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DIFFERENTIATING THROUGH A CONE PROGRAM
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Abstract. We consider the problem of efficiently computing the derivative of the solution map of a convex cone program, when
it exists. We do this by implicitly differentiating the residual map for its homogeneous self-dual embedding, and solving the
linear systems of equations required using an iterative method. This allows us to efficiently compute the derivative operator, and
its adjoint, evaluated at a vector. These correspond to computing an approximate new solution, given a perturbation to the cone
program coefficients (i.e., perturbation analysis), and to computing the gradient of a function of the solution with respect to the
coefficients. Our method scales to large problems, with numbers of coefficients in the millions. We present an open-source
Python implementation of our method that solves a cone program and returns the derivative and its adjoint as abstract linear
maps; our implementation can be easily integrated into software systems for automatic differentiation.
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1. INTRODUCTION

A cone program is an optimization problem in which the objective is to minimize a linear function
over the intersection of a subspace and a convex cone. Cone programs include linear programs, second-
order cone programs, and semidefinite programs. Indeed, every convex optimization problem can be
expressed as a cone program [38].

Cone programs can be efficiently solved by a number of methods, including interior-point methods
[39] and operator splitting methods such as the alternating directions method of multipliers [40]. Cone
programs have found applications in many areas, including control [8], machine learning [11, 29], fi-
nance [7, 35], supply chain management [13, 14], and energy management [36], to name just a few.
Cone programs are widely used in conjunction with several popular software systems for convex op-
timization, which reformulate a convex optimization problem expressed in a domain specific language
into an equivalent cone program. These include YALMIP [34], CVX [26], CVXPY [5, 18], CVXR [25],
and Convex.jl [47].

Solution maps and implicit functions. An optimization problem can be viewed as a (possibly multi-
valued) function mapping the problem data, i.e., the numerical data defining the problem, to the (primal
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and dual) solution. This solution map is in general set-valued. In neighborhoods where the solution
map is single-valued, it is an implicit function of the problem data. In these neighborhoods it becomes
meaningful and interesting to discuss how perturbations in the problem data affect the solution. The
point of this paper is to calculate the effects of such perturbations for cone programs, in an efficient way.

The use of implicit differentiation to study the sensitivity of solution mappings of optimization prob-
lems dates back several decades, with the works of Fiacco [24] and Robinson [45] marking significant
milestones. The book [12] provides a thorough treatment of the subject, and [21] is a good reference for
implicit functions more generally. In recent applications, the framework of implicit functions has been
used to differentiate through quadratic programs [3], stochastic optimization [17], physics simulators
[22], control algorithms [2], and games [33].

Automatic differentiation (AD). Contemporary interest in applications of implicit differentiation is
partly due to the availability of high-quality, modern, open-source AD software. AD is a family of
techniques for algorithmically computing exact derivatives of compositions of differentiable functions.
Techniques for AD have been known since at least the 1950s [9]; see also [27, 28, 49]. In fact, AD
is essentially an efficient way of computing the chain rule, which can be traced back to a centuries-old
manuscript by Leibniz [32] (see [43] for a detailed history).

There are two main variants of AD. Reverse-mode AD computes the derivative of a composition of
atomic differentiable functions by computing the sensitivity of an output with respect to the intermediate
variables (without materializing the matrices for the intermediate derivatives). In this way, reverse-mode
can efficiently compute the derivatives of scalar-valued functions. Forward-mode AD computes the
derivative by calculating the sensitivity of the intermediate variables with respect to an input variable
[28, §2].

Reverse-mode AD was implemented as early as the 1980s [46]. Its rediscovery by the machine learn-
ing community (where it is known as backpropagation [44]) and the modern popularity of deep neural
networks have led to the development of many software libraries for reverse-mode AD. Examples include
TensorFlow [1, 4], PyTorch [41], autograd [37], and Zygote [30]. The library JAX [23] supports both
reverse-mode and forward-mode AD. This requires representing the derivative of each atomic function
as an abstract linear map, i.e., as methods that apply the derivative and its adjoint [19]; implementing just
reverse-mode AD only requires the adjoint. Many of the atomic functions included in these libraries are
not differentiable at all points in their domains. At non-differentiable points, libraries compute heuristic
quantities instead of derivatives. For a discussion on non-differentiability as it relates to AD, see [28,
§14].

This paper. In this paper, we give conditions that guarantee the existence of the derivative of the solution
map for a cone program, and we provide an expression for the derivative at points where these conditions
are satisfied. As in [10], our formulation involves expressing the cone program as the problem of finding
a zero of a particular function, specifically the residual map for a homogeneous self-dual embedding of
the program [40, 50]. We also show how to efficiently compute the derivative and its adjoint, which
involves computing projections onto convex cones, solving a linear system, and exploiting sparsity. In
§3, we present an open-source Python package that furnishes the derivative of a cone program as an
abstract linear map.
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2. THE SOLUTION MAP AND ITS DERIVATIVE

We consider a (convex) conic optimization problem in its primal (P) and dual (D) forms (see, e.g., [16,
84.6.1] or [15, §1.4]):

(P) minimize c¢’x (D) minimize by
subjectto Ax+s=h subjectto ATy+c=0 .1)
s €A, yE X,

Here x € R" is the primal variable, y € R" is the dual variable, and s € R™ is the primal slack variable.
The set #° C R™ is a nonempty, closed, convex cone with dual cone #* C R™. The problem data are
AeR™" beR", ceR", and the cone 7 . (In the sequel, however, we will consider the cone as fixed.)
In the following we let N =m+n+ 1, and use I1 to denote the projection onto R" x J#* x R... Finally,
we define

0 AT ¢
2= {Q =1 -4 0 b| eRVN| (A bc)c R xR x R”}.
- —p" 0
Evidently 2 is a proper subspace of the space of N x N skew symmetric matrices.
The solution map. We call (x,y,s) a solution of the primal-dual conic program (2.1) if
Ax+s=b, Aly+c=0, sex, yex* s'y=0. 2.2)

For given problem data, the corresponding primal-dual conic program (2.1) may have no solution, a
unique solution, or multiple solutions. We focus on the case when it has a unique solution. We define
the solution map . : R™" x R™ x R" — R"?" a5 the function mapping (A, b,c) to vectors (x,y,s) that
satisfy (2.2). We express . as the composition ¢ o so Q, where
e O:R™"xR"xR" — 2 maps the problem data to the corresponding skew-symmetric matrix
in 2,
e 5: 2 — R furnishes a solution of the homogeneous self-dual embedding, and
e ¢:RY — R"” x R™ x R" maps a solution of the homogeneous self-dual embedding to the solution
of the primal-dual pair (2.1).

At a point (A,b,c) where . is differentiable, the derivative of the solution map is
D#(A,b,¢) = D¢(2)Ds(Q)DQ(A, b, ¢),

by the chain rule. In the remainder of this section, we describe the functions Q, s, and ¢ and their
derivatives, along with sufficient conditions for their differentiability.

Skew-symmetric mapping. Define

0 AT ¢
0=0A,bc)=|-A 0 b|e2.
- —pT 0

Homogeneous self-dual embedding. The homogeneous self-dual embedding of (2.1) uses the variable
7€ RY. We partition z as (,v,w) € R" x R™ x R. The normalized residual map introduced in [10] is the
function .4 : RN x 2 — RV, defined by

N(2,0) = ((Q—DIT+1) (z/|w]).
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For a given Q, z can be used to construct the solution of the primal-dual pair (2.1) if and only if 4" (z,0) =
0Oand w > 0 [10].
The normalized residual map is an affine function of Q, hence its derivative Dy.#" always exists, and
is given by
Do (z,0)(U) = UIl(z/|w]), Do (z,0)" (y) = y(II(z/|w]))".
We now turn to D,.4(z,0). ./ is differentiable at z, with w # 0, whenever IT is differentiable at z, in
which case one can directly verify that

D4 (z,Q) = ((Q—1)DI(z) +1) /w —sign(w) ((Q — NTT+1)(z/w?)e", (2.3)

where e = (0,0,...,1) € RY. In particular, when z is a solution of the primal-dual pair (2.1), the second
term on the right hand side of (2.3) vanishes and we have

D:.4(z,Q) = ((Q—1)DI(z) +1) /w.

Implicit function theorem. Suppose that z is a solution of the primal-dual pair (2.1) for a given Q,
and that IT is differentiable at z. Then .4 is differentiable at z, .4 "(z,Q) = 0 and w > 0. Now, suppose
that D,.4(z,Q) is invertible. It follows from the implicit function theorem (see, e.g., [20] and [21])
that there exists a neighborhood V C 2 of Q on which the solution z = s(Q) of .#(z,Q) = 0 is unique.
Furthermore, s is differentiable on V, 4 (s(Q),Q) =0 forall Q € V, and

Ds(Q) = — (D=4 (s(Q), 0)) ™' Do (s(Q). 0)-
Solution construction. The function ¢ : R¥ — R"™" given by

¢(2) = (u,ILy(v), Iy« (v) = v) /w,

constructs a solution (x,y, s) of the primal-dual pair (2.1) from a solution z = (u, v, w) of the homogeneous
self-dual embedding (I1 »~ denotes the projection onto % *). If I+ is differentiable with derivative
DIL~+(v) € R™ ™, then ¢ is also differentiable, with derivative

1 0 —X
D¢(z) = |0  DILy(v) -y
0 DH%/* (V) -1 —s

Note that a solution of the homogeneous self-dual embedding can also be constructed from a solution of
the primal-dual pair [10].

3. IMPLEMENTATION

In this section we detail how to form the derivative of a cone program as an abstract linear map. We
also describe our Python package that implements these methods, and as an example use it to differentiate
a semidefinite program.

Sparsity. The matrix A is often stored and manipulated as a sparse matrix. We assume that the sparsity
pattern of A is fixed, meaning we only have to consider the nonzero entries of A when computing the
derivative and its adjoint; this can provide significant speed-ups if A is very sparse. Of course, one can
still furnish the derivative with respect to every entry of A by making A dense.
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Computing the derivative. Applying the derivative D.¥(A,b,c) to a perturbation (dA,db,dc) corre-

sponds to evaluating
(dx,dy,ds) = D.#(A,b,c)(dA,db,dc) = D¢ (z)Ds(Q)DQ(A,b,c)(dA,db,dc),

where dA has the same sparsity pattern as A. We work from right to left. The first step is to form

0 dAT  dc
do=| —dA 0 db
—deT —db” 0

The next step is to compute
g =Dg.#(s(Q),0)(dQ) = dOI(z/|w|),
and then
dz=-M"g,

where M = ((Q —I)DII(z) +1)/w. One option is to form M as a dense matrix, factorize it, and then
back-solve. However, when M is large, as is the case in many applications, this can be impractical.
Instead, we suggest using LSQR [42] to solve

min(iimize |[Mdz+ g3,

Z

which only requires multiplication by M and M”, and is of particular interest for semidefinite cone
programs. Next we partition dz as dz = (du,dv,dw). The final step is to compute

dx du— (dw)x
dy| = DI« (v)dv — (dw)y
ds DILy+(v)dv—dv — (dw)s

Computing the adjoint of the derivative. Applying the adjoint of the derivative to a perturbation

(dx,dy,ds) corresponds to evaluating
(dA,db,dc) = D.7(A,b,c)" (dx,dy,ds) = DQ(A,b,c)" Ds(Q)" D¢ (z)” (dx,dy,ds).
We again work right to left. The first step is to form

dx
dz=D¢(z)" (dx,dy,ds) = |DIT%,.(v)(dy+ds) —ds
—xTdx—yTdy —sTds

Next we form g = —M~Tdz, again using LSQR. Then dQ is given by
dQ = g(T1(z/|w))"-

Instead of explicitly forming dQ, we only obtain its nonzero entries. Let its nonzero entries be indexed
by Q; we compute

gill(z/|wl); (i,)) € Q

0 otherwise.
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Partitioning dQ as
dOi dQi2 dQis
dO0= [dQ>1 dQx»n dQx|,
d0s; dQs dQOs;

the final expressions are given by

dA = —dQ%, +d0y
db = —dQx;+d0},
de = —dQi3+d0j;.

Integration into AD. The calculations that we have described can be immediately be integrated into the
forward and reverse-mode AD software described in §1. In a forward-mode AD system, one calculates
the sensitivity of the intermediate variables with respect to perturbations; this operation corresponds to
applying the derivative to those perturbations. In a reverse-mode AD system, one computes the sensitivity
of a scalar function with respect to intermediate variables; this operation is given by applying the adjoint
of the derivative to the derivative of the scalar function with respect to x, y, and s.

3.1. Python implementation. We provide a Python implementation of the ideas described in the paper,
available at

https://www.github.com/cvxgrp/diffcp.

We use the libraries NumPy for dense linear algebra [48] and SciPy for sparse linear algebra and its
LSQR implementation [31]. To solve the cone program, we use the numerical solver SCS [40]. Our
implementation supports any cone that can be expressed as the Cartesian product of the zero cone, posi-
tive orthant, second-order cone, positive semidefinite cone, exponential cone, and dual exponential cone.
Expressions for the derivative of the projection onto each of these cones are given in [6] and [10]; most
of these have analytical expressions.

The Python package exposes one function,

solve_and_derivative(A, b, c, cone_dict),

where A is a SciPy sparse matrix, b and ¢ are NumPy arrays, and cone_dict is a dictionary repre-
senting the cone .# . This function returns a solution (x,y,s) of the primal-dual pair and two functions,
derivative(dA, db, dc) and adjoint_derivative(dx, dy, ds), which respectively apply the
derivative and its adjoint (at (A, b, c)) to their inputs and return the result.

3.2. Example. We consider differentiating a semidefinite program

minimize tr(CTX)
subjectto X >0, 3.1
tl‘(AiX):b,‘, izl,...,p,

with optimization variable X € §'| and problem data C € S", Ay,...,A, € §", and b € R? (§" denotes the
set of symmetric matrices in R"*”, and S', denotes the set of symmetric positive semidefinite matrices in
R"™). This problem can be readily cast as a standard cone program (2.1), where the cone is the Cartesian
product of a zero cone and a semidefinite cone.
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We generated a feasible, bounded random instance of (3.1) with p = 100 and n = 300. We used our
Python package to solve this instance and retrieve the derivative and its adjoint. The solve, which calls
into SCS, took about 195.7 seconds on a machine with a six-core Intel 17-8700K. Next, we computed
the derivative of the optimal value of (3.1) with respect to each of the A; by applying the adjoint of
the derivative to the gradient of the objective. Applying the adjoint of the derivative took about 191.7
seconds, which is roughly equal to the time it took to solve the problem. Note that we calculated the
derivative of the objective with respect to 4,515,000 elements (each of the A;), which required the solution
of 290,401 x 90,401 linear system. This evidently would not have been practical had we not treated the
linear mapping as an abstract operator.
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