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Abstract

For linear systems with delays, we de�ne a new

class of Lyapunov-like functionals that may be

used to prove stability. We also show how we

may design a stabilizing (delayed) state feed-

back for delay systems using these functionals

and convex optimization techniques.

1 Introduction

We consider linear systems with delays, de-

scribed by the state equation

_x(t) = A0x(t) +
mX
i=1

Aix(t � �i) +Bu(t); (1)

where the state x(t) 2 Rn, the input u(t) 2 Rp,

and 0 < �1 < �2 < � � � < �m are the delays in

the system. We assume that the full state of

the system is available with a delay � > 0. Our

objective is to design a constant, delayed state

feedback u(t) = �Kx(t � �) that stabilizes the

system. We remark that proving stability of sys-

tem (1) (with u(t) = 0) is in itself a hard prob-

lem. Our approach towards designing K com-

bines a Lyapunov-like method with some recent

advances in convex optimization.

Note that (1) is not a �nite dimensional sys-

tem, and therefore Lyapunov functionals rather

than the more conventional Lyapunov functions

are needed. In x2, we will describe one such func-

tional, which we will call the Modi�ed Lyapunov-

Krasovskii (MLK) functional. We then show how
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we may pose the problem of design of a stabiliz-

ing (delayed) state-feedback as a convex feasibil-

ity problem.

2 Stabilizing state feedback

With the delayed state feedback u(t) = �Kx(t�

�), the state equation is

_x(t) = A0x(t)+
mX
i=1

Aix(t��i)�BKx(t��): (2)

In the sequel, we assume that 0 < � < �1; the

case �1 � � may be dealt with similarly.

Motivated by the work of Krasovskii [4] (see

also [6]), we propose a class of functionals for

system (2), which we will refer to as Modi�ed

Lyapunov-Krasovskii (MLK) functionals:

V (x; t) = x(t)TL0x(t)+Pm
i=1

R
��i�1

��i
x(t+ s)TLix(t+ s)ds +R

0

�� x(t+ s)TLx(t+ s)ds;

(3)

where L; L0; : : : ; Lm are symmetric positive def-

inite matrices and �0 = � . The derivative
d

dt
V (x; t), computed using (2) is

2x(t)TL0

 
A0x(t) +

Pm
i=1Aix(t� �i)

�BKx(t � �)

!

+
Pm
i=1

 
x(t� �i�1)

TLix(t� �i�1)

�x(t� �i)
TLix(t� �i)

!

+
�
x(t)TLx(t)� x(t � �)TLx(t� �)

�
:

This can be rewritten as d=dt V (x; t) = yTWy;
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where W and yT are given by2
66666666664

N �L0BK L0A1 � � � L0Am

�KTBTL0 L1 � L 0 � � � 0

AT
1
L0 0 L2 � L1 � � � 0
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.

AT
m
L0 0 0 � � � �Lm

3
77777777775
;

and

[x(t)T ; x(t� �)T ; x(t� �1)
T ; � � � ; x(t� �m)

T ];

respectively, with N = L0A0 + AT
0
L0 + L.

We then have:

If there exist L0; L; L1; : : : ; Lm and K such

that W as above is negative de�nite, then sys-

tem (2) is stable.

The proof is along the lines of the one for

Lyapunov-Krasovskii functionals in reference [4].

We now show that �nding L0; L; L1; : : : ; Lm
and K such that W as above is negative de�-

nite can be posed as a convex feasibility prob-

lem. Our manipulations are based on a recent

result on the parametrization of state-feedback

controllers [3].

We multiply every block entry of W on the

left and on the right by L�1

0
and set M0 = L�1

0
,

Mi = L�1

0
LiL

�1

0
; i = 1; : : : ; m, M = L�1

0
LL�1

0

and Y = KL�1

0
, to obtain a new matrix X given

by 2
66666666664

~N �BY A1M0 � � � AmM0

�Y BT M1 �M 0 � � � 0

M0A
T

1
0 M2 �M1 � � � 0
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.

.
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.
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.

.

M0A
T

m
0 0 � � � �Mm

3
77777777775
;

where ~N = A0M0 +M0A
T
0
+M .

We then have: W < 0 if and only if X < 0.

X is a linear function of M0, M1; � � � ;Mm, M

and Y , and therefore therefore the set

	 = fX j X < 0g

is convex in these variables. Checking its non-

emptiness can then be done via a convex feasi-

bility program.

There exist several methods for solving this

convex feasibility problem. In [6], Skorodinskii

proposes the use of the ellipsoid algorithm [1].

There have been recent advances in convex pro-

gramming which promise much faster algorithms

[5, 2].
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