

=
2f (i)

z

F 2 − f (i)2
x − f (i)2

y − f (i)2
z

− 2µ2
i f

(i)
z

µ2
i f

(i)2
z − f (i)2

x − f (i)2
y

= (ai − µ2
i bi)f (i)

z .

Thus, the gradient is given by

∇f ( i ) φi(f (i) , F ) =




(ai + bi)f

(i)
x

(ai + bi)f
(i)
y

(ai − µ2
i bi)f

(i)
z



 .

The partial derivative of φ with respect to F is

∂φ

∂F
=

M∑

i=1

− 2F

F 2 − f (i)2
x − f (i)2

y − f (i)2
z

= −
(

M∑

i=1

ai

)
F.
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Therefore, the dual residuals can be explicitly expressed as

ri =




(ai + bi)f

(i)
x

(ai + bi)f
(i)
y

(ai − µ2
i bi)f

(i)
z



 + AT
i ν, i = 1, . . . ,M

rF = t − (a1 + · · · + aM )F. (25)

Now, we work out the blocks in the barrier Hessian ∇2φ,
using the notation in (23). Using the general formula (24), we
have

Hi = aiI + a2
i f

(i)f (i)T + bidiag(1, 1,−µ2
i )

+ b2
i




f (i)

x

f (i)
y

−µ2
i f

(i)
z








f (i)

x

f (i)
y

−µ2
i f

(i)
z





T

.

The vectors qi that form the last row and column of the Hessian
are given by

qi = −a2
i Ff (i) , i = 1, . . . ,M.

Finally, we have

HF =
∂2φ

∂F 2

=
M∑

i=1

(−ai + a2
i F

2)

=
M∑

i=1

ai
F 2 + ‖f (i)‖2

F 2 − ‖f (i)‖2

=
M∑

i=1

a2
i

2
(F 2 + ‖f (i)‖2).

V. EFFICIENT NEWTON STEP COMPUTATION

In this section, we show how to compute the Newton step
(df, dF, dν), i.e., solve the equations (22), efficiently. These
equations can be solved using standard methods for linear
equations, such as Gaussian elimination. For example, we
can compute an LDLT factorization of the KKT matrix, and
then, find (df, dF, dν) by a back and forward substitution.
The cost of this is around (1/3)(3M + 7)3 + 2(3M + 7)2 ≈
9M 3 + 63M 2 flops (floating point operations). While this can
be fast for modest values of M (say, M smaller than 10 or
so), we can exploit the special structure of the equations to
solve the equations far faster. The method we describe in
this section requires around 350M flops, and in addition, in-
volves no conditionals (which are needed to pivot in the gen-
eral case), leading to extremely fast execution time. For M
large, our method is clearly far faster than a general method.
It is also faster for small values of M such as M = 4, for
which (1/3)(3M + 7)3 + 2(3M + 7)2 is around two and one-
half times 350M .

Our method is based on a sequence of two elimination steps,
in which particular blocks of variables are eliminated, using
Cholesky factorizations to compute the required inverses since

their definiteness properties are known ahead of time. The lead-
ing 3M × 3M block is a block diagonal, with 3× 3 blocks that
are positive definite, and so, can be inverted very efficiently. A
basic elimination method (see, e.g., [Appendix C, 29]) applied
to this block yields a 7× 7 set of linear equations to solve. This
reduced system of linear equations is indefinite, but it contains a
6 × 6 subblock that is positive definite, so a further elimination
step can be taken, using a Cholesky factorization to invert the
positive definite subblock.

Before giving the details of our elimination method, we com-
ment on how it differs from using a good sparse solver to com-
pute the Newton step. Such a method decomposes the KKT
matrix as PLDLT PT , where P is a permutation matrix cho-
sen to reduce fill-in and preserve numerical stability, L is unit
lower triangular, and D is diagonal. It is very likely that the
permutation found will be good enough to yield an algorithm
that solves the KKT system in O(M) flops, just like our method.
Ours, however, is completely explicit, and also exploits a small
amount of further structure, such as the easy invertibility of the
Cholesky factors. Moreover, our method involves no condition-
als, which makes it faster (and simpler) than a generic sparse
PLDLT PT method. And finally, since our method uses an ex-
plicit elimination ordering, it expends no effort in discovering a
good elimination ordering.

A. First Elimination Step

Our first step is to eliminate the variables dfi from (22). From

Hi dfi + qi dF + AT
i dν = −ri

we obtain

dfi = −H−1
i (ri + qi dF + AT

i dν). (26)

Combining this with

M∑

i=1

qT
i dfi + HF dF = −rF

we obtain

−
M∑

i=1

qT
i H−1

i (ri + qi dF + AT
i dν) + HF dF = −rF

which can be written as

−
(

HF −
M∑

i=1

qT
i H−1

i qi

)
dF +

(
M∑

i=1

qT
i H−1

i AT
i

)
dν

= rF −
M∑

i=1

qT
i H−1

i ri . (27)

Now, we use
M∑

i=1

Ai dfi = −rp

and (26) to get

M∑

i=1

AiH
−1
i (ri + qi dF + AT

i dν) = rp
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which we write as
(

M∑

i=1

AiH
−1
i qi

)
dF +

(
M∑

i=1

AiH
−1
i AT

i

)
dν

= rp −
M∑

i=1

AiH
−1
i ri . (28)

Now, we write (27) and (28) as
[

E11 ET
21

E21 E22

] [
dF
dν

]
=

[
e1
e2

]
(29)

where

E11 = −
(

HF −
M∑

i=1

qT
i H−1

i qi

)

E21 =
M∑

i=1

AiH
−1
i qi

E22 =
M∑

i=1

AT
i H−1

i AT
i

e1 = rF −
M∑

i=1

qT
i H−1

i ri

e2 = rp −
M∑

i=1

AiH
−1
i ri .

The reduced system (29) is a set of seven linear equations in
seven variables, which is easily solved to get dF and dν. Once
these have been computed, we can find dfi from (26).

B. Second Elimination Step

The reduced system (29) also has a structure that can be
exploited, even though it is fully dense. As we will show, the
matrix E is not positive definite (or negative definite), so we
cannot use a Cholesky factorization of E (or −E) to solve the
system. We must use an LDLT factorization, or a factorization
such as LDU that ignores the symmetry. Generic algorithms
for each of these require numerical pivoting, which complicates
(and slows) the algorithm.

The 1, 1 entry E11 is negative. This follows from the convexity
of φ, which implies that the Hessian is positive definite; −E11
is a Schur complement of ∇2φ, and therefore, positive. Its 2,2
entry E22 is, however, positive definite. (It is clearly positive
semidefinite; it is positive definite since A is full rank.) Thus,
the matrix E is indefinite; it has one negative eigenvalue and six
positive eigenvalues. We can solve the reduced system (29) by
eliminating the 1, 1 block, which will leave a 6× 6 system of
equations that is positive definite, and can therefore, be solved
by a Cholesky factorization.

This approach does not reduce the flop count, when compared
to a generic LDLT factorization method; but it removes all
conditionals and row/column permutations (i.e., pivoting), and
therefore, yields a simpler (and faster) algorithm. Since the final

system is solved by Cholesky factorization, the lack of pivoting
comes at no cost in numerical stability.

To solve the reduced system (29) by this method, we proceed
as follows. We first note that

dF = (1/E11)(e1 − ET
21 dν)

and substituting this into E21 dF + E22 dν = e2 , we get
(
E22 − (1/E11)E21E

T
21

)
dν = e2 − (1/E11)E21e1 .

Since E11 < 0, the matrix on the left is positive definite. There-
fore, we can solve this set of equations using Cholesky factor-
ization; we then find dF from the earlier equation.

C. Summary and Flop Count

We summarize our efficient method for computing the
Newton step. We compute the primal and dual residuals, as
well as the Hessian, i.e., Hi , HF , and qi , using the formulas
given in Section IV-D. We compute Cholesky factors Li of Hi ,
i.e., lower triangular Li with LiLT

i = Hi . We then compute the
inverses of the Cholesky factors, i.e., L−1

i . (The more standard
method would be to use forward substitution to compute L−1y,
but here, there is a slight advantage to simply inverting these
matrices.) The total flop count for this step is less than around
50 M flops.

Next, we compute L−1
i AT

i , L−1
i qi , and L−1

i ri , at a total cost
of 73 M flops. (Since the cost of multiplying a lower triangular
3× 3 matrix by a vector is nine flops.) From these, we compute
the data in the reduced system, i.e., E11 , E21 , E22 , e1 , and e2 .
For example, to compute E22 , we express it as

E22 =
M∑

i=1

(L−1
i AT

i )T (L−1
i AT

i ).

This costs 126 M flops. There are 21 entries in the upper triangle
of the matrices in the sum (their lower halves are the same
as their upper halves); each of these is computed as an inner
product of two vectors in R3 , which costs five flops. This gives
5 × 21 = 105 flops for each term in the sum, plus 21 M flops to
add the matrices.

Forming E22 is the dominant cost in forming the reduced
system: forming E11 and e1 each costs 6 M flops; forming E21
and e2 each costs 31 M flops. Thus, the total flop count to form
the reduced system is around 200 M flops.

The reduced system is solved using the method described
in Section V-B, which has a small cost, independent of M , of
around (1/3)73 + 2 × 72 ≈ 200 flops. Finally, dfi’s are com-
puted from (26), at a cost around 31 M flops. All together, then,
we can compute the Newton step in around 350 M plus a modest
constant around 200 flops.

VI. BARRIER METHOD

In a classic primal barrier method, the barrier subproblem (20)
is solved for an increasing sequence of values of t. The Newton
method for each subproblem is initialized at the optimal so-
lution of the previous one. A typical method for increasing
the parameter t is to multiply it by a factor on the order of 10
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(see, e.g., [29, Sec. 10.3]). This is repeated until 4M/t is smaller
than the required tolerance. This basic barrier method is reliable,
and can solve the FOP using on the order of 50 or so Newton
steps, provided the problem is feasible, and the starting point is
reasonably close to feasible. Since each Newton step can be car-
ried out very quickly, this is already an attractive algorithm. We
will show, however, that a variation on the basic barrier method
can reliably solve the problem to a good enough guaranteed
relative accuracy (say, 1%) using almost an order of magnitude
fewer Newton steps, i.e., between five and ten steps.

When the FOP (8) is infeasible, the basic primal barrier
method fails during the first barrier subproblem, which never
finds a feasible point (since no such point exists). Even when
the FOP is feasible, but nearly infeasible, the number of itera-
tions required can be much larger than the typical number. These
problems can be handled by preceding the basic barrier method
with a special phase I method, designed to find a feasible point,
or establish the infeasibility of the FOP. We will address this
issue in Section VI-B. For now, we assume that a feasible, or
nearly feasible, starting point is available.

A. Custom Primal Barrier Method

Our basic method consists of solving the barrier subprob-
lem, for a fixed value of t, using Newton’s method. Once f
is feasible, we evaluate the current maximum force Fmax =
max{‖f (1)‖, . . . , ‖f (M )‖} using the current value of f , and the
current dual bound F dual [from (16)] using the current estimate
of ν, i.e., ν̄/t, where ν̄ is the current value of the dual variable in
the Newton subproblem. We terminate if the current maximum
force Fmax is within a given tolerance of the current dual lower
bound.
given

starting point (f, F, ν) that satisfies (21)
required tolerance εabs > 0
parameter η ∈ (0, 1)

Set t := 4M/(ηεabs).
repeat

1. Compute Newton step (df, dF, dν) using the
methods described in Section V.

2. Line search and update.
Choose a step size γ using backtracking (see Section IV-C).

3. Update. (f, F, ν) := (f, F, ν) + γ(df, dF, dν).
4. if Af + ωext = 0, evaluate Fmax and the dual

lower bound F dual (16).
until Fmax − F dual ≤ εabs .

We make some observations about this algorithm. First, the
algorithm exits with a guarantee (via the dual bound) that the
maximum force is no more than εabs-suboptimal, even though
Newton method may not have converged. Second, the exit con-
dition must hold eventually; if it did not, Newton method con-
verges to the optimal point for the barrier subproblem, at which
we have

Fmax − F dual ≤ F − F dual =
4M

t
= ηεabs < εabs

a contradiction. The parameter η gives a “margin” that guaran-
tees that if Newton’s method were to converge, the gap between

Fmax and the lower bound F dual is smaller than our tolerance.
We have found good results with η = 0.8.

Choosing a fixed value of t (as we do in the algorithm de-
scribed before) is a poor choice for solving general SOCPs,
especially when high accuracy is required, and the number of
constraints is large. But for the FOP, a fixed choice of t works
very well, at least for modest M (say, smaller than 100). If high
accuracy is needed, or M is large (say, over 100), a more con-
ventional schedule for t (as in a primal barrier method) would
likely perform better.

We can modify the algorithm to stop with a guaranteed rel-
ative tolerance instead of a guaranteed absolute tolerance by
replacing the stopping criterion with

Fmax − F dual

F dual ≤ εrel. (30)

In this case, we must ensure that the value of t used is large
enough to drive Fmax − F dual small enough so that (30) will
eventually hold. This requires

t >
4M

εrelF dual .

To do this, we can adjust t during the algorithm as follows.
We start with an absolute tolerance, as in the algorithm before,
chosen so that it is likely to be sufficiently small to work for
the required relative tolerance. We terminate if the relative toler-
ance is reached (in which case we are done), or when the absolute
tolerance is reached. In the latter case, we simply update t to be

t =
4M

ηεrelF dual

where F dual is the current value of the dual bound, and continue
until the relative stopping criterion (30) is satisfied (which must
occur).

Finally, we describe two modes of early termination for the
algorithm that we will employ in Section VII. We are given two
target values Ltar and Utar . We terminate the algorithm once
we have achieved either Fmax ≤ Utar (i.e., the maximum force
is less than the upper target value) or F dual ≥ Ltar (i.e., the
dual bound shows that the optimal maximum force is more than
lower target value).

B. Phase I Problem

The custom primal barrier method described in the previous
section will work when started from any infeasible point that
strictly satisfies the cone constraints, provided the original FOP
is strictly feasible. If the starting point is far from feasibility,
however, the algorithm can require a large number of iterations.
When a good starting point is not available, it is more efficient
to break the optimization up into two phases. In phase I, we
determine a feasible point, i.e., an f that satisfies the constraints
(17), or verify that the problem is infeasible, by exhibiting a
feasible solution of the alternative inequalities (18). In phase II,
we use the custom barrier method to compute the optimal so-
lution of the FOP (7), starting from the feasible point found in
phase I.
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One choice for the phase I problem for the FOP is

minimize s
subject to f (i) + se3 ∈ Ki, i = 1, . . . , M

Af + ωext = 0
s ≥ −1

(31)

where the optimization variables are s ∈ R and f ∈ R3M , and
e3 = (0, 0, 1). This phase I problem is also in conic form, i.e., an
SOCP. The variable s (which is also the objective in the phase I
problem) can be interpreted as a fictitious force added to each of
the normal forces f (i)

z for the purpose of satisfying the friction
cone constraint. But these fictitious forces do not appear in the
equilibrium condition Af + ωext = 0. The goal is to drive this
fictitious force to become zero (or negative); if we succeed,
the corresponding f is evidently feasible for the FOP (7). On
the other hand, if the optimal value of the phase I problem is
positive, it means that the original FOP (7) is infeasible. The
inequality s ≥ −1 is really not needed; it keeps the algorithm
from finding a point that has very negative s, at the cost of very
large forces.

For the phase I problem, we can easily construct a feasible
point from which to start the barrier method. First, we choose any
f that satisfies the equality constraints Af + ωext , for example,
the least-norm solution

f = −AT (AAT )−1ωext . (32)

As an initial value of s, we can choose any value that satisfies

s > max
{

(1/µi)
√

f (i)2
x + f (i)2

y − f (i)
z

∣∣∣∣ i = 1, . . . , M

}
.

The pair (f, s) is then feasible for the phase I problem. Of course,
the force vector f in (32) need not satisfy the cone constraints;
for example, the normal forces f (i)

z can be negative. We also note
that computing f from (32) can be done very efficiently, because
the associated normal equations have exactly the same block
sparsity pattern that allows us to use the methods of Section V.

We use a barrier method to solve the phase I problem (31),
starting from this feasible point, and terminating as soon as
s < 0, since the corresponding f is then strictly feasible for (7).
In each outer iteration, we solve the problem

minimize ts + φ(f, s)
subject to Af + ωext = 0 (33)

where t > 0 is a parameter and φ is the log barrier for the cone
constraints in the phase I problem:

φ(f, s) =
M∑

i=1

− log(µ2
i (f

(i)
z + s)2 − f (i)2

x − f (i)2
y )

when f (i) + se3 ∈ intKi and φ(f, s) = ∞ otherwise. The so-
lution of this subproblem is at most 2M/t suboptimal for the
phase I problem (31), since here we have M cones, each with
θ-value 2.

We use Newton’s method to solve the smooth subproblem
(33). We omit the details and formulas involved since they are
very close to the ones encountered earlier. We note, however, that
each step of Newton’s method for the phase I problem involves

the solution of a set of equations with exactly the same sparsity
structure encountered earlier in (23), i.e., block diagonal, with
M 3× 3 blocks, bordered by seven dense rows and columns.
(The particular coefficient matrices Hi , qi , and HF , however,
are different.) Therefore, the method described in Section V can
be used to efficiently compute the Newton step for the phase I
problem.

When we solve the phase I problem with an absolute tolerance
εabs (which corresponds to t = 2M/εabs), three outcomes can
occur. We can terminate (early) having found a feasible point;
we can also terminate early, once the dual bound for the phase I
problem shows the optimal value is positive. The third possibil-
ity is an ambiguous outcome, in which we have computed a set
of forces that are feasible, when an additional normal contact
force no more than εabs is added. This outcome is extremely
rare, and in any case, not a problem in practice. When a FOP is
just on the boundary between feasible and infeasible, it can be
considered infeasible for all practical purposes.

VII. SOLVING MULTIPLE FORCE OPTIMIZATION PROBLEMS

In this section, we consider the problem of efficiently solving
a family of related FOPs. In the simplest case, we have multiple
FOPs to solve to some given accuracy. We can always solve them
one by one, using the method described before for each problem
instance. If the data for the FOPs differ sufficiently, treating each
problem as a brand new one is not a bad approach; but if the
problem data are close, we can more efficiently solve them using
warm-start techniques. Since the computational effort and time
required to solve a FOP is measured by the number of Newton
steps required, the goal is to solve FOP with fewer Newton steps
than would be typically required.

A. Warm-Start

Suppose we have solved a FOP, and then need to solve a
new one with problem data that is “close,” i.e., the external
wrench ωext , contact geometry matrix A, and coefficients of
friction µi are not far from those of the previous problem. In a
warm-start technique, we simply use the previously computed
force vector f as the starting point for Newton’s method, in the
barrier subproblem associated with the new FOP to be solved,
assuming that it satisfies the friction cone constraints for the
new problem. (If it does not, we can simply add some extra
inward normal force to each contact force that does not satisfy
its cone constraint.) This force vector will not, in general, satisfy
the equilibrium conditions for the new problem, but, assuming
that the new problem is strictly feasible, a feasible point will
eventually be found.

If the new FOP problem data are close enough to the previous
FOP problem data, the new problem can be solved in just a
few Newton steps. On the other hand, it is possible that this
approach can require more iterations than a cold-start method,
i.e., solving the new problem as a new one, with a phase I
followed by a phase II. As an extreme example, if the new
problem is infeasible, then Newton method will simply fail to
converge. A very simple method for getting around this is to
run the warm-start method for a fixed and small number of
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iterations, such as 6; if a feasible point has not been found by
then, the warm-start process is abandoned, and the new problem
is solved using a cold-start. The hope is that the iterations saved
in the successful warm-start attempts more than offset the extra
iterations wasted in warm-start failures.

We note that general interior-point methods are not well suited
to warm-start techniques. Our method handles warm-start well
since it is a primal barrier method, with a fixed value of t, so
it inherits the (very good) warm-start properties of Newton’s
method.

As an example application, consider the problem of comput-
ing optimal grasping forces for an object, as it moves along
a known trajectory. We assume that the contact points on the
object remain the same, but along the trajectory, the external
wrench changes. The external wrench can include a gravity
term, as well as a term associated with accelerating the object.
By choosing a global coordinate system tied to the object, the
matrix A remains constant along the trajectory, as the object
moves, but the external wrench ωext varies. After computing
the optimal grasping forces at one time, we can use a warm-
start technique to rapidly compute the optimal grasping forces
at the next sampled time. (In this special case with A not chang-
ing, we can also use the method described in Section II-F. We
compute 12 wrenches that resist ±ei ; thereafter, we can imme-
diately generate feasible, if not optimal, contact force vectors at
each point along the trajectory.) Another example is computing
the optimal grasping forces at the vertices of a box in wrench
space, i.e., all 64 combinations of high and low values of the six
components of ωext :

ωext
i ∈ {li , ui}, i = 1, . . . , 6.

We can solve the FOP for the average or nominal value of ωext ,

ωext =
1
2
(l + u)

and then attempt to compute the optimal contact forces for each
vertex using a warm-start method.

B. Short-Circuiting

Short-circuiting refers to early termination of the FOP algo-
rithm, i.e., termination before the required relative or absolute
tolerance has been reached. This can be done in two interesting
cases. In the first case, the goal is compute the worst case or
maximum value of the minimum grasping force over a set of
FOPs. In the second case, the goal is compute the best case or
minimum value of the minimum grasping force over a set of
FOPs. Of course, both of these problems can be solved by solv-
ing each FOP (possibly using warm-start techniques), and then,
simply computing the maximum (or minimum) of the optimal
grasping forces.

Examples of the first case include computing the maximum
grasping force that is required over a box in external wrench
space, or the maximum grasping force that is required to move
the object along a given trajectory. The second case arises in
optimizing the position and orientation of a manipulator, relative
to an object, using the minimum force required to grasp the
object as the objective (see, e.g., [6]). This is the (nonconvex)

problem of optimizing the contact points at which to grasp
a given object. This can be done using an outer search loop
that generates candidate manipulator positions and orientations;
for each candidate, we find the resulting contact points, and
then, solve the associated FOP to determine the minimum force
required to grasp the object. Here, our goal is to find the best
set of contact points, i.e., the contact points that (among those
considered) minimize the maximum grasping force.

Worst case short-circuiting works as follows. We maintain
a current worst case value of minimum grasping force (which
we can set equal to zero number initially). We then solve each
FOP in turn, but we can terminate early if the algorithm finds a
feasible grasping force vector with Fmax smaller than the cur-
rent worst case value. If the current FOP has minimum grasping
force larger than the current worst case value, its minimum
force becomes the new worst case value. This is called primal
short-circuiting since we can terminate the FOP when the pri-
mal value Fmax is less than a target value (i.e., the current worst
case value).

Best case short-circuiting is similar. Here, we maintain a
current best (smallest) value of minimum grasping force (which
we can set equal to ∞ initially). We solve each FOP in turn,
terminating early if the algorithm finds a dual lower bound F dual

on minimum grasping force that exceeds the current best case
value. If the current FOP has minimum grasping force smaller
than the current best case value, its minimum force becomes the
new best case value. This is called dual short-circuiting since
we terminate the FOP when the dual lower bound F dual exceeds
a target value (i.e., the current best case value). Note that in dual
short-circuiting, it is possible to expend zero Newton steps on a
FOP. This occurs if the dual variable ν, from the last problem
solved, certifies that the minimum grasping force for the current
problem will be worse than the best case already found.

VIII. NUMERICAL EXAMPLES

In this section, we give some numerical examples to illustrate
the algorithm and variations described before. All our examples
use M = 5 contact points, determined by the position and the
orientation of a particular manipulator with four fingers and
one palm contact point. (This, of course, does not affect the
algorithm; we are just pointing out that the sets of contact points
are not chosen arbitrarily.) The external wrench is due to gravity.
We used the coefficient of friction µi = 0.5 for all contact points.

We used the algorithm described before, with a phase I to
determine feasibility and a phase II to minimize the maximum
grasping force. The algorithm parameters used are the ones men-
tioned in the earlier algorithm description. The stopping crite-
rion is 1% relative accuracy, i.e., εrel = 0.01. (The algorithm
performs well for much higher precisions, but this accuracy is
more than adequate for any practical use.)

We solved 104 FOPs, generated using a collection of objects,
including bars, rods, boxes, and barbells, with various assumed
weights and centers of gravity, and various grasp contact points.
About 10% of the FOPs were infeasible. The average number
of Newton steps required to solve the FOP (or determine the
infeasibility) is around 8, with a standard deviation around 2.
The minimum number of Newton steps (over the 104 test cases)
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was 3; the maximum was 16. The average number of Newton
steps in phase I was around 2. The average number of Newton
steps required to certify infeasible FOPs was around 7.

Our implementation was coded in C++, and run on a 3 GHz
Pentium IV. Our implementation required around 50 µs per
Newton step, so the time to solve a FOP was around 400 µs.

To illustrate warm-start and primal short-circuiting methods,
we considered the problem of finding the worst case grasping
force over a box of wrenches with each force and torque com-
ponent varying ±25%. We generated 4000 test problems, and
compared the average number of Newton steps required, per
FOP, when all 64 vertices, plus the center, of the wrench box
were solved using four methods.

1) Cold-start without short-circuiting.
2) Cold-start with short-circuiting.
3) Warm-start without short-circuiting.
4) Warm-start with short-circuiting.

Our warm-start scheme ran for at most six steps, and reverted
to a cold-start scheme if a feasible point had not been found
by then. (We counted the Newton steps wasted in warm-start
failures in our averages.) The following table gives the average
number of Newton steps required, per FOP.

Method Newton steps per FOP

Cold-start without S/C 10.6
Cold-start with S/C 7.0
Warm-start without S/C 4.0
Warm-start with S/C 3.9

Both short-circuiting and warm-start techniques reduce the total
number of Newton steps required. (Although the combination
of both does not give much further reduction over warm-start
alone.) With warm-start, we require about 4 Newton steps per
FOP; in our implementation, this corresponds to around 200 µs
per FOP.

To illustrate dual short-circuiting, we solved grasp contact
point optimization problems. At each iteration, we update the
position and orientation of the manipulator, compute the contact
points, and then, solve the associated FOP. We used a simple
hill-climbing algorithm to (locally) optimize the manipulator
position and orientation. Each of these optimization runs re-
quired around 130 or so iterations, each of which requires the
solution of a FOP. Once again, we considered four schemes:
cold- and warm-start, with and without dual short-circuiting.

In dual short-circuiting. we stop solving any FOP when it
is determined that the set of contact points being considered
cannot give a better solution than the best set of contact points
found so far. The following table shows the average number of
Newton steps required, per FOP solved, for the three different
methods.

Method Newton steps per FOP

Cold-start without S/C 10.6
Cold-start with S/C 9.7
Warm-start without S/C 4.6
Warm-start with S/C 3.0

These examples show that both dual short-circuiting and
warm-start techniques significantly reduce the number of
Newton steps required. With warm-start and primal short-
circuiting, we are expending only 3 Newton steps per FOP.
In our implementation, this corresponds to around 150 µs per
FOP.

IX. VARIATIONS AND EXTENSIONS

The methods presented in this paper can be extended in sev-
eral ways, for example, by using a different objective function
or a different contact point friction model.

A. Other Objectives

Instead of the maximum magnitude of the grasping forces, we
can take as objective the sum of squares of the force magnitudes

F sumsq = ‖f (1)‖2 + · · · + ‖f (M )‖2

or a sum of the force magnitudes,

F sum = ‖f (1)‖ + · · · + ‖f (M )‖

or the maximum normal force,

F norm ,max = max{f (1)
z , . . . , f (M )

z }.

Each of these results in a new conic formulation of the problem,
a new dual problem, and a different KKT system to solve in each
Newton step. The same structure for the KKT coefficient matrix,
however, will occur in all cases (possibly after elimination of
some variables), which means that our method can be used to
compute the Newton step efficiently, and therefore, to solve the
problem efficiently.

Let us give some details for the case with objective F sumsq .
We can just as well minimize its square root, i.e., solve the
problem

minimize F
subject to (f, F ) ∈ K

f (i) ∈ Ki, i = 1, . . . , M
Af + ωext = 0

(34)

with variables F ∈ R and f ∈ R3M . Here, K denotes the stan-
dard second-order cone in R3M +1 :

K = {(z, y) ∈ R3M × R | ‖z‖ ≤ y}.

The only difference between this problem and the FOP (8) is that
the cone constraints (f (i) , F ) ∈ K, i = 1, . . . , M , that appear in
the FOP are replaced with the single cone constraint (f, F ) ∈ K.

Following the methods used in Section III, we arrive at the
dual problem

maximize νT ωext

subject to zi ∈ K∗
i , i = 1, . . . ,M∑M

i=1 ‖AT
i ν − zi‖2 ≤ 1

the analog of (13). Indeed, the only difference between this dual
and the FOP dual (13) is that the sum of norms constraint in the
FOP dual becomes a sum of norms squared constraint here. We
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can write a compact and explicit dual, the analog of (14), as

maximize νT ωext

subject to
∑M

i=1 dist(AT
i ν,K

∗
i )2 ≤ 1.

The barrier function for the minimum sum-of-squares FOP (34)
is given by

φ(f, F ) = − log(F 2 − ‖f‖2
2)

−
M∑

i=1

log(µ2
i f

(i)2
z − f (i)2

x − f (i)2
y ).

The matrix appearing in the KKT system that defines the
Newton step, in fact, is fully dense. However, closer examination
reveals that the Hessian term contributed by the second term of
the barrier is block diagonal, with 3× 3 blocks, and the Hessian
term contributed by the first block is actually diagonal plus rank
one. Using an un-elimination step (see [Appendix C, 29]), we
then obtain a set of linear equations with exactly the form (22).

B. Contact Force Constraints

In this section, we briefly describe, at a high level, how ad-
ditional (convex) contact force constraints f ∈ C can be added
to our FOP. The dual objective for the constrained problem will
have an additional term (corresponding to the force constraint
in the primal) that can be used to increase the dual objective.
In the barrier method, we add a log barrier for the force con-
straints. This new barrier term contributes a term to the gradient
and Hessian. If the force constraints are separable, i.e., have the
form f (i) ∈ C(i) , then the corresponding Hessian term is block
diagonal, with 3× 3 blocks. This implies that the same basic
method can be used to efficiently compute the search direction
in this case. In particular, the computational effort is still O(M).

C. Other Friction Models

The methods we have described can be extended to other
friction models, such as frictionless point contact or soft con-
tact with elliptic or linearized approximation (see, e.g., [26],
[32]–[34]).

In this section, we briefly explain how to handle one such
extension to soft contact with elliptic model. In this model,
the contact points can exert a torque, about the (local) z-axis
(i.e., normal axis), as well as a force. So, we introduce normal
contact torques, f (i)

t ∈ R, i = 1, . . . ,M , as a fourth component
of the contact point force vector. In this case, the matrices Ai

become 6× 4, with a fourth column that includes the effect of
the torques applied in the normal direction at each contact point;
the equilibrium condition is still Af + ωext = 0, with these new
definitions of f and A. The friction cone, now in R4 , has the
form

Ki =
{

x ∈ R4
∣∣∣∣
√

(x2
1 + x2

2)/µ2
i + x2

4/σ
2
i ≤ x3

}
(35)

i = 1, . . . , M , where σi > 0 is a parameter, sometimes called
the torsional friction coefficient [cf. (2)]. Note that here x3 rep-
resents the normal force, (x1 , x2) the tangential friction force,
and x4 the friction torque.

With these new definitions of f ∈ R4M , A ∈ R6×4M , and
Ki ⊆ R4 , and assuming that we measure the size of a set of
contact forces by the maximum magnitude of the contact forces
(and torque), the FOP is unchanged; it has exactly the form
(7). The dual is also identical, with the dual of the soft contact
friction cone

K∗
i =

{
y ∈ R4 |

√
µ2

i (y2
1 + y2

2 ) + σ2
i y2

4 ≤ y3

}
.

The dual problem is exactly the same; the only change is in
the explicit formula for the Euclidean distance to K∗

i . While the
Euclidean distance to the aforementioned cone can be computed
quickly, there is no longer an explicit formula for it, analogous
to (15).

The barrier method is the same, with the obvious modification
to the barrier function. The KKT system for the barrier subprob-
lem has the same general form, except that the diagonal blocks
are 4× 4, instead of 3× 3. Otherwise, everything is the same.

X. CONCLUSION

We have considered the problem of computing an optimal set
of contact forces, as measured by the maximum magnitude of
the contact forces, subject to the constraint that we hold an object
in equilibrium against an external wrench. We have developed
a very simple dual problem, that can be interpreted easily, and
gives a very cheaply computable lower bound on the optimal
grasping force. We have developed a primal barrier algorithm
that reliably solves the FOP within ten or so iterations; in con-
trast, general interior-point methods typically take several or
more tens of iterations. Each iteration of our algorithm involves
solving a set of linear equations. The special structure of these
equations can be exploited to solve these equations with O(M)
computational effort, instead of O(M 3) for the naive method.
The constant hidden in the O(M) notation is quite modest. For
cases when the number of contact forces is small, the advantage
here is not huge; but for M large (say, a few tens), the advantage
is great. Our nonoptimized implementation can solve a FOP,
with five contact forces, in around 400 µs. Our method can han-
dle efficient warm-start, exploiting a good initial guess to solve
a set of similar FOPs. This reduces the effort by a factor of 2.
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