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Abstract

The second smallest eigenvalue of the Laplacian matrix L of a graph is called its algebraic connectivity.
We describe a method for obtaining an upper bound on the algebraic connectivity of a family of graphs G.
Our method is to maximize the second smallest eigenvalue over the convex hull of the Laplacians of graphs
in G, which is a convex optimization problem. By observing that it suffices to optimize over the subset of
matrices invariant under the symmetry group of G, we can solve the optimization problem analytically for
families of graphs with large enough symmetry groups. The same method can also be used to obtain upper
bounds for other concave functions, and lower bounds for convex functions of L (such as the spectral radius).
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Let G = (V , E) be an undirected graph with n nodes and m edges, and no multiple edges or
self-loops. The Laplacian L(G) of G is the (symmetric) matrix

L(G)ij =



di i = j,

−1 (i, j) ∈ E,

0 (i, j) /∈ E,

i /= j,
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where di is the degree of node i. The Laplacian L(G) satisfies

L(G) = L(G)T, L(G) � 0, L(G)1 = 0, L(G)ij ∈ {0, −1} for i /= j, (1)

where � denotes matrix inequality, and 1 is the vector of all ones. In other words, the Laplacian is
symmetric positive semidefinite, each row sums to zero, and its off-diagonal elements are either
zero or minus one. Conversely, if L is any n × n matrix that satisfies these conditions, then it is
the Laplacian of some graph on n nodes. We will denote the set of all Laplacians on n nodes as
L:

L = {L ∈ Rn×n|L = LT, L � 0, L1 = 0, Lij ∈ {0, −1} for i /= j}.
We denote the eigenvalues of a Laplacian L(G) as λ1 = 0 � λ2 � · · · � λn. The second-smallest
eigenvalue of L(G), λ2, is called the algebraic connectivity of G, and is positive if and only if
the graph is connected (see, e.g., [6]). The largest eigenvalue λn is the spectral radius.

Let G be a set of graphs on n nodes, and let L(G) = {L(G) | G ∈ G} be the associated set of
Laplacian matrices. We are interested in finding an upper bound on the algebraic connectivity of
the graphs in G. In principle, we can compute the maximum algebraic connectivity,

λ� = max{λ2(L)|L ∈ L(G)},
by evaluating λ2(L(G)) for each G ∈ G. The sets of graphs we are interested in can be extremely
large, however, so this is not practical; we seek instead a simple upper bound that depends on
some parameters in the description of G.

1.1. Previous work

The Laplacian matrix and its spectrum, particularly the algebraic connectivity and the spectral
radius, have been extensively studied. A survey of results and applications can be found in [19]
and [21,22] discusses applications of the Laplacian in various fields. The work of Fiedler [6] is one
of the earliest addressing the Laplacian matrix, and contains many fundamental results, including
upper and lower bounds on the algebraic connectivity. For example, Fiedler shows that

λ2(L(G)) � ndmin

n − 1
� 2m

n − 1
, (2)

where dmin is the minimum degree of the nodes of G, and that

λ2(L(G)) � v(G), (3)

where v(G) is the vertex connectivity, i.e., the minimum number of nodes that need to be deleted
to disconnect the graph. (Our method will reproduce all three inequalities.)

Many other upper bounds on λ2(L) have been found in terms of various properties of the graph.
In [15] and [14], the author provides tight upper bounds for the algebraic connectivity of a graph
with a given number of cut-points. (A cut-point is a vertex whose deletion disconnects the graph).
In [7], the authors minimize and maximize λ2(L) for trees of given diameter, and minimize λ2(L)

for general graphs of given girth (which is the length of the shortest cycle in the graph). In [8],
an upper bound is established in terms of the minimum edge density. The recent work in [16]
derives an upper bound for the algebraic connectivity in terms of the domination number of the
graph, i.e., the cardinality of the smallest set S such that every element of V (G)\S is adjacent to
a vertex of S.

The problem of obtaining lower bounds for the algebraic connectivity and upper bounds for the
spectral radius of the Laplacian in terms of various properties of the graph has also been studied;
see, for example, [12,17,18,25,20,13].
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A closely related problem, which arises in the study of Markov chains and various iterative
processes, concerns the matrices I − D−1L and D−1/2LD−1/2, where D is the diagonal matrix
of node degrees, i.e., Dii = Lii. Here the objective is to find upper bounds on the spectral gap
of the stochastic matrix I − D−1L, which is the same as λ2(D

−1/2LD−1/2), in terms of various
graph properties; see, for example [3,5,13] and references therein.

2. Our method

2.1. The basic bound

Our method for finding a bound on λ� is simple. We observe that

λ� = max{λ2(L)|L ∈ L(G)} � λ̄ = sup{λ2(L)|L ∈ CoL(G)},
where Co denotes convex hull. This inequality follows immediately from CoL(G) ⊇ L(G). We
will evaluate λ̄, exploiting the fact that it is the supremum of a concave function over a convex set.
Thus, to evaluate λ̄ requires solving a convex optimization problem, i.e., maximizing a concave
function over a convex set. Roughly speaking, such problems are easy to solve (in most cases)
using numerical methods [2]. Here, however, we will consider cases where the problem can be
solved analytically.

To see that λ2 is a concave function of L on CoL (and therefore on CoL(G) for any G), we
argue as follows. Each L ∈ CoL is positive semidefinite, and has λ1(L) = 0, with corresponding
eigenvector 1. Thus we can express λ2(L) as [11, §4.2]

λ2(L) = inf{xTLx|‖x‖2 = 1, 1Tx = 0}.
For each x ∈ Rn that satisfies ‖x‖2 = 1 and 1Tx = 0, xTLx is a linear (and therefore also concave)
function of L. The formula above shows that λ2 is the infimum of a family of concave functions
in L, and is therefore also a concave function of L [2, §3.2.3]. For future use, we note that CoL,
the convex hull of the set of all Laplacians on n nodes, has the form

CoL = {L ∈ Rn×n|L = LT, L � 0, L1 = 0, −1 � Lij � 0 for i /= j}, (4)

i.e., it is the set of symmetric positive semidefinite matrices, with zero row sums, and off-diagonal
elements between minus one and zero.

2.2. Exploiting symmetry

The symmetry group of G can be exploited to reduce the size of the convex optimization
problem that we must solve to evaluate our bound λ̄. The idea of exploiting symmetry in convex
optimization problems has recently found strong interest; see [24,4].

Let P denote the group of permutation matrices in Rn×n. An element P ∈ P acts on a matrix
L as PLP T. If L is the Laplacian of a graph G, then PLP T is the Laplacian of the graph G

obtained by permuting the nodes of G by P . Let S be the symmetry group of L(G), i.e.,

S = {P ∈ P|PLP T ∈ L(G) for each L ∈ L(G)}. (5)

The group of permutations S also leaves CoL(G) invariant. (In what follows, we will only use
the fact that S is a group of permutations that leaves L(G) invariant i.e., it can be a subgroup of
the symmetry group.)
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Let I denote the subspace of symmetric n × n matrices that are invariant under S, i.e.,

I = {M ∈ Rn×n|M = MT, PMP T = M for all P ∈ S}. (6)

We claim that

λ̄ = sup{λ2(L)|L ∈ CoL(G) ∩ I}. (7)

In other words, to maximize λ2 over CoL(G), we can without loss of generality restrict our
search to elements of CoL(G) that are invariant under S (see, e.g., [2, Example 4.4]).

To show this, suppose that L� ∈ CoL(G) satisfies λ2(L
�) = λ̄, i.e., L� achieves the maxi-

mum value of λ2 over CoL(G). (Such an L� exists because λ2 is continuous and CoL(G) is
compact.) Now define

L = 1

|S|
∑
P∈S

PL�P T. (8)

Clearly L ∈ CoL(G). Since

λ2(PL�P T) = λ2(L
�) = λ̄

for any permutation matrix P , and λ2 is a concave function, Jensen’s inequality and (8) tell us
that

λ2(L) � λ2(L
�) = λ̄. (9)

It follows that L also maximizes λ2 over CoL(G). Our claim (7) is established, since L ∈ I.

3. Examples

In each of the following subsections, we carry out our method of obtaining an upper bound
on the algebraic connectivity for a specific set G of graphs. We start by identifying the symmetry
group S of G. We then identify I, the set of matrices invariant under S, and finally, we evaluate
λ̄ using (7).

3.1. Degree distribution constraints

We start with a simple example where the symmetry group is the set of all permutation matrices.
We consider graphs specified by constraints on the degree distribution, i.e.,

d[1], d[2], . . . , d[n],
which are the degrees of the nodes sorted in decreasing order. (Thus, d[r] denotes the rth largest
degree of a node in the graph.)

For any family of graphs G specified by constraints on the degree distribution, the symmetry
group of L(G) is P, since every permutation leaves the degree distribution, i.e., d[i], unchanged.
The subspace I of symmetric matrices invariant under P consists of matrices with a constant
value along the main diagonal, and a constant value for the off-diagonal elements. Therefore,
from (4), we have

CoL ∩ I = {L|L = nαI − α11T, 0 � α � 1}. (10)

We now consider a specific constraint on the degree distribution, and find λ̄2 for this family of
graphs. Let G be the set of graphs for which the sum of the r largest degrees does not exceed Dr ,
i.e.,
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d[1] + d[2] + · · · + d[r] � Dr.

Clearly we can assume 0 � Dr � r(n − 1). We can express this constraint in terms of L as

Lii[1] + Lii[2] + · · · + Lii[r] � Dr, (11)

where Lii[j ] is the j th largest diagonal entry of L. This constraint is convex [2, §3.2.3]. Therefore,
CoL(G) ∩ I is the subset of matrices in CoL ∩ I that satisfy (11), i.e.,

CoL(G) ∩ I = {L|nαI − α11T, 0 � α � 1, r(n − 1)α � Dr}. (12)

The eigenvalues of the matrix nαI − α11T are 0, and nα with multiplicity n − 1, which increase
monotonically with α. So to maximize λ2 over CoL(G) ∩ I, we set α = Dr/(n − 1)r . This
gives us the bound

λ̄ = nDr

r(n − 1)
. (13)

A special case of (11) is r = n, Dr = 2m. Using this in (13) gives us a bound on the algebraic
connectivity of graphs with at most m edges,

λ̄ = 2m

n − 1
,

which recovers the bound in [6].

3.2. Graphs with small cuts

We consider graphs in which there exists a cut with no more than mc edges, which breaks
the graph into two sets of nodes of sizes n1 and n2 (with n1 + n2 = n). (Note that not every cut
separating the graph into sets of size n1 and n2 needs to have fewer than mc edges.) We will derive
a bound for λ2(L(G)) in terms of n1, n2, and mc.

We can assume that 0 � mc � n1n2. Without loss of generality, we label the nodes in the two
sets as {1, . . . , n1} and {n1 + 1, . . . , n}. Thus our set G consists of graphs for which there are no
more than mc edges between the set of nodes 1, . . . , n1 and the set of nodes n1 + 1, . . . , n. An
example is shown in Fig. 1.

Fig. 1. A graph with a cut (shown as the dotted line) containing three edges (shown as dashed lines). The cut separates
nodes 1, . . . , 4 from nodes 5, . . . , 9. For this graph, we have mc = 3, n1 = 4, and n2 = 5.
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In terms of the associated Laplacian matrices, this means that in the 1, 2 n1 × n2 block, there
are no more than mc entries that are −1. (The other entries in the block are, of course, zero.) Thus,
matrices in L(G) are the elements of L that satisfy

n1∑
i=1

n∑
j=n1+1

−Lij � mc. (14)

The symmetry group of L(G) (for n1 /= n2) consists of the matrices

P =
[
P1 0
0 P2

]
, (15)

where P1 and P2 are permutation matrices in Rn1×n1 and Rn2×n2 respectively. When n1 = n2,
the symmetry group is larger, consisting of matrices in (15) as well as matrices of the form

P =
[

0 P2
P1 0

]
.

However, this larger symmetry group leads to the same bound as that obtained by setting n1 =
n2 = n/2 in (19), so we do not discuss the case n1 = n2 separately.

The set I of matrices that are invariant under S consists of matrices of the form

M =
[
αI − a11T −b11T

−b11T βI − c11T

]
, (16)

where the vectors of ones are of the appropriate sizes. For a matrix of this form to belong to L,
it must have zero row sum, i.e.,

α = an1 + bn2, β = bn1 + cn2.

Since the off-diagonal entries must lie between 0 and −1, we have 0 � a, b, c � 1. Therefore,
from (14), we have

CoL(G) ∩ I = {M|0 � a, b, c � 1, α = an1 + bn2, β = bn1 + cn2, bn1n2 � mc},
(17)

where M has the structure in (16).
The eigenvalues of a matrix in (17) are shown in the appendix to be

• 0 (with multiplicity one),
• an1 + bn2 with multiplicity n1 − 1,
• bn1 + cn2, with mulitplicity n2 − 1,
• b(n1 + n2) (with multiplicity one).

Therefore, to maximize the second smallest eigenvalue over CoL ∩ I, we must solve the
problem

maximize min{an1 + bn2, bn1 + cn2, b(n1 + n2)}
subject to 0 � a � 1, 0 � c � 1, 0 � b � mc/n1n2,

(18)

with variables a, b, and c. The objective is non-decreasing in a, b, and c, so the choices a = 1,
c = 1, and b = mc/n1n2 give the optimal value, which is

λ̄ = mc(n1 + n2)

n1n2
= mcn

n1n2
. (19)
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This recovers the bound in [8] and [23],

λ2(L) � min
X⊆V

|V ||EX|
|X||Xc| ,

where EX is the number of edges between a subset of nodes X and its complement Xc. The work
in [8] addresses the problem of which graphs satisfy this bound with equality.

We also note that Fiedler’s bound (2) follows from (19). To see this, choose any node of
minimum degree, and consider the cut consisting of its adjacent edges. This cut has size mc = dmin,
and disconnects the graph into two sets of nodes, with sizes n1 = 1 and n2 = n − 1. The bound
(19) then reduces to Fiedler’s bound (2).

3.3. Graphs with non-adjacent subsets

Our next example concerns graphs with no more than m edges, with q non-adjacent, disjoint
subsets S1, . . . , Sq , each containing p nodes. (Si and Sj are non-adjacent if there are no edges
between them.) We denote the remaining t = n − pq nodes as T :

T = {1, . . . , n}\(S1 ∪ · · · ∪ Sq).

We will derive a bound on λ2(L(G)) in terms of m, p, q and t .
Without loss of generality, we can assume that

S1 = {1, . . . , p}, S2 = {p + 1, . . . , 2p}, . . . , Sq = {(q − 1)p + 1, . . . , pq},
T = {pq + 1, . . . , n}.

We let G consist of graphs with this form, with no more than m edges. An example is shown in
Fig. 2.

Fig. 2. A graph with n = 16 nodes, m = 17 edges, and q = 3 non-adjacent subsets, S1, S2, and S3, each containing
p = 4 nodes. The set T consists of the remaining nodes: 13, 14, 15 and 16.
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For this G, matrices in L(G) have the block arrow form

L =




L1 R1
. . .

...

Lq Rq

RT
1 · · · RT

q Lq+1


 , (20)

where Li ∈ Rp×p, i = 1, . . . , q, Lq+1 ∈ Rt×t , and Ri ∈ Rp×t , and

∑
i /=j

−Lij =
n∑

i=1

Lii � 2m.

(Blocks not shown are zero.)
The set L(G) is invariant under a permutation of nodes within each subset S1, . . . , Sq and T ,

as well as permutations of the q subsets S1, . . . , Sq amongst themselves. That is, the symmetry
group of L(G) consists of the matrices

P =
[
P̃

Pt

]
,

where Pt is a permutation matrix in Rt×t , and

P̃ = (Pq ⊗ Ip)




P 1
p

. . .
P k

p


 , (21)

where Pq and P i
p are permutation matrices in Rq×q and Rp×p respectively, and Ip is the identity

matrix in Rp×p. (The symbol ⊗ denotes Kronecker product.)
A matrix that is invariant under any permutation in S is of the form

M =
[
α̃I − ã11T −b̃11T

−b̃11T β̃I − c̃11T

]
, (22)

where the vectors of ones are of the appropriate sizes.
From (20) and (22), we see that matrices in CoL(G) ∩ I are of the form

M =




αI − a11T −b11T

. . .
...

αI − a11T −b11T

−b11T · · · −b11T βI − c11T


 , (23)

where

α = ap + bt, β = pqb + ct, 0 � a, b, c � 1,

qp(p − 1)a + t (t − 1)c + 2pqtb � 2m.

The eigenvalues of M are shown in the appendix to be

• 0, with multiplicity 1,
• ap + bt , with multiplicity q(p − 1),
• pqb + tc, with multiplicity t − 1,
• bt , with multiplicity q − 1,
• b(t + qp) with multiplicity 1.
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Since a and c are non-negative, the second smallest eigenvalue of M is

λ2 = min{tb, pqb + tc}.
To find the bound λ̄, we must solve the problem

maximize min{tb, pqb + tc}
subject to 0 � a, b, c � 1, qp(p − 1)a + t (t − 1)c + 2pqtb � 2m,

(24)

with variables a, b, and c. This is small linear program that we can solve analytically. We start
by noting that the objective does not depend on a, and is non-decreasing in b and c. The second
inequality is increasing in a, b, and c, so it follows that we should take a = 0. To find the optimal
values for the two remaining variables b and c, we consider two cases: pq � t , and pq < t .

Suppose that pq � t . Then the objective in (24) is bt , so the problem reduces to maximizing b.
The optimal value of c is zero, which allows b to be as large as possible, i.e., b = min{m/pqt, 1}.
This yields the optimal value

λ̄ = min{t, m/(pq)}.
Now consider the case when pq < t . In this case the two terms in the objective are equal at the
optimal point, i.e., tb = pqb + tc. Using this in the constraint

t (t − 1)c + 2pqtb � 2m,

we get

b = min

{
1,

2m

(t − 1)(t − pq) + 2pqt

}
.

This gives us

λ̄ = min

{
t,

2mt

(t − 1)(t − pq) + 2pqt

}
.

In summary, we have the following:

λ̄ = min

{
t,

2mt

(t − 1)(t − pq)+ + 2pqt

}
, (25)

where (t − pq)+ denotes the positive part of t − pq, i.e., max{t − pq, 0}. This is our final bound
for graphs with q non-adjacent subsets, each with p nodes, and no more than m edges.

We can connect our bound to the simple one (3) based on vertex connectivity. The vertex
connectivity of any graph in G is less than or equal to t , since deleting the nodes in T will surely
disconnect the graph. Thus the simple bound gives us λ2(L(G)) � v(G) � t . If in our bound we
ignore the constraint on the total number of edges (or just set the number of edges to its largest
possible value, m = n(n − 1)/2), we also obtain

λ2(L(G)) � λ̄ = t.

3.4. Graphs with ring structure

We consider graphs with no more than m edges, with the following block ring structure. The
nodes can be divided into q > 1 disjoint sets of nodes, S1, . . . , Sq , each with p nodes (n = pq),
such that there are edges between sets Si and Sj only if |i − j | � 1 or |i − j | = q − 1. In other
words, S1 can be adjacent only to Sq and S2, S2 can be adjacent only to S1 and S3, and so on; Sq

can be adjacent only to Sq−1 and S1. We will derive a bound on λ2(L(G)) in terms of m, p and q.
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Fig. 3. A graph with n = 16 nodes, m = 19 edges, and a ring structure with q = 4 subsets, S1, . . . , S4, each containing
p = 4 nodes.

Without loss of generality, we can assume that

S1 = {1, . . . , p}, . . . , Sq = {(q − 1)p + 1, . . . , n}.
Our set G will be graphs with this structure, with no more than m edges in total. An example is
shown in Fig. 3.

Note that if q < 4, then this requirement does not impose any structure on the graph, since all
of the q subsets are adjacent to each other. Therefore, we will assume for the remainder of this
section that q � 4.

For this G, L(G) is the subset of matrices in (1) that have the form

L =




R11 R12 R1q

RT
12 R22 R23

. . .
RT

1q Rqq−1 Rqq


 , (26)

where Rij ∈ Rp×p, and

n∑
i=1

Lii � 2m.

(The sparsity structure of L could be called block tridiagonal circulant.)
The set L(G) is invariant under a permutation of nodes within each of the sets S1, . . . , Sq ,

as well as to cyclic rotations of the sets, and reversal of the ordering of the subsets. That is, the
symmetry group of L(G) consists of the permutation matrices

P = (P̃ ⊗ Ip)




P 1

. . .
P q


 ,

where P i ∈ Rp×p are permutation matrices, and P̃ ∈ Rq×q is a cyclic permutation or reversal.
That is, P is a block cyclic permutation matrix, with every block a permutation matrix in Rp×p.
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The set of symmetric matrices invariant under S has elements of the form αIn − C ⊗ 11T,
where C ∈ Rq×q is a symmetric circulant matrix. Therefore, the set of matrices in CoL(G) ∩ I
has the form

M = αIn − C ⊗ 11T, (27)

where C is the circulant matrix

C =




a b b

b a b

. . .
b b a


 , (28)

and

α = p(a + 2b); n(p − 1)a + 2npb � 2m.

The eigenvalues of C are (see, for example, [10])

µj = a + 2b cos(2πj/q), j = 1, . . . , q.

So the eigenvalues of C ⊗ 11T/n are 0 repeated n − q times, and pµj , j = 1, . . . , q. Therefore,
the eigenvalues of M are

• ap + 2bp, with multiplicity n − q, and
• 2bp(1 − cos(2πj/q)), with multiplicity 1, for j = 1, . . . , q.

For j = q, 1 − cos(2πj/q) = 0. The second smallest value of 2pb(1 − cos(2πj/q)) is ob-
tained for j = 1 (or j = q − 1). Therefore,

λ2 = min(ap + 2bp, 2bp(1 − cos(2π/q)).

For q � 4, cos(2π/q) � 0, and therefore λ2 = 2bp(1 − cos(2π/q)), which does not depend on
a, and is increasing in b. Therefore, to maximize λ2 over CoL(G) ∩ I, we set a = 0, and
b = m/np. This gives us the following upper bound on the algebraic connectivity of graphs with
n nodes, no more than m edges, and a block ring structure with q � 4 blocks:

λ̄ = 2m

n
(1 − cos(2π/q)). (29)

When 1 < q < 4, the same method still works; in this case, we obtain an upper bound on the
algebraic connectivity over the set of all graphs with no more than m edges. The bound we obtain
here is, once again,

λ̄ = 2m

n − 1
.

4. Bounds for other functions

Our method relies only on the fact that λ2(L) is a concave function of L on CoL, which is
invariant under any permutation of the nodes. The same method can also be used to obtain an
upper bound on any other concave function, or a lower bound on any convex function, which is
invariant under node permutation. As above, we can restrict the optimization to the subspace of
symmetric matrices invariant under the symmetry group. As examples, the same method can be
used to find the following bounds.
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• Spectral radius. The largest eigenvalue λn(L) is convex function of L, so by minimizing it
over L ∈ CoL(G) (which is a convex optimization problem), we obtain a lower bound on
λn(L) over G.

• Sum of k largest or k smallest eigenvalues. The sum of the k largest eigenvalues of L,

f (L) =
k−1∑
i=0

λn−i (L)

is a convex function of L. Similarly, the sum of the smallest k eigenvalues,

g(L) =
k∑

i=2

λi(L),

is a concave function of L. Therefore, our method can be used to find a lower bound on f (L)

and an upper bound on g(L) over a family of graphs G. (For k = 1, these functions reduce to
the spectral radius and the algebraic connectivity respectively.)

• Geometric mean of eigenvalues. The function(
n∏

i=2

λi

)1/(n−1)

is concave, so we can find an upper bound on it. The same upper bound can also be found by
maximizing the concave function

log det(L + 11T/n) =
n∑

i=2

log λi(L).

The product of the largest n − 1 eigenvalues of the Laplacian is related to the number of
spanning trees in G by the matrix-tree theorem (see, for example, [21]): the number of spanning
trees in G, κ(G), is given by

κ(G) = 1

n

n∏
i=2

λi(L(G)).

Thus we can find an upper bound on the number of spanning trees in graphs belonging to some
family of graphs G.

• Total effective resistance. The total effective resistance of a graph is proportional to
n∑

i=2

λ−1
i = Tr(L + 11T/n)−1 − 1

(see [9]). This is a convex function of L, so we can find a lower bound on the total resistance,
over a family of graphs, using the method outlined above.

• Mean-square-variance in distributed averaging. When a graph is used as a distributed aver-
aging network, with random noises acting on each edge, the total variance of the error is
proportional to

n∑
i=2

λ−2
i = Tr(L + 11T/n)−2 − 1

(see [26]). This is a convex function of L, so our method can be used to find a lower bound on
it.
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Each of these functions of L is a spectral function, i.e., a symmetric function of the eigenvalues
of a symmetric matrix. A spectral function g(λ(L)) is closed and convex if and only if g is closed
and convex; this can be used to show convexity of the functions above. For more on spectral
functions, see [1].

Appendix

We want to find the eigenvalues of the matrix

L =
[
αI − a11T −b11T

−b11T βI − c11T

]
, (30)

where α and β satisfy

α = an1 + bn2, β = bn1 + cn2. (31)

We can diagonalize αI − a11T as

αI − a11T =
[

1√
n1

1 U
]T

D1

[
1√
n1

1 U
]
, (32)

where D1 ∈ Rn1×n1 is the diagonal matrix with entries α − an1, α, . . ., α, and U ∈ Rn1×n1−1 is
an orthonormal basis for 1⊥. We can similarly diagonalize βI − c11T as

βI − c11T =
[

1√
n2

1 V
]T

D2

[
1√
n2

1 V
]
, (33)

where D2 has entries β − cn2, β, . . . , β, and V ∈ Rn2×n2−1 is an orthonormal basis for 1⊥.
We have[

1√
n1

1 U 0

0 1√
n2

1 V

]T [
αI − a11T b11T

b11T βI − c11T

]

×
[

1√
n1

1 U 0

0 1√
n2

1 V

]
=
[
D1 ST

S D2

]
, (34)

where S ∈ Rn2×n1 has S11 = −b
√

n1n2, and all other entries zero.
The right-hand side matrix can be permuted to


α − an1 −b

√
n1n2

−b
√

n1n2 β − cn2
αIn1−1

βIn2−1




=




bn2 −b
√

n1n2
−b

√
n1n2 bn1

αIn1−1
βIn2−1


 , (35)

which has eigenvalues α repeated n1 − 1 times, β repeated n2 − 1 times, 0, and b(n1 + n2). Since
this block-diagonal matrix is obtained from L by a series of similarity transformations, these are
also the eigenvalues of L.
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Next we find the eigenvalues of

L� =




αI − a11T −b11T

. . .
...

αI − a11T −b11T

−b11T · · · −b11T βI − c11T


 . (36)

By a similarity transform like the one above, this matrix can be transformed to the matrix


D1 ST

. . .
...

D1 ST

S · · · S D2


 , (37)

where D1 is diagonal with entries α − an1, α, . . ., α, D2 is diagonal with entries β − cn2, β, . . .,
β, and S ∈ Rn2×n1 has S11 = −b

√
n1n2, and all other entries zero.

This matrix can be permuted to a block diagonal matrix


α − an1 −b
√

n1n2
. . .

...

α − an1 −b
√

n1n2
−b

√
n1n2 . . . −b

√
n1n2 β − cn2

αIk(n1−1)

βIn2−1




=




bn2 −b
√

n1n2
. . .

...

bn2 −b
√

n1n2
−b

√
n1n2 . . . −b

√
n1n2 kbn1

αIk(n1−1)

βIn2−1




.

The eigenvalues of the top left block can be computed to be 0, bn2 repeated k − 1 times, and
b(n2 + kn1). So the eigenvalues of L� (which are the same as those of the above block diagonal
matrix) are 0, bn2 repeated k − 1 times, b(n2 + kn1), α repeated k(n1 − 1) times, and β repeated
n2 − 1 times.
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