Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

[FAC

Fast Model Predictive Control
Using Online Optimization

Yang Wang * Stephen Boyd **

* Stanford University, Stanford, CA 94305
(e-mail: yw224@stanford.edu)

** Stanford University, Stanford, CA 94305
(e-mail: boyd@stanford.edu)

Abstract: A widely recognized shortcoming of model predictive control (MPC) is that it can
usually only be used in applications with slow dynamics, where the sample time is measured in
seconds or minutes. A well known technique for implementing fast MPC is to compute the entire
control law offline, in which case the online controller can be implemented as a lookup table.
This method works well for systems with small state and input dimensions (say, no more than
5), and short time horizons. In this paper we describe a collection of methods for improving the
speed of MPC, using online optimization. These custom methods, which exploit the particular
structure of the MPC problem, can compute the control action on the order of 100 times faster
than a method that uses a generic optimizer. As an example, our method computes the control
actions for a problem with 12 states, 3 controls, and horizon of 30 time steps (which entails
solving a quadratic program with 450 variables and 1260 constraints) in around 5msec, allowing

MPC to be carried out at 200Hz.

1. INTRODUCTION

In classical model predictive control (MPC), the control
action at each time step is obtained by solving an online
optimization problem. With a linear model, polyhedral
constraints, and a quadratic cost, the resulting optimiza-
tion problem is a quadratic program (QP). Solving the
QP wusing general purpose methods can be slow, and
this has traditionally limited MPC to applications with
slow dynamics, with sample times measured in seconds or
minutes. One method for implementing fast MPC is to
compute the solution of the QP explicitly as a function of
the initial state (Bemporad et al. [2002], ndel et al. [2001]);
the control action is then implemented online in the form
of a lookup table. The major drawback here is that the
number of entries in the table can grow exponentially with
the horizon, state, and input dimensions, so that ‘explicit
MPC’ can only be applied reliably to small problems
(where the state dimension is no more than around 5).

In this paper we describe a collection of methods that
can be used to greatly speed up the computation of the
control action in MPC, using online optimization. Some of
the ideas have already been noted in literature, and here
we will demonstrate that when used in combination, they
allow MPC to be implemented orders of magnitude faster
than with generic optimizers.

Our main strategy is to exploit the structure of the QPs
that arise in MPC (Boyd and Vandenberghe [2004], Wright
[1997]). It has already been noted that with an appropriate
variable re-ordering, the interior-point search direction at
each step can be found by solving a block tridiagonal sys-
tem of linear equations. Exploiting this special structure,
a problem with state dimension n, input dimension m, and
horizon T takes O(T(n + m)?) operations per step in an

978-1-1234-7890-2/08/$20.00 © 2008 IFAC

6974

interior-point method, as opposed to O(T%(n+m)?) if the
special structure were not exploited. Since interior-point
methods require only a constant (and modest) number of
steps, it follows that the complexity of MPC is therefore
linear rather than cubic in the problem horizon.

Another important technique that can be used in online
MPC is warm-starting (Potra and Wright [2000], Yildirim
and Wright [2002]), in which the calculations for each
step are initialized using the predictions made in the
previous step. Warm-start techniques are usually not used
in general interior-point methods (in part because these
methods are already so efficient) but they can work very
well with an appropriate choice of interior-point method,
cutting the number of steps required by a factor of 5 or
more.

The final method we introduce is (very) early termination
of an appropriate interior-point method. It is not surpris-
ing that high quality control is obtained even when the
associated QPs are not solved to full accuracy; after all, the
optimization problem solved at each MPC step is really a
planning exercise, meant to ensure that the current action
does not neglect the future. We have found, however, that
after only surprisingly few iterations (typically between 3
and 5), the quality of control obtained is very high, even
when the QP solution obtained is poor.

For a mechanical control system example with n = 12
states, m = 3 controls, and a horizon T" = 30; each MPC
step requires the solution of a QP with 450 variables, and
1260 constraints. A simple, non-optimized C implementa-
tion of our method allows each MPC step to be carried
out in around Smsec on a 3GHz PC, which would allow
MPC to be carried out at around 200Hz. For a larger
example, with n = 30 states, m = 8 controls, and horizon

10.3182/20080706-5-KR-1001.3844

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

T = 30, our method can be compute each MPC step in
under 25msec, allowing an update rate of 40Hz.

Model predictive control goes by several other names,
such as rolling-horizon planning, receding-horizon control,
dynamic matrix control, and dynamic linear programming.
It has been applied in a wide range of applications, includ-
ing chemical process and industrial control (Maciejowski
[2002], Camacho and Bordons [2004], Kwon and Han
[2005]) control of queuing systems (Meyn [2006]), supply
chain management (Powell [2007]) stochastic control prob-
lems in economics and finance, (Herzog [2005]), dynamic
hedging (Primbs [2007]), and revenue management.

2. TIME-INVARIANT STOCHASTIC CONTROL
2.1 System dynamics and control

In this section we describe the basic time-invariant
stochastic control problem with linear dynamics. The state
dynamics are given by

x(t+1) = Az(t) + Bu(t) + w(t), t=0,1,..., (1)
where t denotes time, z(t) € R" is the state, u(t) € R™
is the input or control, and w(t) € R" is the disturbance.
The matrices A € R"™" and B € R"*™ are (known)
data. We assume that w(t), for different values of ¢,
are independent identically distributed (IID) with known
distribution. We let w = Ew(t) denote the mean of w(t)
(which is independent of t).

The control policy must determine the current input w(t)
from the current and previous states x(0), ..., z(t).

2.2 Objective and constraints

At each time instant ¢t we define the stage cost:

s(@(t), u(t)) = Bg%r [SQT ;ﬂ {igg] ,

and the following objective:

. 1 T—1
J= Jim_7B 3 s(e(0)ult) (2)

Here Q = QT e R, S e R and R = RT ¢ R™*™
are parameters, and we will assume
Q S
|:ST R Z 07

where > denotes matrix inequality.

We also have state and control constraints, defined as a
set of [linear inequalities,

Fiz(t) + Fou(t) < f, t=0,1,..., (3)

where F; € R™*", F, € R™™, and f € R! are problem
data, and < denotes vector (componentwise) inequality.

The stochastic control problem is to find a control policy
that satisfies the state and control constraints (3), and
minimizes the objective J (2). It can be shown that there
is an optimal policy which has the form of a time-invariant
static state feedback control, i.e., u(t) = Vopy(z(t)). (See,
e.g., Bertsekas [2005] for more on the technical aspects of
linear stochastic control.)

2.8 Model predictive control

Model predictive control is a heuristic for finding a good,
if not optimal, control policy for the stochastic control
problem. In MPC the control u(t) is found at each step by
first solving the QP
t+T—1
minimize T Tz_:t s(z(7),u(r))
subject to Fiaz(7) + Fou(r) < f, 7=t,...,t+T —1,
x(r 4+ 1) = Ax(7) + Bu(r) + 0,
T=t,...,t+T —2,
0=Az(t+T—-1)+Bu(t+T - 1)+ w,
(4)

u(t),...,u(t+T—1),

with variables
x(t+1),...,2(t+T—1),

and with problem data

‘T(t)v A7 B7 Qa Sv R7 F17 F25 f7 w.

Here T is a parameter in MPC, called the (planning)

horizon. Let w*(t),...,u*(t+T —1), 2*(t+1),...,a*(t +

T — 1) be optimal for the QP (4). At each time instant t,

the MPC policy takes u(t) = u*(t).

3. PRIMAL BARRIER INTERIOR-POINT METHOD

In this section we describe a basic primal barrier interior-
point for solving the QP (4), that exploits its special
structure. Much of this material has been reported else-
where, possibly in a different form or context (but seems
to not be widely enough appreciated among those who
use or study MPC); we collect it here in one place, using
a unified notation. In §4, we describe variations on the
method described here, which give even faster methods.

We first re-write (4) in a more compact form. We define an
overall optimization variable z € RT™FT ("1 a5 follows,
z=(u(t),z(t+1),u(t+1),...,2t+T—1),u(t+T—1)),
and express the QP as

minimize 2T Hz + g%z (5)
subject to Pz < h, Cz =0,
where
RO O0O... 00 QSTx(t)
0@ S...00 0
0SS R 0 0 0
H = . 9= : ;
000..0QS8 0
000..5TR 0
F, 0 0...0 0 f—Fiz(t)
0 Fi F, ... 0 0 f
P= . .|, h= . ,
0 O 0 Fy FQ f
-BI 0 0 ...0 O Ax(t) +
0 -A-B I . 0 0 w
0O 0 0 —-A. 0 O w
C = . . , b=
0 0 0 0 ..1 0 o
0O 0 0 O -A -B w

6975

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3.1 Primal barrier method

We will use an infeasible start primal barrier method to
solve the QP ([Boyd and Vandenberghe, 2004, Chap. 11]
Nocedal and Wright [1999]). We replace the inequality
constraints in the QP (5) with a barrier term in the
objective, to get the approximate problem

minimize 27 Hz + g7z + ko (2) 6)
subject to C'z = b,
where k > 0 is a barrier parameter, and ¢ is the log barrier
associated with the inequality constraints, defined as
T
¢(z) =Y —log(hi —p] 2),
i=1
where p{, ..., pl; are the rows of P. (We take ¢(z) = oo if
Pz &£ h.) The problem (6) is a convex optimization prob-
lem with smooth objective and linear equality constraints,
and can be solved by Newton’s method, for example.

As k approaches zero, the solution of (6) converges to a
solution of the QP (5): it can be shown that the solution
of (6) is no more than xIT suboptimal for the QP (5) (see,
e.g., [Boyd and Vandenberghe, 2004§11.2.2]).

In a basic primal barrier method, we solve a sequence of
problems of the form (6), using Newton’s method starting
from the previously computed point, for a decreasing
sequence of values of k. A typical method is to reduce
k by a factor of 10 each time a solution of (6) is computed
(within some accuracy). Such a method can obtain an
accurate solution of the original QP with a total effort of
around 50 or so Newton steps (for rigorous upper bounds
see ([Boyd and Vandenberghe, 2004§11.5], Nesterov and
Nemirovsky [1994]).

3.2 Infeasible start Newton method

We now focus on solving the problem (6) using an in-
feasible start Newton method [Boyd and Vandenberghe,
2004§10.3.2]. We associate a dual variable v € R'™ with
the equality constraint C'z = b. The optimality conditions
for (6) are then

rq = 2Hz4+g+xkPTd+CTv =0, rp,=Cz=b=0, (7)
where d; = 1/(h; — pl'z), and p! denotes the ith row
of P. The term xPTd is the gradient of k¢(z). We also
have the implicit constraint here that Pz < h. We call r,
the primal residual, and 74 the dual residual. The stacked
vector r = [r] L] is called the residual; the optimality

conditions for (6) can then be expressed as r = 0.

In the infeasible start Newton method, the algorithm
is initialized with a point 2% that strictly satisfies the
inequality constraints (Pz° < h), but need not satisfy the
equality constraints Cz = b, (Thus, the initial z° can be
infeasible, which is where the method gets its name.) We
can start with any »°.

We maintain an approximate z (with Pz < h) and
v, at each step. If the residuals are small enough, we
quit; otherwise we refine our estimate by linearizing the
optimality conditions (7) and computing primal and dual
steps Az, Av for which z+ Az, v+ Av give zero residuals
in the linearized approximation.

The primal and dual search steps Az and Av are found
by solving the linear equations

2" ding(@P O] [8s]] g

(The term xPT diag(d)?P is the Hessian of k¢(z).) Once
Az and Av are computed, we find a step size s € (0,1]
using a backtracking line search on the norm of the residual
r, making sure that Pz < h holds for the updated point
(see, e.g., [Boyd and Vandenberghe, 2004§9.2]). We then
update our primal and dual variables as z := z + sAz and
v := v + sAv. This procedure is repeated until the norm
of the residual is below an acceptable threshold.

It can be shown that primal feasibility (i.e., Cz = b)
will be achieved in a finite number of steps, assuming the
problem (6) is strictly feasible. Once we have r, = 0, it will
remain zero for all further iterations. Furthermore, z and
v will converge to an optimal point within a finite number
of steps. This number of steps can be formally bounded
using self-concordance theory, but the bounds are much
larger than the number of steps typically required.

3.8 Fast computation of the Newton step

If we do not exploit the structure of the equations (8), and
solve it using a dense LDLT factorization, for example, the
cost is (1/3)T3(2n+m)? flops. But we can do much better
by exploiting the structure in our problem.

We will use block elimination [Boyd and Vandenberghe,
2004, App. C]. Before we proceed, let us define & = 2H +
xPT diag(d)?P, which is block diagonal, with first block
m X m, and the remaining T'— 1 blocks (n+m) x (n+m).
Its inverse is also block diagonal, with the same block
structure as H.

Solving (8) by block elimination involves the following
sequence of steps:

(1) Form the Schur complement ¥ = C®'CT and
B=-r,+Co lr,

(2) Determine Av by solving YAv = —4.

(3) Determine Az by solving ®Az = —ry — CTw.

It is not difficult to show that the Shur complement Y is
actually block tridiagonal, with T' (block) rows and n x n
blocks. Forming Y in the first step requires on the order
of T'(n +m)3 flops.

Step 2 is carried out by Cholesky factorization of Y,
followed by backward and forward-substitution. Y can be
factored efficiently using a specialized method described
below for block tridiagonal matrices (which is related
to the Riccati recursion in control theory) (kerblad and
Hansson [2004], Rao et al. [2004], Vandenberghe et al.
[2002])or by treating it as a banded matrix, with band-
width 3n. Both of these methods require order Tn® flops
(Wright [1997], Boyd and Vandenberghe [2004], kerblad
and Hansson [2004], Bartlett et al. [2002], Rao et al.
[2004], Vandenberghe et al. [2002], Biegler [2000]). Step 2
therefore requires order Tn> flops.

The cost of step 3 is dominated by the other steps, since
the Cholesky factorization of ® was already computed in
step 1. The overall effort required to compute the search

6976

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

directions Az and Av, using block elimination, is order
T(m + n)®. Note that this order grows linearly with the
horizon T', as opposed to cubicly, if the equations (8) are
solved using a generic method.

3.4 Warm start

In MPC we compute the current action by working out
an entire plan for the next T time steps. We can use the
previously computed plan, suitably shifted in time, as a
good starting point for the current plan.

We initialize the primal barrier method for solving (6) for
time step ¢ with the trajectories for x and v computed
during the previous time step. Suppose at time ¢ — 1 the
computed trajectory is
z=(u(t—1),z(t—1),..., 2t +T —=2),a(t+ 717 — 2)).

We can initialize the primal barrier method, for time step
t, with

20— (q(t), &t +1),..., 8t +T —2),a(t +T — 2),0,0).
Assuming 2 satisfies the equality constraints, and satisfies
the inequality constraints strictly, then 2™ will also
satisfy these constraints, except possibly at the first time

step. In this case we can modify the initial u(t) so that it
satisfies Flu(t) + Fox(t) < f.

4. APPROXIMATE PRIMAL BARRIER METHOD

In this section we describe some simple variations on
the basic infeasible start primal barrier method described
above. These variations produce only a good approximate
solution of the basic MPC QP (5), but with no significant
decrease in the quality of the MPC control law (as mea-
sured by the objective J). These variations, however, can
be computed much faster than the primal barrier method
described above.

4.1 Fized k

Our first variation is really a simplification of the barrier
method. Instead of solving (6) for a decreasing sequence
of values of k, we propose to use one fixed value, which is
never changed. For a general QP solver, using a single fixed
value of k would lead to a very poor algorithm, that could
well take a very large number of steps, depending on the
problem data. We propose the use of a fixed value of k here
for several reasons. First, we must remember that the goal
is to compute a control that gives a good objective value,
as measured by .J, and not to solve the QP (5) accurately.
(Indeed, the QP is nothing but a heuristic for computing
a good control.) In extensive numerical experiments, we
have found that the quality of closed-loop control obtained
by solving the approximate QP (6) instead of the exact
QP (5) is extremely good, even when the bound on
suboptimality in solving the QP is not small. This was also
observed by Wills and Heath (Wills and Heath [2004]) who
explain this phenomenon as follows. When we substitute
the problem (6) for (5), we can interpret this as solving an
MPC problem exactly, where we interpret the barrier as
an additional nonquadratic state and control cost function
terms.

The idea of fixing a barrier parameter to speed up the
approximate solution of a convex problem was described

in (Boyd and Wegbreit [2007]), where the authors used a
fixed barrier parameter to compute a nearly optimal set of
grasping forces extremely rapidly.

A second advantage we get by fixing x is in warm starting
from the previously computed trajectory. By fixing x, each
MPC iteration is nothing more than a Newton process.
In this case, warm starting from the previously computed
trajectory reliably gives a very good advantage in terms of
the number of Newton steps required. In contrast, warm
start for the full primal barrier method offers limited, and
erratic, advantage.

4.2 Fized iteration limit

Our second variation on the primal barrier method is
also a simplification. By fixing k we have reduced each
MPC calculation to carrying out a Newton method for
solving (6). In a standard Newton method, the iteration is
stopped only when the norm of the residual becomes small,
or some iteration limit K™#* is reached. Now we come to
our second simplification. We simply choose a very small
value of K™ typically between 3 and 10. (When the
MPC control is started up, however, we have no previous
trajectory, so we might use a larger value of K™#*.) Indeed,
there is no harm in simply running a fixed number K™?2*
of Newton steps per MPC iteration, independent of how
big or small the residual is.

When K™#* has some small value such as 5, the Newton
process can terminate with a point z that is not even
primal feasible. Thus, the computed plan does not even
satisfy the dynamics equations. It does, however, respect
the constraints; in particular, u(t) satisfies the current
time constraint Fiz(t) + Fou(t) < f (assuming these
constraints are strictly feasible). In addition, of course, the
dual residual need not be small.

One would think that such a control, obtained by such a
crude solution to the QP, could be quite poor. But exten-
sive numerical experimentation shows that the resulting
control is of very high quality, with only little (or no) in-
crease in J when compared to exact MPC. Indeed, we have
observed that with K™?* as low as 1, the control obtained
is, in some cases, not too bad. We do not recommend
K™ = 1; we only mention it as an interesting variation
on MPC that requires dramatically less computation.

4.3 Summary and implementation results

We have developed a simple implementation of our ap-
proximate primal barrier method, written in C, using
the LAPACK library (Anderson et al. [1990]) to carry
out the numerical linear algebra computations. In §5 we
will describe a mechanical control example in detail. We
mention here the times required to compute the control
laws for randomly generated examples of different sizes
using the approximate primal barrier method, on a 3Ghz
AMD Athlon running Linux. We compare the performance
of our method against solving the QP exactly, using the
generic optimization solver SDPT3 (Toh et al. [1999)]),
called by CVX (Grant et al. [2006]). (The reported times,
however, include only the SDPT3 CPU time.) SDPT3 is
a state-of-the-art primal-dual interior-point solver, that
exploits sparsity. The parameters K™** and k in our

6977

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

n m T QP size ‘ Kmax ‘ Time (ms) ‘ SDPT3 (ms)
4 2 20 100/320 3 0.63 250
10 3 30 360/1080 3 3.97 1400
16 4 30 570/1680 3 7.70 2600
30 8 30 1110/3180 5 23.39 3400

Table 1. Time taken to solve each QP for
randomly generated examples.

]]

Fig. 1. Oscillating masses model. Bold lines represent
springs, and the dark regions on each side represent
walls.

approximate primal barrier method were chosen to give
control performance, as judged by Monte Carlo simulation
to estimate average stage cost, essentially the same as the
control performance obtained by solving the QP exactly;
in any case, never more than 2% worse (and in some cases,
better).

Table 1 lists results for 4 problems of different sizes.
The column listing QP size gives the total number of
variables (the first number) and the total number of
constraints (the second number). We can see that the
small problems (which, however, would be considered large
problems for an explicit MPC method) are solved in under
a millisecond, making possible kiloHertz control rates. The
largest problem, which involves a QP that is not small,
with more than a thousand variables and several thousand
constraints, is solved in around 23ms, allowing a control
rate of several tens of Hertz. We have solved far larger
problems as well; the time required by our approximate
primal barrier method grows as predicted, or even more
slowly.

5. EXAMPLE: OSCILLATING MASSES

Our example consists of a sequence of 6 masses connected
by springs to each other, and to walls on either side, as
shown in figure 1. There are three actuators, which exert
tensions between different masses. The masses have value
1, the springs all have spring constant 1, and there is no
damping. The controls can exert a maximum force of £0.5,
and the displacements of the masses cannot exceed +4.

We sample this continuous time system, using a first order
hold model, with a period of 0.5 (which is around 3 times
faster than the period of the fastest oscillatory mode of
the open-loop system). The state vector z(t) € R is the
displacement and velocity of the masses. The disturbance
w(t) € RC is a random force acting on each mass, with a
uniform distribution on [—0.5,0.5]. (Thus, the disturbance
is as large as the maximum allowed value of the actuator
forces, but acts on all six masses.) For MPC we choose a
horizon T = 30, and separable quadratic objective with
Q =1, R=1,5=0. The problem dimensions are n = 12,
m = 3, and [= 18. The steady-state certainty equivalent
optimal state and control are, of course, zero.

All simulations were carried out for 1100 time steps, dis-
carding the first 100 time steps, using the same realization

Exact MPC
100} ‘ ‘ ‘ ‘]
0 ‘ ‘
0 5 10 15 20 25 30
R =
100} ~]
507_1‘(17 7}%‘7% |
0 o ‘
0 5 10 15 20 25 30
k=0.1
100} I ‘ i
Sofﬁ m 7
0 ‘ .
0 5 10 15 20 25 30
k= 0.01
oo : : : : .
"Ll]
0 . ‘
0 5 10 15 20 25 30
x = 0.001
of ‘]
SOA‘W Tmﬂﬂm |
0 ‘ ‘
0 5 10 15 20 25 30

Fig. 2. Histograms of stage costs, for different values of
k, for oscillating masses example. Solid vertical line
shows the mean of each distribution.

of the random force disturbance. The initial state x(0) is
set to the steady-state certainty equivalent value, which
is zero in this case. We first compare exact MPC (com-
puted using CVX (Grant et al. [2006]), which relies on
the solver SDPT3 (Toh et al. [1999])) with approximate
MPC, computed using a fixed positive value of k, but
with no iteration limit. Exact MPC achieves an objective
value J = 6.0352 (computed as the average stage cost over
the 1000 time steps). Figure 2 shows the distributions of
stage cost for exact MPC and for approximate MPC with
k=1,10"1, 1072, and 1073. For x < 1072, the control
performance is essentially the same as for exact MPC; for
k = 1071, the objective is 2.88% larger than that obtained
by exact MPC, and for k = 1, the objective is 16.58%
larger than exact MPC.

To study the effect of the iteration limit K™ we fix
k = 1072, and carry out simulations for K™ = 1,
K™ = 3, and K™** = 5. The distribution of stage costs is
shown in figure 3. For K'™** = 3 and K™?* = 5, the quality
of control obtained (as measured by average stage cost) is
essentially the same as for exact MPC. For K™** = 1, in
which only one Newton step is taken at each iteration, the
quality of control is measurably worse than for exact MPC,
but it seems surprising to us that this control is even this
good.

For this example, a reasonable choice of parameters would
be k = 1072 and K™a = 5, which yields essentially the
same average stage cost as exact MPC, with a factor of 10
or more speedup (based on 50 or more iterations for exact
solution of the QP). The control produced by x = 1072
and K™# = 5 is very similar to, but not the same as,
exact MPC.

6978

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

Exact MPC
100+
SO;WHW M
o ‘ ‘
0 5 10 15 20 25 30
KTH&X 1
100f i
0 M —
0 5 10 15 20 25 30
Kl’l'la.X 3
1001 7
Soxﬂ hﬂmm
0 —_— ‘
0 5 10 15 20 25 30
Kmax — 5
100+
Soj”mm—mw
o ‘
0 5 10 15 20 25 30

Fig. 3. Histograms of stage costs, for different values
of K™a% with x = 1072, for oscillating masses
example. The solid vertical line shows the mean of
each distribution.

Our simple C implementation can carry out one Newton
step for the oscillating masses problem in around lmsec.
With K™ = 5, our approximate MPC control can be
implemented with sample time of 5msec.

ACKNOWLEDGMENTS

This material is based on work supported by by the
Precourt Institute on Energy Efficiency, by NSF award
0529426, by NASA award NNXOT7AEITA, by AFOSR
award FA9550-06-1-0514, by AFOSR award FA9550-06-
1-0312, and by a Rambus Corporation Stanford Gradu-
ate Fellowship. The authors would like to thank Manfred
Morari, Sean Meyn, and Pablo Parrilo for very helpful dis-
cussions, Kwangmoo Koh and Almir Mutapcic for advice
on the C implementation, and Dimitri Gorinevski for help
with the examples.

REFERENCES

E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum,
A. McKenney, J. Du Croz, S. Hammarling, J. Demmel,
C. Bischof, and D. Sorensen. LAPACK: a portable
linear algebra library for high-performance computers.
In Proceedings of Supercomputing, pages 2-11, 1990.

R. A. Bartlett, L. T. Biegler, J. Backstrom, and
V. Gopal. Quadratic programming algorithms for large-
scale model predictive control. Journal of Process Con-
trol, 12(7):775-795, 2002.

A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos.
The explicit linear quadratic regulator for constrained
systems. Automatica, 38(1):3-20, January 2002.

D. P. Bertsekas. Dynamic Programming and Optimal
Control. Athena Scientific, 2005.

L. T. Biegler. Efficient solution of dynamic optimization
and NMPC problems. In F. Allgéwer and A. Zheng,
editors, Nonlinear Model Predictive Control, pages 119—
243. Birkhauser, 2000.

S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

S. Boyd and B. Wegbreit. Fast computation of optimal
contact forces. IEEE Transactions on Robotics, 23(6):
1117-1132, December 2007.

E. F. Camacho and C. Bordons. Model Predictive Control.
Springer-Verlag, 2004.

M. Grant, S. Boyd, and Y. Ye. CVX: Matlab software
for disciplined convex programming, 2006. Available at
http://www. stanford. edu/ boyd/cvx.

F. Herzog. Strategic Portfolio Management for Long-Term
Investments: An Optimal Control Approach. PhD thesis,
ETH, Zurich, 2005.

M. Akerblad and A. Hansson. Efficient solution of second
order cone program for model predictive control. Inter-
national Journal of Control, 77(1):55-77, January 2004.

W. H. Kwon and S. Han. Receding Horizon Control.
Springer-Verlag, 2005.

J. M. Maciejowski. Predictive Control with Constraints.
Prentice-Hall, 2002.

S. P. Meyn. Control Techniques for Complex Networks.
Cambridge University Press, 2006.

P. Tgndel, T. A. Johansen, and A. Bemporad. An
algorithm for multi-parametric quadratic programming
and explicit MPC solutions. In IEEE Conference on
Decision and Control, pages 1199-1204, 2001.

Y. Nesterov and A. Nemirovsky. Interior-Point Polyno-
mial Methods in Convex Programming. SIAM, 1994.

J. Nocedal and S. J. Wright. Numerical Optimization.
Springer, 1999.

F. A. Potra and S. J. Wright. Interior-point methods.
Journal of Computational and Applied Mathematics,
124(1-2):281-302, 2000.

W. Powell. Approximate Dynamic Programming: Solving
the Curses of Dimensionality. J. Wiley & Sons, 2007.
J. Primbs. Dynamic hedging of basket options under
proportional transaction costs using receding horizon

control. Submitted, 2007.

C. V. Rao, S. J. Wright, and J. B. Rawlings. Application
of interior point methods to model predictive control.
Journal of optimization theory and applications, 99(3):
723-757, November 2004.

K. C. Toh, M. J. Todd, and R. H. Tiitiincii. SDPT3: A
matlab software package for semidefinite programming.
Optimization Methods and Software, 11(12):545-581,
1999.

L. Vandenberghe, S. Boyd, and M. Nouralishahi. Robust
linear programming and optimal control. In 15th IFAC
World Congress on Automatic Control, volume 15, July
2002.

A. G. Wills and W. P. Heath. Barrier function based
model predictive control. Automatica, 40(8):1415-1422,
August 2004.

S. J. Wright. Applying new optimization algorithms to
model predictive control. Chemical Process Control-V,
93(316):147-155, 1997. AIChE Symposium Series.

E.A. Yildirim and S. J. Wright. Warm-start strategies in
interior-point methods for linear programming. SIAM
Journal on Optimization, 12(3):782-810, 2002.

6979

