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Abstract. We show how to exploit symmetries of a graph to efficiently compute the fastest
mixing Markov chain on the graph (i.e., find the transition probabilities on the edges to minimize
the second-largest eigenvalue modulus of the transition probability matrix). Exploiting symmetry
can lead to significant reduction in both the number of variables and the size of matrices in the
corresponding semidefinite program, and thus enable numerical solution of large-scale instances that
are otherwise computationally infeasible. We obtain analytic or semianalytic results for particular
classes of graphs, such as edge-transitive and distance-transitive graphs. We describe two general
approaches for symmetry exploitation, based on orbit theory and block-diagonalization, respectively,
and establish a formal connection between them.
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1. Introduction. In the fastest mixing Markov chain problem [3], we choose
the transition probabilities on the edges of a graph to minimize the second-largest
eigenvalue modulus of the transition probability matrix. As shown in [3], this can be
formulated as a convex optimization problem, in particular a semidefinite program.
Thus it can be solved, up to any given precision, in polynomial time by interior-point
methods. In this paper, we show how to exploit symmetries of a graph to make the
computation much more efficient.

1.1. The fastest mixing Markov chain problem. We consider an undirected
graph G = (V , E) with vertex set V = {1, . . . , n} and edge set E , and assume that G
is connected. We define a discrete-time Markov chain by associating with each edge
{i, j} ∈ E a transition probability Pij (Pii denotes the holding probability at vertex i).
We assume the transition between two vertices connected by an edge is symmetric,
i.e., Pij = Pji. Thus the transition probability matrix, P ∈ Rn×n, satisfies

P = PT , P ≥ 0, P1 = 1,

where the superscript T denotes the transpose of a matrix, the inequality P ≥ 0
means elementwise, and 1 denotes the vector of all ones.

Since P is symmetric and stochastic, the uniform distribution (1/n)1T is station-
ary. In addition, the eigenvalues of P are real, and no more than one in modulus. We
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list them in nonincreasing order as

1 = λ1(P ) ≥ λ2(P ) ≥ · · · ≥ λn(P ) ≥ −1.

We denote by μ(P ) the second-largest eigenvalue modulus (SLEM) of P , i.e.,

μ(P ) = max
i=2,...,n

|λi(P )| = max {λ2(P ), −λn(P )}.

This quantity is widely used to bound the asymptotic convergence rate of the Markov
chain to its stationary distribution, in the total variation distance or chi-squared
distance (see, e.g., [16, 19]). In general the smaller μ(P ) is, the faster the Markov
chain converges. For more background on Markov chains, eigenvalues, and rapid
mixing, see, e.g., the text [8].

The fastest mixing Markov chain (FMMC) problem [3] is to find the optimal P
that minimizes μ(P ). This can be posed as the following optimization problem:

minimize μ(P )
subject to P = PT , P ≥ 0, P1 = 1,

Pij = 0, i �= j and {i, j} /∈ E .
(1.1)

It turns out that this is a convex optimization problem [3]. This can be seen, e.g., by
expressing the objective function as μ(P ) = ‖P − (1/n)11T‖2, where ‖ · ‖2 denotes
the spectral norm of a matrix. Moreover, it can be transformed into a semidefinite
program (SDP):

minimize s
subject to −sI � P − (1/n)11T � sI,

P = PT , P ≥ 0, P1 = 1,
Pij = 0, i �= j and {i, j} /∈ E .

(1.2)

Here I denotes the identity matrix, and the variables are the matrix P and the
scalar s. The symbol � denotes matrix inequality, i.e., X � Y means Y − X is
positive semidefinite.

We should note that there are other important measures of rapid mixing, e.g.,
the log-Sobolev constant [33, 55, 17], and other methods to speed up mixing, e.g.,
lifting [11]. We focus on the approach of minimizing the SLEM on a fixed graph
topology. In addition to its direct connection to Markov chain Monte Carlo simulation,
the FMMC problem has found many practical applications in fast load balancing of
parallel computing systems (often with highly symmetric configurations, as discussed
in this paper) [56, 59], and in average consensus and gossip algorithms in sensor
networks [58, 7].

There has been some follow-up work on the FMMC problem. Boyd et al. [6]
proved analytically that on an n-path the fastest mixing chain can be obtained by as-
signing the same transition probability half at the n−1 edges and two loops at the two
ends. Roch [51] used standard mixing-time analysis techniques (variational character-
izations, conductance, canonical paths) to bound the fastest mixing time. Gade and
Overton [23] have considered the fastest mixing problem for a nonreversible Markov
chain. Here, the problem is nonconvex and much remains to be done. Finally, closed-
form solutions of fastest mixing problems have recently been applied in statistics to
give a generalization of the usual spectral analysis of time series for more general
discrete data; see [53].
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1.2. Exploiting problem structure. When solving the SDP (1.2) by interior-
point methods, in each iteration, we need to compute the first and second derivatives
of the logarithmic barrier functions (or potential functions) for the matrix inequalities,
and assemble and solve a linear system of equations (the Newton system). Let n be
the number of vertices and let m be the number of edges in the graph (m is the
number of variables in the optimization problem). The Newton system is a set of m
linear equations with m unknowns. Without exploiting any structure, the number of
flops per iteration in a typical barrier method is on the order max{mn3, m2n2, m3},
where the first two terms come from computing and assembling the Newton system,
and the third term amounts to solving it (see, e.g., [2, section 11.8.3]). (Other variants
of interior-point methods have similar orders of flop count.)

Exploiting problem structure can significantly improve solution efficiency. As for
many other problems defined on a graph, sparsity is the most obvious structure to
consider here. In fact, many current SDP solvers already exploit sparsity. However, it
is a well-known fact that exploiting sparsity alone in interior-point methods for SDP
has limited effectiveness. The sparsity of P , and the sparsity plus rank-one structure
of P − (1/n)11T , can be exploited to greatly reduce the complexity of assembling the
Newton system, but typically the Newton system itself is dense. The computational
cost per iteration is still at the order O(m3), dominated by solving the dense linear
system (see analysis in [58]).

We can also solve the FMMC problem in the form (1.1) by subgradient-type (first-
order) methods. The subgradients of μ(P ) can be obtained by computing the SLEM
of the matrix P and the associated eigenvectors. This can be done very efficiently by
iterative methods, specifically the Lanczos method, for large sparse symmetric ma-
trices (see, e.g., [30, 52]). Compared with interior-point methods, subgradient-type
methods can solve much larger problems but only to a moderate accuracy; they also
don’t have polynomial-time worst-case complexity. In [3], we used a simple subgradi-
ent method to solve the FMMC problem on graphs with up to a few hundred thousand
edges. More sophisticated first-order methods, for solving large-scale eigenvalue op-
timization and SDPs, have been developed in, e.g., [10, 35, 38, 45, 46]. A successive
partial linear programming method was developed in [47].

In this paper, we focus on the FMMC problem on graphs with large symmetry
groups, and we show how to exploit symmetries of the graph to make the computa-
tion more efficient. A result by Erdős and Rényi [21] states that with high probability
(asymptotically with probability one), the symmetry group of a suitably defined ran-
dom graph is trivial; i.e., it contains only the identity element. Nevertheless, many
of the graphs of theoretical and practical interest, particularly in engineering applica-
tions, have very interesting, and sometimes very large, symmetry groups. Symmetry
reduction techniques have been explored in several different contexts, e.g., dynamical
systems and bifurcation theory [31], polynomial system solving [25, 57], numerical
solution of partial differential equations [22], and Lie symmetry analysis in geomet-
ric mechanics [40]. In the context of optimization, a class of SDPs with symmetry
has been defined in [36], where the authors study the invariance properties of the
search directions of primal-dual interior-point methods. In addition, symmetry has
been exploited to prune the enumeration tree in branch-and-cut algorithms for in-
teger programming [39] and to reduce matrix size in a spectral radius optimization
problem [34].

Closely related to our approach in this paper, the recent work [14] considered
general SDPs that are invariant under the action of a permutation group and de-
veloped a technique based on matrix ∗-representation to reduce problem size. This
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technique has been applied to simplify computations in SDP relaxations for graph
coloring and maximal clique problems [20] and to strengthen SDP bounds for some
coding problems [37].

1.3. Contents. The paper is organized as follows. In section 2, we first explain
some basic background on graph automorphisms and symmetry groups. We show
that the FMMC problem always attains its optimum in the fixed-point subset of the
feasible set under the automorphism group. This allows us to consider only a number
of distinct transition probabilities that equals the number of orbits of the edges.

In section 3, we give closed-form solutions for the FMMC problem on some spe-
cial classes of graphs, namely, edge-transitive graphs and distance-transitive graphs.
Along the way we also discuss FMMC on graphs formed by taking Cartesian products
of simple graphs.

In section 4, we first review the orbit theory for reversible Markov chains de-
veloped in [4], which gives sufficient conditions on constructing an orbit chain that
contains all distinct eigenvalues of the original chain. This orbit chain is usually no
longer symmetric but always reversible. We then solve the fastest reversible Markov
chain problem on the orbit graph, from which we immediately obtain an optimal
solution to the original FMMC problem.

In section 5, we focus on the approach developed in [26], which block-diagonalizes
the linear matrix inequalities in the FMMC problem by constructing a symmetry-
adapted basis. The resulting blocks usually have much smaller sizes, and repeated
blocks can be discarded in computation. We establish a formal connection between
this approach and the orbit theory, and demonstrate their connection on several ex-
amples. More examples can be found in [5].

In section 6, we conclude the paper by pointing out some possible future work.

2. Symmetry analysis. In this section we explain the basic concepts that are
essential in exploiting graph symmetry, and we derive our result on reducing the
number of optimization variables.

2.1. Graph automorphisms and classification. The study of graphs that
possess particular kinds of symmetry properties has a long history (see, e.g., [1, 9]).
The basic object of study is the automorphism group of a graph, and different classes
can be defined depending on the specific form in which the group acts on the vertices
and edges.

An automorphism of a graph G = (V , E) is a permutation σ of V such that
{i, j} ∈ E if and only if {σ(i), σ(j)} ∈ E . The (full) automorphism group of the graph,
denoted by Aut(G), is the set of all such permutations, with the group operation
being composition. For a vertex i ∈ V , the set of all images σ(i), as σ varies through
a subgroup G ⊆ Aut(G), is called the orbit of i under the action of G. Distinct orbits
form equivalent classes and they partition the set V . The action is transitive if there
is only one single orbit in V .

A graph G = (V , E) is said to be vertex-transitive if Aut(G) acts transitively
on V . The action of a permutation σ on V induces an action on E with the rule
σ({i, j}) = {σ(i), σ(j)}. A graph G is edge-transitive if Aut(G) acts transitively on E .
Graphs can be edge-transitive without being vertex-transitive, and vice versa; simple
examples are shown in Figure 2.1.

A graph is called 1-arc-transitive if, given any four vertices u, v, x, y such that
{u, v}, {x, y} ∈ E , there exists an automorphism σ ∈ Aut(G) such that σ(u) = x
and σ(v) = y. Notice that, as opposed to edge-transitivity, here the ordering of the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

796 S. BOYD, P. DIACONIS, P. PARRILO, AND L. XIAO

Fig. 2.1. The graph on the left side is edge-transitive but not vertex-transitive. The one on the
right side is vertex-transitive but not edge-transitive.
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Fig. 2.2. Classes of symmetric graphs and their inclusion relationship.

vertices is important, even for undirected graphs. In fact, a 1-arc-transitive graph
must be both vertex-transitive and edge-transitive, and the reverse may not be true.
The 1-arc-transitive graphs are called symmetric graphs in [1], but the modern use
extends this term to all graphs that are simultaneously edge- and vertex-transitive.
Finally, let δ(u, v) denote the distance between two vertices u, v ∈ V . A graph is
called distance-transitive if, for any four vertices u, v, x, y with δ(u, v) = δ(x, y), there
is an automorphism σ ∈ Aut(G) such that σ(u) = x and σ(v) = y.

The containment relationship among the four classes of graphs described above is
illustrated in Figure 2.2. Explicit counterexamples are known for each of the nonin-
clusions. It is generally believed that distance-transitive graphs have been completely
classified. This work has been done by classifying the distance-regular graphs. It
would take us too far afield to give a complete discussion. See the survey in [18,
section 7].

The concept of graph automorphism can be naturally extended to weighted graphs
by requiring that the permutation also preserve the weights on edges (see, e.g., [4]).
This extension allows us to exploit symmetry in more general reversible Markov chains,
where the transition probability matrix is not necessarily symmetric.

2.2. FMMC with symmetry constraints. A permutation σ ∈ Aut(G) can
be represented by a permutation matrix Q, where Qij = 1 if i = σ(j) and Qij = 0
otherwise. The permutation σ induces an action on the transition probability matrix
by σ(P ) = QPQT .

We denote the feasible set of the FMMC problem (1.1) by C, i.e.,

C = {P ∈ Rn×n | P ≥ 0, P1 = 1, P = PT , Pij = 0 for {i, j} /∈ E}.
This set is invariant under the action of graph automorphism. To see this, let h = σ(i)
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and k = σ(j). Then we have

(σ(P ))hk = (QPQT )hk =
∑

l

(QP )hlQkl = (QP )hj =
∑

l

QhlPlj = Pij .

Since σ is a graph automorphism, we have {h, k} ∈ E if and only if {i, j} ∈ E , so the
sparsity pattern of the probability transition matrix is preserved. It is straightforward
to verify that the conditions P ≥ 0, P1 = 1, and P = PT are also preserved under
this action.

Let F denote the fixed-point subset of C under the action of Aut(G); i.e.,

F = {P ∈ C | σ(P ) = P, σ ∈ Aut(G)}.(2.1)

We have the following theorem
Theorem 2.1. The FMMC problem always has an optimal solution in F .
Similar results have appeared in, e.g., [14, 26]. Here we include the proof for

completeness.
Proof. Let μ� denote the optimal value of the FMMC problem (1.1), i.e., μ� =

inf{μ(P )|P ∈ C}. Since the objective function μ is continuous and the feasible set C
is compact, there is at least one optimal transition matrix P � such that μ(P �) = μ�.
Let P denote the average over the orbit of P � under Aut(G):

P =
1

|Aut(G)|
∑

σ∈Aut(G)

σ(P �).

This matrix is feasible because each σ(P �) is feasible and the feasible set is convex.
By construction, it is also invariant under the actions of Aut(G). Moreover, using the
convexity of μ, we have μ(P ) ≤ μ(P �). It follows that P ∈ F and μ(P ) = μ�.

As a result of Theorem 2.1, we can replace the constraint P ∈ C by P ∈ F in
the FMMC problem and get the same optimal value. In the fixed-point subset F , the
transition probabilities on the edges within an orbit must be the same. So we have
the following corollaries.

Corollary 2.2. The number of distinct edge transition probabilities we need to
consider in the FMMC problem is at most equal to the number of orbits of E under
Aut(G).

Corollary 2.3. If G is edge-transitive, then all the edge transition probabilities
can be assigned the same value.

Note that the holding probabilities at the vertices can always be eliminated using
Pii = 1−∑j Pij (of course we also need to add the constraint

∑
j Pij ≤ 1; see section

2.3). So it suffices to consider only the edge transition probabilities.

2.3. Formulation with reduced number of variables. With the results from
the previous section, we can give an explicit parametrization of the FMMC problem
with a reduced number of variables.

Recall that the adjacency matrix of a graph with n vertices is an n× n matrix A
whose entries are given by Aij = 1 if {i, j} ∈ E and Aij = 0 otherwise. Let νi be the
valency (degree) of vertex i. The Laplacian matrix of the graph is given by

L = Diag(ν1, ν2, . . . , νn) − A,

where Diag(ν) denotes a diagonal matrix with the vector ν on its diagonal. An
extensive account of the Laplacian matrix and its use in algebraic graph theory are
provided in, e.g., [12, 28, 42].
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Suppose that there are N orbits of edges under the action of Aut(G). For each
orbit, we define an orbit graph Gk = (V , Ek), where Ek is the set of edges in the kth
orbit. Note that the orbit graphs are disconnected if the original graph is not edge-
transitive. Let Lk be the Laplacian matrix of Gk. The diagonal entries (Lk)ii equal
the valency of node i in Gk (which is zero if vertex i is disconnected with all other
vertices in Gk).

By Corollary 2.2, we can assign the same transition probability on all the edges
in the kth orbit. Denote this transition probability by pk and let p = (p1, . . . , pN ).
Then the transition probability matrix can be written as

P (p) = I −
N∑

k=1

pkLk.(2.2)

This parametrization of the transition probability matrix automatically satisfies the
constraints P = PT , P1 = 1, and Pij = 0 for {i, j} /∈ E . The entrywise nonnegativity
constraint P ≥ 0 now translates into

pk ≥ 0, k = 1, . . . , N,
N∑

k=1

(Lk)iipk ≤ 1, i = 1, . . . , n,

where the second set of constraints comes from the nonnegativity of the diagonal
entries of P .

It can be verified that the parametrization (2.2), together with the above inequal-
ity constraints, is the precise characterization of the fixed-point subset F . Therefore
we can explicitly write the FMMC problem restricted to the fixed-point subset as

minimize μ

(
I −

N∑
k=1

pkLk

)

subject to pk ≥ 0, k = 1, . . . , N,

N∑
k=1

(Lk)ii pk ≤ 1, i = 1, . . . , n.

(2.3)

3. Some analytic results. For some special classes of graphs, the FMMC prob-
lem can be considerably simplified and often solved by exploiting symmetry only. In
this section, we give some analytic results for the FMMC problem on edge-transitive
graphs, Cartesian product of simple graphs, and distance-transitive graphs. The op-
timal solution is often expressed in terms of the eigenvalues of the Laplacian matrix
of the graph. It is interesting to notice that even for such highly structured classes
of graphs, neither the maximum-degree nor the Metropolis–Hastings heuristics dis-
cussed in [3] gives the optimal solution. Throughout, we use α� to denote the optimal
transition probability on all the edges, and μ� to denote the optimal SLEM.
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3.1. FMMC on edge-transitive graphs.
Theorem 3.1. Suppose the graph G is edge-transitive, and let α be the transi-

tion probability assigned on all the edges. Then the optimal solution of the FMMC
problem is

α� = min
{

1
νmax

,
2

λ1(L) + λn−1(L)

}
,(3.1)

μ� = max
{

1 − λn−1(L)
νmax

,
λ1(L) − λn−1(L)
λ1(L) + λn−1(L)

}
,(3.2)

where νmax = maxi∈V νi is the maximum valency of the vertices in the graph, and L
is the Laplacian matrix defined in section 2.3.

Proof. By definition of an edge-transitive graph, there is a single orbit of edges
under the actions of its automorphism group. Therefore we can assign the same tran-
sition probability α on all the edges in the graph (Corollary 2.3), and the parametriza-
tion (2.2) becomes P = I − αL. So we have

λi(P ) = 1 − αλn+1−i(L), i = 1, . . . , n,

and the SLEM

μ(P ) = max{λ2(P ), −λn(P )}
= max{1 − αλn−1(L), αλ1(L) − 1}.

To minimize μ(P ), we let 1 − αλn−1(L) = αλ1(L) − 1 and get α = 2/(λn−1(L) +
λn−1(L)). But the nonnegativity constraint P ≥ 0 requires that the transition prob-
ability must also satisfy 0 < α ≤ 1/νmax. Combining these two conditions gives the
optimal solution (3.1) and (3.2).

3.1.1. Example: Cycle graphs. The cycle (or ring) graph Cn is a connected
graph with n ≥ 3 vertices, where each vertex has exactly two neighbors. Its Laplacian
matrix is

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1

−1 0 0 · · · −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

which has eigenvalues 2 − 2 cos(2kπ/n), k = 1, . . . , n. The two extreme eigenvalues
are

λ1(L) = 2 − 2 cos
2
n/2�π

n
, λn−1(L) = 2 − 2 cos

2π

n
,

where 
n/2� denotes the largest integer that is no larger than n/2, which is n/2 for n
even or (n − 1)/2 for n odd. By Theorem 3.1, the optimal solution to the FMMC
problem is

α� =
1

2 − cos 2π
n − cos 2�n/2�π

n

,(3.3)

μ� =
cos 2π

n − cos 2�n/2�π
n

2 − cos 2π
n − cos 2�n/2�π

n

.(3.4)
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When n → ∞, the transition probability α� → 1/2 and the SLEM μ� → 1 − 2π2/n2.

3.2. Cartesian product of graphs. Many graphs we consider can be con-
structed by taking Cartesian product of simpler graphs. The Cartesian product of
two graphs G1 = (V1, E1) and G2 = (V2, E2) is a graph with vertex set V1 × V2, where
two vertices (u1, u2) and (v1, v2) are connected by an edge if and only if u1 = v1 and
{u2, v2} ∈ E2, or u2 = v2 and {u1, v1} ∈ E1. Let G1�G2 denote this Cartesian product.
Its Laplacian matrix is given by

LG1�G2 = LG1 ⊗ I|V1| + I|V2| ⊗ LG2 ,(3.5)

where ⊗ denotes the matrix Kronecker product [32]. The eigenvalues of LG1�G2 are

λi(LG1) + λj(LG2), i = 1, . . . , |V1|, j = 1, . . . , |V2|,(3.6)

where each eigenvalue is obtained as many times as its multiplicity (see, e.g., [43]).
Combining Theorem 3.1 and the above expression for eigenvalues, we can eas-

ily obtain solutions to the FMMC problem on graphs formed by taking Cartesian
products.

3.2.1. Example: Mesh on a torus. Mesh on a torus is the Cartesian product
of two copies of Cn. We write it as Mn = Cn�Cn. By (3.6), its Laplacian matrix has
eigenvalues

4 − 2 cos
2iπ

n
− 2 cos

2jπ

n
, i, j = 1, . . . , n.

By Theorem 3.1, we obtain the optimal transition probability

α� =
1

3 − 2 cos 2�n/2�π
n − cos 2π

n

and the smallest SLEM

μ� =
1 − 2 cos 2�n/2�π

n + cos 2π
n

3 − 2 cos 2�n/2�π
n − cos 2π

n

.

When n → ∞, the transition probability α� → 1/4 and the SLEM μ� → 1 − π2/n2.

3.2.2. Example: Hypercubes. The d-dimensional hypercube, denoted Qd,
has 2d vertices, each labeled with a binary word with length d. Two vertices are
connected by an edge if their words differ in exactly one component. This graph is
isomorphic to the Cartesian product of d copies of K2, the complete graph with two
vertices. The Laplacian of K2 is

LK2 =
[

1 −1
−1 1

]
,

whose two eigenvalues are 0 and 2. The one-dimensional hypercube Q1 is just K2.
Higher-dimensional hypercubes are defined recursively:

Qk+1 = Qk�K2, k = 1, 2, . . . .

Using (3.5) and (3.6) recursively, the Laplacian of Qd has eigenvalues 2k, k = 0, 1, . . . , d,
each with multiplicity ( d

k ). The FMMC is achieved for

α� =
1

d + 1
, μ� =

d − 1
d + 1

.

This solution has also been obtained, for example, in [43].
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3.3. FMMC on distance-transitive graphs. Distance-transitive graphs have
been studied extensively in the literature (see, e.g., [9]). In particular, they are both
edge- and vertex-transitive. In previous examples, the cycles and the hypercubes are
actually distance-transitive graphs.

In a distance-transitive graph, all vertices have the same valency, which we denote
by ν. The Laplacian matrix is L = νI − A, with A being the adjacency matrix.
Therefore

λi(L) = ν − λn+1−i(A), i = 1, . . . , n.

We can substitute the above equation in (3.1) and (3.2) to obtain the optimal solution
in terms of λ2(A) and λn(A). For distance-transitive graphs, it is more convenient
to use the intersection matrix, which has all the distinct eigenvalues of the adjacency
matrix.

Let d be the diameter of the graph. For a nonnegative integer k ≤ d, choose any
two vertices u and v such that their distance satisfies δ(u, v) = k. Let ak, bk, and ck

be the number of vertices that are adjacent to u and whose distance from v are k,
k + 1, and k − 1, respectively. That is,

ak = |{w ∈ V | δ(u, w) = 1, δ(w, v) = k}|,
bk = |{w ∈ V | δ(u, w) = 1, δ(w, v) = k + 1}|,
ck = |{w ∈ V | δ(u, w) = 1, δ(w, v) = k − 1}|.

For distance-transitive graphs, these numbers are independent of the particular pair of
vertices u and v chosen. Clearly, we have a0 = 0, b0 = ν, and c1 = 1. The intersection
matrix B is the following tridiagonal (d + 1) × (d + 1) matrix:

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

a0 b0

c1 a1 b1

c2 a2
. . .

. . .
. . . bd−1

cd ad

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Denote the eigenvalues of the intersection matrix, arranged in decreasing order,
as η0, η1, . . . , ηd. These are precisely the (d + 1) distinct eigenvalues of the adjacency
matrix A (see, e.g., [1]). In particular, we have

λ1(A) = η0 = ν, λ2(A) = η1, λn(A) = ηd.

The following corollary is a direct consequence of Theorem 3.1.
Corollary 3.2. The optimal solution to the FMMC problem on distance-

transitive graphs is

α� = min
{

1
ν

,
2

2ν − (η1 + ηd)

}
,(3.7)

μ� = max
{

η1

ν
,

η1 − ηd

2ν − (η1 + ηd)

}
.(3.8)
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Fig. 3.1. The Petersen graph.

3.3.1. Example: Petersen graph. The Petersen graph, shown in Figure 3.1,
is a well-known distance-transitive graph with 10 vertices and 15 edges. The diameter
of the graph is d = 2, and the intersection matrix is

B =

⎡
⎣ 0 3 0

1 0 2
0 1 2

⎤
⎦ ,

with eigenvalues η0 = 3, η1 = 1, and η2 = −2. Applying (3.7) and (3.8), we obtain

α� =
2
7
, μ� =

3
7
.

3.3.2. Example: Hamming graphs. The Hamming graphs, denoted H(d, n),
have vertices labeled by elements in the Cartesian product {1, . . . , n}d, with two
vertices being adjacent if they differ in exactly one component. By the definition, it
is clear that Hamming graphs are isomorphic to the Cartesian product of d copies
of the complete graph Kn. Hamming graphs are distance-transitive, with diameter d
and valency ν = d (n − 1). Their eigenvalues are given by ηk = d (n − 1) − kn for
k = 0, . . . , d. These can be obtained using an equation for eigenvalues of adjacency
matrices, similar to (3.6), with the eigenvalues of Kn being n − 1 and −1. Therefore
we have

α� = min
{

1
d (n − 1)

,
2

n (d + 1)

}
,

μ� = max
{

1 − n

d(n − 1)
,

d − 1
d + 1

}
.

We note that hypercubes (see section 3.2.2) are special Hamming graphs with n = 2.

3.3.3. Example: Johnson graphs. The Johnson graph J(n, q) (for 1 ≤ q ≤
n/2) is defined as follows: the vertices are the q-element subsets of {1, . . . , n}, with
two vertices being connected with an edge if and only if the subsets differ exactly
by one element. It is a distance-transitive graph, with

(
n
q

)
vertices and 1

2q (n − q)
(
n
q

)
edges. It has valency ν = q (n−q) and diameter q. The eigenvalues of the intersection
matrix can be computed analytically, and they are

ηk = q (n − q) + k (k − n − 1), k = 0, . . . , q.

Therefore, by Corollary 3.2, we obtain the optimal transition probability

α� = min
{

1
q (n − q)

,
2

qn + n + q − q2

}
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and the smallest SLEM

μ� = max
{

1 − n

q(n − q)
, 1 − 2n

qn + n + q − q2

}
.

4. FMMC on orbit graphs. For graphs with large automorphism groups, the
eigenvalues of the transition probability matrix often have very high multiplicities.
To solve the FMMC problem, it suffices to work with only the distinct eigenvalues
without consideration of their multiplicities. This is exactly what the intersection
matrix does for distance-transitive graphs. In this section we develop similar tools for
more general graphs, based on the orbit theory developed in [4]. More specifically, we
show how to construct an orbit chain which is much smaller in size than the original
Markov chain, but contains all its distinct eigenvalues (with much fewer multiplicities).
The FMMC on the original graph can be found by solving a much smaller problem
on the orbit chain.

4.1. Orbit theory. Let P be a symmetric Markov chain on the graph G =
(V , E), and let H be a group of automorphisms of the graph. Often, it is a subgroup
of the full automorphism group Aut(G). The vertex set V partitions into orbits Ov =
{σ(v) : σ ∈ H}. For notational convenience, in this section we use P (v, u), for
v, u ∈ V , to denote entries of the transition probability matrix. We define the orbit
chain by specifying the transition probabilities between orbits:

PH(Ov, Ou) = P (v, Ou) =
∑

u′∈Ou

P (v, u′).(4.1)

This transition probability is independent of which v ∈ Ov is chosen, so it is well
defined and the lumped orbit chain is indeed Markov (see [4]).

The orbit chain is in general no longer symmetric, but it is always reversible. Let
π(i), i ∈ V , be the stationary distribution of the original Markov chain. Then the
stationary distribution on the orbit chain is obtained as

πH(Ov) =
∑
i∈Ov

π(i).(4.2)

It can be verified that

πH(Ov)PH(Ov, Ou) = πH(Ou)PH(Ou, Ov),(4.3)

which is the detailed balance condition to test reversibility.
The following is a summary of the orbit theory developed in [4], which relate the

eigenvalues and eigenvectors of the orbit chain PH to those of the original chain P .
• Lifting. If λ̄ is an eigenvalue of PH with associated eigenvector f̄ , then λ̄ is

an eigenvalue of P with H-invariant eigenfunction f(v) = f̄(Ov). Conversely,
every H-invariant eigenfunction appears uniquely from this construction.

• Projection. Let λ be an eigenvalue of P with eigenvector f . Define a function
on the orbits: f̄(Ov) =

∑
σ∈H f(σ−1(v)). Then λ appears as an eigenvalue

of PH , with eigenvector f̄ , if either of the following two conditions holds:
(a) H has a fixed point v∗ and f(v∗) �= 0.
(b) f is nonzero at a vertex v∗ in an Aut(G)-orbit which contains a fixed

point of H .
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Equipped with this orbit theory, we would like to construct one or multiple orbit
chains that retain all the distinct eigenvalues of the original Markov chain. The
following theorem (Theorem 3.7 in [4]) gives sufficient conditions for this to happen.

Theorem 4.1. Suppose that V = O1 ∪ · · · ∪ OK is a disjoint union of the orbits
under Aut(G). Let Hi be the subgroup of Aut(G) that has a fixed point in Oi. Then all
eigenvalues of P occur among the eigenvalues of {PHi}K

i=1. Further, every eigenvector
of P occurs by lifting an eigenvector of some PHi .

Observe that if H ⊆ G ⊆ Aut(G), then the eigenvalues of PH contain all eigen-
values of PG. This allows disregarding some of the Hi in Theorem 4.1. In particular,
it is possible to construct a single orbit chain that contains all distinct eigenvalues of
the original chain. Therefore we have the following corollary.

Corollary 4.2. Suppose that V = O1 ∪ · · · ∪Ok is a disjoint union of the orbits
under Aut(G), and H is a subgroup of Aut(G). If H has a fixed point in every Oi,
then all distinct eigenvalues of P occur among the eigenvalues of PH .

Remark. To find H in the above corollary, we can just compute the corresponding
stabilizer, i.e., compute the largest subgroup of Aut(G) that fixes one point in each
orbit. Note that the H promised by the corollary may be trivial in some cases; see [4,
Remark 3.10].

4.2. Fastest mixing reversible Markov chain on orbit graph. Since in
general the orbit chain is no longer symmetric, we cannot directly use the convex
optimization formulation (1.1) or (1.2) to minimize μ(PH). Fortunately, the detailed
balance condition (4.3) leads to a simple transformation that allows us to formulate
the problem of finding the fastest reversible Markov chain as a convex program [3].

Suppose the orbit chain PH contains all distinct eigenvalues of the original chain.
Let πH be the stationary distribution of the orbits, and let Π = Diag(πH). The
detailed balance condition (4.3) can be written as ΠPH = PT

HΠ, which implies that
the matrix Π1/2PHΠ−1/2 is symmetric (and, of course, has the same eigenvalues
as PH). The eigenvector of Π1/2PHΠ−1/2 associated with the maximum eigenvalue 1
is

q =
(√

πH(O1), . . . ,
√

πH(Ok)
)

.

The SLEM μ(PH) equals the spectral norm of Π1/2PHΠ−1/2 restricted to the orthog-
onal complement of the subspace spanned by q. This can be written as

μ(PH) = ‖(I − qqT )Π1/2PHΠ−1/2(I − qqT )‖2 = ‖Π1/2PHΠ−1/2 − qqT ‖2.

Introducing a scalar variable s to bound the above spectral norm, we can formulate
the fastest mixing reversible Markov chain problem as an SDP:

minimize s

subject to −sI � Π1/2PHΠ−1/2 − qqT � sI,

PH ≥ 0, PH1 = 1, ΠPH = PT
HΠ,

PH(O, O′) = 0, (O, O′) /∈ EH .

(4.4)

The optimization variables are the matrix PH and scalar s, and problem data are
given by the orbit graph and the stationary distribution πH . Note that the reversibility
constraint ΠPH = PT

HΠ can be dropped since it is always satisfied by the construction
of the orbit chain; see (4.3). By pre- and postmultiplying the matrix inequality by
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Π1/2, we can then write another equivalent formulation:

minimize s

subject to −sΠ � ΠPH − πHπT
H � sΠ,

PH ≥ 0, PH1 = 1,

PH(O, O′) = 0, (O, O′) /∈ EH .

(4.5)

To solve the fastest mixing reversible Markov chain problem on the orbit graph,
we need the following three steps:

1. Conduct symmetry analysis on the original graph: identify the automorphism
graph Aut(G) and determine the number of orbits of edges N . By Corol-
lary 2.2, this is the number of transition probabilities we need to consider.

2. Find a group of automorphisms H that satisfies the conditions in Corol-
lary 4.2. Construct its orbit chain by computing the transition probabilities
using (4.1), and compute the stationary distribution using (4.2). Note that
the entries of PH are multiples of the transition probabilities on the original
graph.

3. Solve the fastest mixing reversible Markov chain problem (4.4). The optimal
SLEM μ(P �

H) is also the optimal SLEM for the original chain, and the optimal
transition probabilities on the original chain can be obtained by simple scaling
of the optimal orbit transition probabilities.

We have assumed a single orbit chain that contains all distinct eigenvalues of the
original chain. Sometimes it is more convenient to use multiple orbit chains. Let PHi ,
i = 1, . . . , K, be the collection of orbit chains in Theorem 4.1. In this case we need
to minimize maxi μ(PHi). This can be done by simply adding the set of constraints
in (4.4) for every matrix PHi .

Remark. The main challenge of implementing the above procedure is the iden-
tification of automorphism groups and construction of the orbit chains. Discussions
on efficient algorithms or software that can automate these computational tasks are
beyond the scope of this paper. We will give further remarks in our conclusions in
section 6.

4.3. Example: Kn-Kn. We demonstrate the above computational procedure
on the graph Kn-Kn. This graph consists of two copies of the complete graph Kn

joined by a bridge (see Figure 4.1(a)). We follow the three steps described in section
4.2.

First, it is clear by inspection that the full automorphism group of Kn-Kn is
C2 � (Sn−1 × Sn−1). The actions of Sn−1 × Sn−1 are all possible permutations of
the two sets of n − 1 vertices, distinct from the two center vertices x and y, among
themselves. The group C2 acts on the graph by switching the two halves. The
semidirect product symbol � means that the actions of Sn−1 × Sn−1 and C2 do not
commute.

By symmetry analysis in section 2, there are three edge orbits under the full
automorphism group: the bridging edge between vertices x and y, the edges connect-
ing x and y to all other vertices, and the edges connecting all other vertices. Thus it
suffices to consider just three transition probabilities p0, p1, and p2, each labeled in
Figure 4.1(a) on one representative of the three edge orbits.

In the second step, we construct the orbit chains. The orbit chain of Kn-Kn

under the full automorphism group is depicted in Figure 4.1(b). The orbit Ox in-
cludes vertices x and y, and the orbit Oz consists of all other 2(n − 1) vertices. The
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p0

p1

p2

x y

z

u v

(a) The graph Kn-Kn.

(n − 1)p1

p1

OxOz

(b) Orbit chain under C2 � (Sn−1 × Sn−1).

(n − 1)p1(n − 1)p1

p1 p1

p0

x yOu Ov

(c) Orbit chain under Sn−1 × Sn−1.

p0

p1

p1

p1

(n−2)p1
(n−1)p1

p2

(n−2)p2

x y

z

Ou

Ov

(d) Orbit chain under Sn−2 × Sn−1.

Fig. 4.1. The graph Kn-Kn and its orbit chains under different automorphism groups. Here
Ox, Oz, Ou, Ov represent orbits of the vertices x, z, u, v labeled in Figure 4.1(a), respectively, under
the corresponding automorphism groups in each subgraph.

transition probabilities of this orbit chain are calculated from (4.1) and are labeled
on the directed edges in Figure 4.1(b). Similarly, the orbit chain under the subgroup
Sn−1 × Sn−1 is depicted in Figure 4.1(c). While these two orbit chains are the most
obvious to construct, none of them contains all eigenvalues of the original chain, nor
does their combination. For the one in Figure 4.1(b), the full automorphism group
does not have a fixed point in either its orbit Ox or Oz. For the one in Figure 4.1(c),
the automorphism group Sn−1 × Sn−1 has a fixed point in Ox (either x or y), but
does not have a fixed point in Oz (note here that Oz is the orbit of z under the full
automorphism group). To fix the problem, we consider the orbit chain under the
group Sn−2 × Sn−1, which leaves the vertices x, y, and z fixed, while permuting the
remaining n − 2 vertices on the left and the n − 1 points on the right, respectively.
The corresponding orbit chain is shown in Figure 4.1(d). By Corollary 4.2, all distinct
eigenvalues of the original Markov chain on Kn-Kn appear as eigenvalues of this orbit
chain. Thus there are at most five distinct eigenvalues in the original chain no matter
how large n is.

To finish the second step, we calculate the transition probabilities of the orbit
chain under H = Sn−2 × Sn−1 using (4.1) and label them in Figure 4.1(d). If we
order the vertices of this orbit chain as (x, y, z, Ou, Ov), then the transition probability
matrix is

PH =

⎡
⎢⎢⎢⎢⎣

1−p0−(n−1)p1 p0 p1 (n−2)p1 0
p0 1−p0−(n−1)p1 0 0 (n−1)p1

p1 0 1−p1−(n−2)p2 (n−2)p2 0
p1 0 p2 1−p1−p2 0
0 p1 0 0 1−p1

⎤
⎥⎥⎥⎥⎦ .

By (4.2), the stationary distribution of the orbit chain is

πH =
(

1
2n

,
1
2n

,
1
2n

,
n − 2
2n

,
n − 1
2n

)
.
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As the third step, we solve the SDP (4.4) with the above parametrization. Here
we only need to solve an SDP with 4 variables (three transition probabilities p0, p1,
p2, and the extra scalar s) and 5 × 5 matrices no matter how large the graph (n) is.

We will revisit this example in section 5.4.4, where we present an analytic expres-
sion for the exact optimal SLEM and corresponding transition probabilities.

5. Symmetry reduction by block-diagonalization. By definition of the
fixed-point subset F in (2.1), any transition probability matrix P ∈ F is invariant
under the actions of Aut(G). More specifically, for any permutation matrix Q given
by σ ∈ Aut(G), we have QPQT = P , equivalently QP = PQ. In this section we show
that this property allows the construction of a coordinate transformation matrix that
can block-diagonalize every P ∈ F . The resulting blocks usually have much smaller
sizes, and repeated blocks can be discarded in computation.

The method we use in this section is based on classical group representation
theory (see, e.g., [54]). It was developed for more general SDPs in [26] and has found
applications in sum-of-squares decomposition for minimizing polynomial functions [48,
49, 50] and controller design for symmetric dynamical systems [13]. A closely related
approach is developed in [14], which is based on a low-order representation of the
commutant (collection of invariant matrices) of the matrix algebra generated by the
permutation matrices.

5.1. Some group representation theory. Let G be a group. A representa-
tion ρ of G assigns an invertible matrix ρ(g) to each g ∈ G in such a way that the
matrix assigned to the product of two elements in G is the product of the matrices
assigned to each element: ρ(gh) = ρ(g)ρ(h). The matrices we work with are all in-
vertible and are considered over the real or complex numbers. We thus regard ρ as a
homomorphism from g to the linear maps on a vector space V . The dimension of ρ is
the dimension of V . Two representations are equivalent if they are related by a fixed
similarity transformation.

If W is a subspace of V invariant under G, then ρ restricted to W gives a sub-
representation. Of course the zero subspace and the subspace W = V are trivial
subrepresentations. If the representation ρ admits no nontrivial subrepresentation,
then ρ is called irreducible.

We consider first complex representations, as the theory is considerably simpler
in this case. For a finite group G there are only finitely many inequivalent irre-
ducible representations ϑ1, . . . , ϑh of dimensions n1, . . . , nh, respectively. The degrees
ni divide the group order |G| and satisfy the condition

∑h
i=1 n2

i = |G|. Every lin-
ear representation of G has a canonical decomposition as a direct sum of irreducible
representations

ρ = m1ϑ1 ⊕ m2ϑ2 ⊕ · · · ⊕ mhϑh,

where m1, . . . , mh are the multiplicities. Accordingly, the representation space Cn

has an isotypic decomposition

Cn = V1 ⊕ · · · ⊕ Vh,(5.1)

where each isotypic components consists of mi invariant subspaces

Vi = V 1
i ⊕ · · · ⊕ V mi

i ,(5.2)

each of which has dimension ni and transforms after the manner of ϑi. A basis of this
decomposition transforming with respect to the matrices ϑi(g) is called symmetry-
adapted and can be computed using the algorithm presented in [54, sections 2.6–2.7]
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or [22, section 5.2]. This basis defines a change of coordinates by a matrix T collecting
the basis as columns. By Schur’s lemma (see, e.g., [54]), if a matrix P satisfies

ρ(g)P = Pρ(g) ∀g ∈ G,(5.3)

then T−1PT has block-diagonal form with one block Pi for each isotypic component
of dimension mini, which further decomposes into ni equal blocks Bi of dimension mi.
That is,

T−1PT =

⎡
⎢⎣

P1 0
. . .

0 Ph

⎤
⎥⎦ , Pi =

⎡
⎢⎣

Bi 0
. . .

0 Bi

⎤
⎥⎦ .(5.4)

For our application of semidefinite programs, the problems are presented in terms
of real matrices, and therefore we would like to use real coordinate transformations. In
fact a generalization of the classical theory to the real case is presented in [54, section
13.2]. If all ϑi(g) are real matrices, the irreducible representation is called absolutely
irreducible. Otherwise, for each ϑi with complex character its complex conjugate will
also appear in the canonical decomposition. Since ρ is real, both will have the same
multiplicity, and real bases of Vi + V̄i can be constructed. So two complex conjugate
irreducible representations form one real irreducible representation of complex type.
There is a third case, real irreducible representations of quaternion type, rarely seen
in practical examples.

In this paper, we assume that the representation ρ is orthogonal, i.e., ρ(g)T ρ(g) =
ρ(g)ρ(g)T = I for all g ∈ G. As a result, the transformation matrix T can also be
chosen to be orthogonal. Thus T−1 = T T (for complex matrices, it is the conjugate
transpose). For symmetric matrices the block corresponding to a representation of
complex type or quaternion type simplifies to a collection of equal subblocks. For the
special case of circulant matrices, complete diagonalization reveals all the eigenvalues
[15, p. 50].

5.2. Block-diagonalization of SDP constraint. As in section 2.2, for every
σ ∈ Aut(G) we assign a permutation matrix Q(σ) by letting Qij(σ) = 1 if i = σ(j)
and Qij(σ) = 0 otherwise. This is an n-dimensional representation of Aut(G), which
is often called the natural representation. As mentioned in the beginning of this
section, every matrix P in the fixed-point subset F has the symmetry of Aut(G); i.e.,
it satisfies the condition (5.3) with ρ = Q. Thus a coordinate transformation matrix T
can be constructed such that P can be block-diagonalized into the form (5.4).

Now we consider the FMMC problem (2.3), which can be formulated as the
following SDP:

minimize s

subject to −sI � I −
N∑

k=1

pkLk − (1/n)11T � sI,

pk ≥ 0, k = 1, . . . , N,

N∑
k=1

(Lk)ii pk ≤ 1, i = 1, . . . , n.

(5.5)

Here we have expressed the transition probability matrix as P (p) = I −∑N
k=1 pkLk,

where Lk is the Laplacian matrix for the kth orbit graph, and pk is the common
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transition probability assigned on all edges in the kth orbit graph. Since the matrix
P (p) has the symmetry of Aut(G), we can find a coordinate transformation T to block-
diagonalize the linear matrix inequalities. Thus we obtain the following equivalent
problem:

minimize s

subject to −sImi � Bi(p) − Ji � sImi , i = 1, . . . , h,

pk ≥ 0, k = 1, . . . , N,

N∑
k=1

(Lk)ii pk ≤ 1, i = 1, . . . , n,

(5.6)

where Bi(p) correspond to the small blocks Bi in (5.4) of the transformed matrix
T T P (p)T , and Ji are the corresponding diagonal blocks of T T (1/n)11T T . The num-
ber of matrix inequalities h is the number of inequivalent irreducible representations,
and the size of each matrix inequality mi is the multiplicity of the corresponding
irreducible representation. Note that we only need one out of ni copies of each Bi

in the decomposition (5.4). Since mi can be much smaller than n (the number of
vertices in the graph), the improvement in computational complexity over the SDP
formulation (5.5) can be significant (see the flop counts discussed in section 1.2). This
is especially the case when there are high-dimensional irreducible representations (i.e.,
when ni is large; see, e.g., Kn-Kn defined in section 4.3).

5.3. Connection between block-diagonalization and orbit theory. With
the following theorem, we establish an interesting connection between the block-
diagonalization approach and the orbit theory in section 4.

Theorem 5.1. Let H be a subgroup of Aut(G), and let T be the coordinate
transformation matrix whose columns are a symmetry-adapted basis for the natural
representation of H. Suppose a Markov chain P defined on the graph has the symmetry
of H. Then the matrix T T (1/n)11T T has the same block-diagonal form as T T PT .
Moreover, there is only one nonzero block. Without loss of generality, let this nonzero
block be J1 and the corresponding block of T T PT be B1. These two blocks relate to
the orbit chain PH by

B1 = Π1/2PHΠ−1/2,(5.7)
J1 = qqT ,(5.8)

where Π = Diag(πH), q =
√

πH , and πH is the stationary distribution of PH .
Proof. First we note that P always has a single eigenvalue 1 with associated

eigenvector 1. Thus 1 spans an invariant subspace of the natural representation, which
is obviously irreducible. The corresponding irreducible representation is isomorphic
to the trivial representation (which assigns the scalar 1 to every element in the group).
Without loss of generality, let V1 be the isotypic component that contains the vector 1.
Thus V1 is a direct product of H-fixed vectors (each corresponds to a copy of the trivial
representation), and 1 is a linear combination of these vectors.

Let m1 be the dimension of V1, which is the number of H-fixed vectors. We can
calculate m1 by Frobenius reciprocity, or “Burnside’s lemma”; see, e.g., [54]. To do
so, we note that the character χ of the natural representation Q(g), g ∈ H , is the
number of fixed points of g, i.e.,

χ(g) = TrQ(g) = FP(g) = #{v ∈ V : g(v) = v}.
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Burnside’s lemma says that

1
|H |

∑
g∈H

FP(g) = #orbits.

The left-hand side is the inner product of χ with the trivial representation. It thus
counts the number of H-fixed vectors in V . So m1 equals the number of orbits
under H .

Suppose that V = O1 ∪ · · · ∪ Om1 as a disjoint union of H-orbits. Let bi(v) =
1/
√|Oi| if v ∈ Oi and zero otherwise. Then b1, . . . , bm1 are H-fixed vectors, and

they form an orthonormal symmetry-adapted basis for V1 (these are not unique). Let
T1 = [b1 · · · bm1 ] be the first m1 columns of T . They are orthogonal to all other
columns of T . Since 1 is a linear combination of b1, . . . , bm1 , it is also orthogonal
to other columns of T . Therefore the matrix T T (1/n)11T T has all its elements zero
except for the first m1 ×m1 diagonal block, which we denote as J1. More specifically,
J1 = qqT , where

q =
1√
n

T T
1 1 =

1√
n

[
bT
1 1 · · · bT

m1
1
]T

=
1√
n

[
|O1|√|O1|

· · · |Om1 |√|Om1 |

]T

=

[√
|O1|
n

. . .

√
|Om1 |

n

]T

.

Note that by (4.2) the stationary distribution of the orbit chain PH is

πH =
[ |O1|

n
· · · |Om1 |

n

]T

.

Thus we have q =
√

πH . This proves (5.8).
Finally we consider the relationship between the two matrices B1 = T T

1 PT1

and PH . We prove (5.7) by showing

Π−1/2B1Π1/2 = Π−1/2T T
1 PT1Π1/2 = PH .

It is straightforward to verify that

Π−1/2T T
1 =

√
n

⎡
⎢⎣

b′T1
...

b′Tm1

⎤
⎥⎦ , b′i(v) =

⎧⎨
⎩

1
|Oi| if v ∈ Oi,

0 if v /∈ Oi,

T1Π1/2 =
1√
n

[
b′′1 · · · b′′m1

]
, b′′i (v) =

{
1 if v ∈ Oi,

0 if v /∈ Oi.

The entry at the ith row and jth column of the matrix Π−1/2T T
1 PT1Π1/2 is given by

b′Ti Pb′′j =
1

|Oi|
∑
v∈Oi

∑
u∈Oj

P (v, u) =
1

|Oi|
∑
v∈Oi

PH(Oi, Oj) = PH(Oi, Oj).

In the last equation, we have used the fact that PH(Oi, Oj) is independent of which
v ∈ Oi is chosen. This completes the proof.
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4b

Fig. 5.1. Left: the 3 × 3 grid. Right: its orbit chain under D4.

From Theorem 5.1, we know that B1 contains the eigenvalues of the orbit chain
under H . Other blocks Bi contain additional eigenvalues (not including those of PH)
of the orbit chains under various subgroups of H . (Note that the eigenvalues of
the orbit chain under H are always contained in the orbit chain under its subgroups.)
With this observation, it is possible to identify the multiplicities of eigenvalues in orbit
chains under various subgroups of Aut(G) by relating to the decompositions (5.1),
(5.2), and (5.4) (some preliminary results are discussed in [4]).

5.4. Examples. We present several examples that use the block-diagonalization
method and draw connections to the method based on orbit theory in section 4. Some
of the examples may be difficult if one uses the orbit theory alone, but are nicely
handled by block-diagonalization.

5.4.1. The 3×3 grid. Consider the symmetric Markov chain on a 3×3 grid G;
see Figure 5.1(left). The automorphism group Aut(G) is isomorphic to the 8-element
dihedral group D4, and corresponds to flips and 90-degree rotations of the graph. The
orbits of Aut(G) acting on the vertices are

{1, 3, 7, 9}, {5}, {2, 4, 6, 8},

and there are two orbits of edges

{{1, 2}, {1, 4}, {2, 3}, {3, 6}, {4, 7}, {7, 8}, {6, 9}, {8, 9}},
{{2, 5}, {4, 5}, {5, 6}, {5, 8}}.

So G is neither vertex- nor edge-transitive.
By Corollary 2.2, we associate transition probabilities a and b to the two edge

orbits, respectively. The transition probability matrix has the form

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−2a a 0 a 0 0 0 0 0
a 1−2a−b a 0 b 0 0 0 0
0 a 1−2a 0 0 a 0 0 0
a 0 0 1−2a−b b 0 a 0 0
0 b 0 b 1−4b b 0 b 0
0 0 a 0 b 1−2a−b 0 0 a
0 0 0 a 0 0 1−2a a 0
0 0 0 0 b 0 a 1−2a−b a
0 0 0 0 0 a 0 a 1−2a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix P satisfies Q(σ)P = PQ(σ) for every σ ∈ Aut(G). Using the algorithm in
[22, section 5.2], we found a symmetry-adapted basis for the representation Q, which
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we take as columns to form

T =
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0
√

2 0 0 0
0 0 1 0 −1 0 1 0 1
0 1 0 −1 0 0 0

√
2 0

0 0 1 0 1 0 1 0 −1
2 0 0 0 0 0 0 0 0
0 0 1 0 1 0 −1 0 1
0 1 0 −1 0 0 0 −√

2 0
0 0 1 0 −1 0 −1 0 −1
0 1 0 1 0 −√

2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With this coordinate transformation matrix, we obtain

T T PT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−4b 0 2b
0 1−2a 2a
2b 2a 1−2a−b

1−2a
1−2a−b

1−2a
√

2a√
2a 1−2a−b

1−2a
√

2a√
2a 1−2a−b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The three-dimensional block B1 contains the eigenvalue 1, and it is related to the orbit
chain in Figure 5.1 (right) by (5.7). The corresponding nonzero block of T T (1/n)11T T
is

J1 =
1
9

⎡
⎣ 1 2 2

2 4 4
2 4 4

⎤
⎦ .

Next, we substitute the above expressions into the SDP (5.6) and solve it numer-
ically. Since there are repeated 2 × 2 blocks, the original 9 × 9 matrix is replaced by
four smaller blocks of dimension 3, 1, 1, 2. The optimal solutions are

a� ≈ 0.363, b� ≈ 0.2111, μ� ≈ 0.6926.

Interestingly, it can be shown that these optimal values are not rational, but instead
algebraic numbers with defining minimal polynomials:

18157 a5 − 17020 a4 + 6060 a3 − 1200 a2 + 180 a− 16 = 0,

1252833 b5 − 1625651 b4 + 791936 b3 − 173536 b2 + 15360 b− 256 = 0,

54471 μ5 − 121430 μ4 + 88474 μ3 − 18216 μ2 − 2393 μ + 262 = 0.

5.4.2. Complete k-partite graphs. The complete k-partite graph, denoted
Kn1,...,nk

, has k subsets of vertices with cardinalities n1, . . . , nk, respectively. Each
vertex is connected to all the vertices in a different subset, and is not connected to
any of the vertices in the same subset. In this case, the transition probability matrix
has dimensions

∑
i ni and the structure

P (p) =

⎡
⎢⎢⎢⎣

(1 −∑j �=1 njp1j)In1 p121n1×n2 · · · p1k1n1×nk

p211n2×n1 (1 −∑j �=2 njp2j)In2 · · · p2k1n2×nk

...
...

. . .
...

pk11nk×n1 pk21nk×n2 · · · (1 −∑j �=k njpkj)Ink

⎤
⎥⎥⎥⎦ ,
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Fig. 5.2. The wheel graph with n = 9 (total of 10 nodes).

where the probabilities satisfy pij = pji. There are a total of
(
k
2

)
independent vari-

ables.
We can easily find a decomposition of the associated matrix algebra. Using the

orthogonal coordinate transformation matrix

T =

⎡
⎢⎣

(1/
√

n1)1n1×1 . . . 0 Fn1 . . . 0
...

. . .
...

...
. . .

...
0 . . . (1/

√
nk)1nk×1 0 . . . Fnk

⎤
⎥⎦ ,

the matrix T T P (p)T decomposes into k + 1 blocks: one of dimension k, with the
remaining k blocks each having dimension ni − 1. The decomposition is

⎡
⎢⎢⎢⎣

(1 −∑j �=1 njp1j) p12
√

n1n2 · · · p1k
√

n1nk

p21
√

n2n1 (1 −∑j �=2 njp2j) · · · p2k
√

n2nk

...
...

. . .
...

pk1
√

nkn1 pk2
√

nkn2 · · · (1 −∑j �=k njpkj)

⎤
⎥⎥⎥⎦ ,

Ini−1 ⊗
⎛
⎝1 −

∑
j �=i

njpij

⎞
⎠ , i = 1, . . . , k.

These blocks can be substituted into the SDP (5.6) to solve the FMMC problem.
For the complete bipartite graph Km,n, there is only one transition probability p,

and the matrix T T P (p)T has the following diagonal blocks:

[
1 − mp p

√
nm

p
√

nm 1 − np

]
, In−1 ⊗ (1 − mp), Im−1 ⊗ (1 − np).

The 2 × 2 block has eigenvalues 1 and 1 − (m + n)p. The other diagonals reveal the
eigenvalue 1 − mp and 1 − np, with multiplicities n − 1 and m − 1, respectively. By
Theorem 3.1, we have (assuming m ≤ n)

p� = min
{

1
n

,
2

n + 2m

}
, μ� = max

{
n − m

n
,

n

n + 2m

}
.

5.4.3. Wheel graph. The wheel graph consists of a center vertex (the hub) and
a ring of n peripheral vertices, each connected to the hub; see Figure 5.2. It has a
total of n + 1 nodes. Its automorphism group is isomorphic to the dihedral group Dn
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with order 2n. The transition probability matrix has the structure

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − np p p . . . p p
p 1 − p − 2q q . . . 0 q
p q 1 − p − 2q . . . 0 0
...

...
...

. . .
...

...
p 0 0 . . . 1 − p − 2q q
p q 0 . . . q 1 − p − 2q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,(5.9)

where p and q are the transition probabilities between the hub and each peripheral
vertex, and between adjacent peripheral vertices, respectively.

For this structure, the block-diagonalizing transformation is given by

T = Diag(1,Fn), [Fn]jk =
1√
n

e
2πı(j−1)(k−1)

n ,

where Fn is the unitary Fourier matrix of size n × n. As a consequence, the matrix
T−1PT is block-diagonal with a 2× 2 matrix and n− 1 scalars on its diagonal, given
by

[
1 − np

√
np√

np 1 − p

]

and

1 − p + (ωk
n + ω−k

n − 2) · q, k = 1, . . . , n − 1,

where ωn = e
2πı
n is an elementary nth root of unity. The 2 × 2 block is B1, which

contains eigenvalues of the orbit chain under Dn (it has only two orbits).
With the above decomposition, we obtain the optimal solution to the FMMC

problem in closed form:

p� =
1
n

, q� =
1 − 1

n

2 − cos 2π
n − cos 2�n/2�π

n

.

The optimal value of the SLEM is

μ� =
(

1 − 1
n

)
cos 2π

n − cos 2�n/2�π
n

2 − cos 2π
n − cos 2�n/2�π

n

.

Compared with the optimal solution for the cycle graph in (3.3) and (3.4), we see
an extra factor of 1 − 1/n in both the SLEM and the transition probability between
peripheral vertices. This is exactly the factor improved by adding the central hub
over the pure n-cycle case.

The wheel graph is an example for which the block-diagonalization technique
works out nicely, while the orbit theory leads to much less reduction. Although there
are only two orbits under the full automorphism group, any orbit graph that has a
fixed peripheral vertex will have at least (n + 1)/2 orbits (corresponding symmetry is
reflection through that vertex).
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5.4.4. Kn-Kn. We did careful symmetry analysis for the graph Kn-Kn in sec-
tion 4.3; see Figure 4.1. The transition probability matrix on this graph has the
structure

P =

⎡
⎢⎢⎣

C p11 0 0
p11T 1 − p0 − (n − 1)p1 p0 0

0 p0 1 − p0 − (n − 1)p1 p11T

0 0 p11 C

⎤
⎥⎥⎦ ,

where C is a circulant matrix

C = (1 − p1 − (n − 3)p2)In−1 + p21(n−1)×(n−1).

Since circulant matrices are diagonalized by Fourier matrices, we first use the
transformation matrix

T1 =

⎡
⎢⎢⎣

Fn−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 Fn−1

⎤
⎥⎥⎦ ,

where Fn−1 is the unitary Fourier matrix of dimension n − 1. This corresponds to
block diagonalization using the symmetry group Sn−1 ×Sn−1, which is a subgroup of
Aut(Kn-Kn). The matrix T−1

1 PT1 has diagonal blocks

B′
1 =

⎡
⎢⎢⎣

1 − p1

√
n − 1p1 0 0√

n − 1p1 1 − p0 − (n − 1)p1 p0 0
0 p0 1 − p0 − (n − 1)p1

√
n − 1p1

0 0
√

n − 1p1 1 − p1

⎤
⎥⎥⎦

and

I2n−4 ⊗ (1 − p1 − (n − 1)p2).(5.10)

From this we know that P has an eigenvalue 1 − p1 − (n − 1)p2 with multiplicity
2n − 4, and the remaining four eigenvalues are the eigenvalues of the above 4 × 4
block B′

1. The block B′
1 corresponds to the orbit chain under the symmetry group

H = Sn−1 × Sn−1. More precisely, B′
1 = Π1/2PHΠ−1/2, where Π = Diag(πH), and

PH and πH are the transition probability matrix and stationary distribution of the
orbit chain shown in Figure 4.1(c), respectively.

Exploring the full automorphism group of Kn-Kn, we can further block-diagonalize
B′

1. Let

T = T1

⎡
⎣ In−2

T2

In−2

⎤
⎦ , T2 =

1√
2

⎡
⎢⎢⎣

1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

⎤
⎥⎥⎦ .

The 4 × 4 block B′
1 is decomposed into[

1 − p1

√
n − 1p1√

n − 1p1 1 − (n − 1)p1

]
,

[
1 − 2p0 − (n − 1)p1

√
n − 1p1√

n − 1p1 1 − p1

]
.
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The first block is B1, which has eigenvalues 1 and 1 − np1. By Theorem 5.1, B1 is
related to the orbit chain under Aut(Kn-Kn) (see Figure 4.1(b)) by (5.7). The second
2 × 2 block has eigenvalues

1 − p0 − (1/2)np1 ±
√

(p0 + (1/2)np1)2 − 2p0p1.

These are the eigenvalues contained in the orbit chain of Figure 4.1(c) but not in
Figure 4.1(b).

In summary, the distinct eigenvalues of the Markov chain on Kn-Kn are

1, 1 − np1, 1 − p0 − (1/2)np1 ±
√

(p0 + (1/2)np1)2 − 2p0p1, 1 − p1 − (n − 1)p2,

where the last one has multiplicity 2n−4. As we mentioned before, the huge reduction
for Kn-Kn is due to the fact that it has an irreducible representation with high dimen-
sion 2n − 4 and multiplicity 1 (see [4, Proposition 2.4]). In the decomposition (5.4),
this means a block of size 1 repeated 2n− 4 times; see (5.10).

Since now the problem has been reduced to something much more tractable, we
can even obtain an analytic expression for the optimal transition probabilities. The
optimal solution for the Kn-Kn graph (for n ≥ 2) is given by

p�
0 = (

√
2 − 1)

n +
√

2 − 2
n + 2 − 2

√
2
, p�

1 =
2 −√

2
n + 2 − 2

√
2
, p�

2 =
n −√

2
(n − 1)(n + 2 − 2

√
2)

.

The corresponding optimal convergence rate is

μ� =
n − 4 + 2

√
2

n + 2 − 2
√

2
.

For large n, we have μ� = 1 − 6−4
√

2
n + O

(
1

n2

)
. The limiting value of the optimal

transition probability between the two clusters is
√

2 − 1 ≈ 0.4142. The optimal μ�

is quite close to the SLEM of a suboptimal construction with transition probabilities

p0 =
1
2
, p1 = p2 =

1
2(n − 1)

.(5.11)

As shown in [4], the corresponding SLEM of (5.11) is of the order μ = 1− 1
3n +O

(
1

n2

)
.

Here we compare 1
3 with 6 − 4

√
2 ≈ 0.3431.

6. Conclusions. We have shown that exploiting graph symmetry can lead to
significant reduction in both the number of variables and the size of matrices, in
solving the FMMC problem. For special classes of graphs such as edge-transitive
and distance-transitive graphs, symmetry reduction leads to closed-form solutions in
terms of the eigenvalues of the Laplacian matrix or the intersection matrix. For more
general graphs, we gave two symmetry reduction methods, based on orbit theory and
block-diagonalization, respectively.

The method based on orbit theory is very intuitive, but the construction of “good”
orbit chains can be of more art than technique. The method of block-diagonalization
can be mostly automated once the irreducible representations of the automorphism
groups are generated (for small graphs, they can be generated using software for com-
putational discrete algebra such as GAP [24]). These two approaches have an inter-
esting connection: orbit theory gives nice interpretation of the diagonal blocks, while
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the block-diagonalization approach offers theoretical insights about the construction
of the orbit chains.

The symmetry reduction method developed in this paper can be very useful in
many combinatorial optimization problems where the graph has rich symmetry prop-
erties, in particular, problems that can be formulated as or approximated by SDP
or eigenvalue optimization problems involving weighted Laplacian matrices (see, e.g.,
[29, 44]). In addition to the reduction of problem size, other advantages of symmetry
exploitation includes degeneracy removal, better conditioning, and reliability [26].

There is still much to do in understanding how to exploit symmetry in semidef-
inite programming. The techniques presented in this paper (and in [14]) require a
good understanding of orbit theory, group representation theory, and interior-point
methods for SDP. It is of practical importance to develop general purpose methods
that can automatically detect symmetries (e.g., the code nauty [41] for graph auto-
morphisms), and then exploit them in computations. A good model here is general
purpose (but heuristic) methods for exploiting sparsity in numerical linear algebra,
where symbolic operations on graphs (e.g., minimum degree permutation) reduce fill-
ins in numerical factorization (see, e.g., [27]). As a result of this work, even very large
sparse optimization problems are now routinely solved by users who are not experts
in sparse matrix methods. For exploiting symmetry in SDPs, the challenges include
the development of fast methods to detect large symmetry groups (for computational
purposes, it often suffices to recognize parts of the symmetries) and the integration
of algebraic methods (e.g., orbit theory and group representations) and numerical
algorithms (e.g., interior-point methods).
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