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Abstract We consider the problem of fitting a convex piecewise-linear function, with
some specified form, to given multi-dimensional data. Except for a few special cases,
this problem is hard to solve exactly, so we focus on heuristic methods that find
locally optimal fits. The method we describe, which is a variation on the K-means
algorithm for clustering, seems to work well in practice, at least on data that can be
fit well by a convex function. We focus on the simplest function form, a maximum of
a fixed number of affine functions, and then show how the methods extend to a more
general form.
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1 Convex piecewise-linear fitting problem

We consider the problem of fitting some given data

(u1, y1), . . . , (um,ym) ∈ Rn × R

with a convex piecewise-linear function f : Rn → R from some set F of candidate
functions. With a least-squares fitting criterion, we obtain the problem

minimize J (f ) =
m∑

i=1

(f (ui) − yi)
2

subject to f ∈ F ,

(1)
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with variable f . We refer to (J (f )/m)1/2 as the RMS (root-mean-square) fit of the
function f to the data. The convex piecewise-linear fitting problem (1) is to find the
function f , from the given family F of convex piecewise-linear functions, that gives
the best (smallest) RMS fit to the given data.

Our main interest is in the case when n (the dimension of the data) is relatively
small, say not more than 5 or so, while m (the number of data points) can be relatively
large, e.g., 104 or more. The methods we describe, however, work for any values of
n and m.

Several special cases of the convex piecewise-linear fitting problem (1) can be
solved exactly. When F consists of the affine functions, i.e., f has the form f (x) =
aT x + b, the problem (1) reduces to an ordinary linear least-squares problem in the
function parameters a ∈ Rn and b ∈ R and so is readily solved. As a less trivial ex-
ample, consider the case when F consists of all piecewise-linear functions from Rn

into R, with no other constraint on the form of f . This is the nonparametric convex
piecewise-linear fitting problem. Then the problem (1) can be solved, exactly, via a
quadratic program (QP); see (Boyd and Vandenberghe 2004, Sect. 6.5.5). This non-
parametric approach, however, has two potential practical disadvantages. First, the
QP that must be solved is very large (containing more than mn variables), limiting
the method to modest values of m (say, a thousand). The second potential disadvan-
tage is that the piecewise-linear function fit obtained can be very complex, with many
terms (up to m).

Of course, not all data can be fit well (i.e., with small RMS fit) with a convex
piecewise-linear function. For example, if the data are samples from a function that
has strong negative (concave) curvature, then no convex function can fit it well. More-
over, the best fit (which will be poor) will be obtained with an affine function. We can
also have the opposite situation: it can occur that the data can be perfectly fit by an
affine function, i.e., we can have J = 0. In this case we say that the data is interpo-
lated by the convex piecewise-linear function f .

1.1 Max-affine functions

In this paper we consider the parametric fitting problem, in which the candidate func-
tions are parametrized by a finite-dimensional vector of coefficients α ∈ Rp , where
p is the number of parameters needed to describe the candidate functions. One very
simple form is given by F k

ma, the set of functions on Rn with the form

f (x) = max{aT
1 x + b1, . . . , a

T
k x + bk}, (2)

i.e., a maximum of k affine functions. We refer to a function of this form as ‘max-
affine’, with k terms. The set F k

ma is parametrized by the coefficient vector

α = (a1, . . . , ak, b1, . . . , bk) ∈ Rk(n+1).

In fact, any convex piecewise-linear function on Rn can be expressed as a max-affine
function, for some k, so this form is in a sense universal. Our interest, however, is
in the case when the number of terms k is relatively small, say no more than 10,
or a few 10s. In this case the max-affine representation (2) is compact, in the sense
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that the number of parameters needed to describe f (i.e., p) is much smaller than
the number of parameters in the original data set (i.e., m(n + 1)). The methods we
describe, however, do not require k to be small.

When F = F k
ma, the fitting problem (1) reduces to the nonlinear least-squares

problem

minimize J (α) =
m∑

i=1

(
max

j=1,...,k
(aT

j ui + bj ) − yi

)2

, (3)

with variables a1, . . . , ak ∈ Rn, b1, . . . , bk ∈ R. The function J is a piecewise-
quadratic function of α. Indeed, for each i, f (ui) − yi is piecewise-linear, and J

is the sum of squares of these functions, so J is convex quadratic on the (polyhe-
dral) regions on which f (ui) is affine. But J is not globally convex, so the fitting
problem (3) is not convex.

1.2 A more general parametrization

We will also consider a more general parametrized form for convex piecewise-linear
functions,

f (x) = ψ(φ(x,α)), (4)

where ψ : Rq → R is a (fixed) convex piecewise-linear function, and φ :
Rn × Rp → Rq is a (fixed) bi-affine function. (This means that for each x, φ(x,α)

is an affine function of α, and for each α, φ(x,α) is an affine function of x.) The
simple max-affine parametrization (2) has this form, with q = k, ψ(z1, . . . , zk) =
max{z1, . . . , zk}, and φi(x,α) = aT

i x + bi .
As an example, consider the set of functions F that are sums of k terms, each of

which is the maximum of two affine functions,

f (x) =
k∑

i=1

max{aT
i x + bi, c

T
i x + di}, (5)

parametrized by a1, . . . , ak, c1, . . . , ck ∈ Rn and b1, . . . , bk, d1, . . . , dk ∈ R. This
family corresponds to the general form (4) with

ψ(z1, . . . , zk,w1, . . . ,wk) =
k∑

i=1

max{zi,wi},

and

φ(x,α) = (aT
1 x + b1, . . . , a

T
k x + bk, c

T
1 x + d1, . . . , c

T
k x + dk).

Of course we can expand any function with the more general form (4) into its
max-affine representation. But the resulting max-affine representation can be very
much larger than the original general form representation. For example, the function
form (5) requires p = 2k(n + 1) parameters. If the same function is written out as
a max-affine function, it requires 2k terms, and therefore 2k(n + 1) parameters. The
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hope is that a well chosen general form can give us a more compact fit to the given
data than a max-affine form with the same number of parameters.

As another interesting example of the general form (4), consider the case in which
f is given as the optimal value of a linear program (LP) with the right-hand side of
the constraints depending bi-affinely on x and the parameters:

f (x) = min{cT v | Av ≤ b + Bx}.

Here c and A are fixed; b and B are considered the parameters that define f . This
function can be put in the general form (4) using

ψ(z) = min{cT v | Av ≤ z}, φ(x, b,B) = b + Bx.

The function ψ is convex and piecewise-linear (see, e.g., Boyd and Vandenberghe
2004); the function φ is evidently bi-affine in x and (b,B).

1.3 Dependent variable transformation and normalization

We can apply a nonsingular affine transformation to the dependent variable u, by
forming

ũi = T ui + s, i = 1, . . . ,m,

where T ∈ Rn×n is nonsingular and s ∈ Rn. Defining f̃ (x̃) = f (T −1(x − s)), we
have f̃ (ũi ) = f (ui). If f is piecewise-linear and convex, then so is f̃ (and of course,
vice versa). Provided F is invariant under composition with affine functions, the
problem of fitting the data (ui, yi) with a function f ∈ F is the same as the prob-
lem of fitting the data (ũi , yi) with a function f̃ ∈ F .

This allows us to normalize the dependent variable data in various ways. For ex-
ample, we can assume that it has zero (sample) mean and unit (sample) covariance,

ū = (1/m)

m∑

i=1

ui = 0, $u = (1/m)

m∑

i=1

uiu
T
i = I, (6)

provided the data ui are affinely independent. (If they are not, we can reduce the
problem to an equivalent one with smaller dimension.)

1.4 Outline

In Sect. 2 we describe several applications of convex piecewise-linear fitting. In
Sect. 3, we describe a basic heuristic algorithm for (approximately) solving the max-
affine fitting problem (1). This basic algorithm has several shortcomings, such as
convergence to a poor local minimum, or failure to converge at all. By running this
algorithm a modest number of times, from different initial points, however, we obtain
a fairly reliable algorithm for least-squares fitting of a max-affine function to given
data. Finally, we show how the algorithm can be extended to handle the more general
function parametrization (4). In Sect. 4 we present some numerical examples.
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1.5 Previous work

Piecewise-linear functions arise in many areas and contexts. Some general forms for
representing piecewise-linear functions can be found in, e.g., Kang and Chua, Kahlert
and Chua (1978, 1990). Several methods have been proposed for fitting general
piecewise-linear functions to (multidimensional) data. A neural network algorithm is
used in Gothoskar et al. (2002); a Gauss-Newton method is used in Julian et al., Horst
and Beichel (1998, 1997) to find piecewise-linear approximations of smooth func-
tions. A recent reference on methods for least-squares with semismooth functions is
Kanzow and Petra (2004). An iterative procedure, similar in spirit to our method,
is described in Ferrari-Trecate and Muselli (2002). Software for fitting general
piecewise-linear functions to data include, e.g., Torrisi and Bemporad (2004), Storace
and De Feo (2002).

The special case n = 1, i.e., fitting a function on R, by a piecewise-linear function
has been extensively studied. For example, a method for finding the minimum num-
ber of segments to achieve a given maximum error is described in Dunham (1986);
the same problem can be approached using dynamic programming (Goodrich 1994;
Bellman and Roth 1969; Hakimi and Schmeichel 1991; Wang et al. 1993), or a ge-
netic algorithm (Pittman and Murthy 2000). The problem of simplifying a given
piecewise-linear function on R, to one with fewer segments, is considered in Imai
and Iri (1986).

Another related problem that has received much attention is the problem of fitting
a piecewise-linear curve, or polygon, in R2 to given data; see, e.g., Aggarwal et al.
(1985), Mitchell and Suri (1992). An iterative procedure, closely related to the k-
means algorithm and therefore similar in spirit to our method, is described in Phillips
and Rosenfeld (1988), Yin (1998).

Piecewise-linear functions and approximations have been used in many appli-
cations, such as detection of patterns in images (Rives et al. 1985), contour trac-
ing (Dobkin et al. 1990), extraction of straight lines in aerial images (Venkateswar
and Chellappa 1992), global optimization (Mangasarian et al. 2005), compression of
chemical process data (Bakshi and Stephanopoulos 1996), and circuit modeling (Ju-
lian et al. 1998; Chua and Deng 1986; Vandenberghe et al. 1989).

We are aware of only two papers which consider the problem of fitting a piecewise-
linear convex function to given data. Mangasarian et al. (2005) describe a heuristic
method for fitting a piecewise-linear convex function of the form a + bT x + ‖Ax +
c‖1 to given data (along with the constraint that the function underestimate the data).
The focus of their paper is on finding piecewise-linear convex underestimators for
known (nonconvex) functions, for use in global optimization; our focus, in contrast,
is on simply fitting some given data. The closest related work that we know of is Kim
et al. (2004). In this paper, Kim et al. describe a method for fitting a (convex) max-
affine function to given data, increasing the number of terms to get a better fit. (In
fact they describe a method for fitting a max-monomial function to circuit models;
see Sect. 2.3.)
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2 Applications

In this section we briefly describe some applications of convex piecewise-linear fit-
ting. None of this material is used in the sequel.

2.1 LP modeling

One application is in LP modeling, i.e., approximately formulating a practical prob-
lem as an LP. Suppose a problem is reasonably well modeled using linear equality
and inequality constraints, with a few nonlinear inequality constraints. By approx-
imating these nonlinear functions by convex piecewise-linear functions, the overall
problem can be formulated as an LP, and therefore efficiently solved.

As an example, consider a minimum fuel optimal control problem, with linear
dynamics and a nonlinear fuel-use function,

minimize
T −1∑

t=0

f (u(t))

subject to x(t + 1) = A(t)x(t) + B(t)u(t), t = 0, . . . , T − 1,

x(0) = xinit, x(T ) = xdes,

with variables x(0), . . . , x(T ) ∈ Rn (the state trajectory), and u(0), . . . , u(T − 1) ∈
Rm (the control input). The problem data are A(0), . . . ,A(T − 1) (the dynamics ma-
trices), B(0), . . . ,B(T − 1) (the control matrices), xinit (the initial state), and xdes
(the desired final state). The function f : Rm → R is the fuel-use function, which
gives the fuel consumed in one period, as a function of the control input value. Now
suppose we have empirical data or measurements of some values of the control in-
put u ∈ Rm, along with the associated fuel use f (u). If we can fit these data with a
convex piecewise-linear function, say,

f (u) ≈ f̂ (u) = max
j=1,...,k

(aT
j u + bj ),

then we can formulate the (approximate) minimum fuel optimal control problem as
the LP

minimize
T −1∑

t=0

f̃ (t)

subject to x(t + 1) = A(t)x(t) + B(t)u(t), t = 0, . . . , T − 1,

x(0) = xinit, x(T ) = xdes,

f̃ (t) ≥ aT
j u(t) + bj , t = 0, . . . , T − 1, j = 1, . . . , k,

(7)

with variables x(0), . . . , x(T ) ∈ Rn, u(0), . . . , u(T − 1) ∈ Rm, and f̃ (0), . . . ,

f̃ (T − 1) ∈ R.
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2.2 Simplifying convex functions

Another application of convex piecewise-linear fitting is to simplify a convex func-
tion that is complex, or expensive to evaluate. To illustrate this idea, we continue
our minimum fuel optimal control problem described above, with a piecewise-linear
fuel use function. Consider the function V : Rn → R, which maps the initial state
xinit to its associated minimum fuel use, i.e., the optimal value of the LP (7). (This
is the Bellman value function for the optimal control problem.) The value function
is piecewise-linear and convex, but very likely requires an extremely large number
of terms to be expressed in max-affine form. We can (possibly) form a simple ap-
proximation of V by a max-affine function with many fewer terms, as follows. First,
we evaluate V via the LP (7), for a large number of initial conditions. Then, we fit a
max-affine function with a modest number of terms to the resulting data. This con-
vex piecewise-linear approximate value function can be used to construct a simple
feedback controller that approximately minimizes fuel use; see, e.g., Bemporad et al.
(2002).

2.3 Max-monomial fitting for geometric programming

Max-affine fitting can be used to find a max-monomial approximation of a positive
function, for use in geometric programming modeling; see Boyd et al. (2006). Given
data (zi,wi) ∈ Rn

++ × R++, we form

ui = log zi, yi = logwi, i = 1, . . . ,m.

(The log of a vector is interpreted as componentwise.) We now fit this data with a
max-affine model,

yi ≈ max{aT
1 ui + b1, . . . , a

T
k ui + bk}.

This gives us the max-monomial model

wi ≈ max{g1(zi), . . . , gK(zi)},
where gi are the monomial functions

gj (z) = ebi z
aj1
1 · · · zajn

n , j = 1, . . . ,K.

(These are not monomials in the standard sense, but in the sense used in geometric
programming.)

3 Least-squares partition algorithm

3.1 The algorithm

In this section we present a heuristic algorithm to (approximately) solve the k-term
max-affine fitting problem (3), i.e.,

minimize J =
m∑

i=1

(
max

j=1,...,k
(aT

j ui + bj ) − yi

)2

,
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with variables a1, . . . , ak ∈ Rn and b1, . . . , bk ∈ R. The algorithm alternates between
partitioning the data and carrying out least-squares fits to update the coefficients.

We let P
(l)
j for j = 1, . . . , k, be a partition of the data indices at the lth iteration,

i.e., P
(l)
j ⊆ {1, . . . ,m}, with

⋃

j

P
(l)
j = {1, . . . ,m}, P

(l)
i ∩ P

(l)
j = ∅ for i ,= j.

(We will describe methods for choosing the initial partition P
(0)
j later.)

Let a
(l)
j and b

(l)
j denote the values of the parameters at the lth iteration of the

algorithm. We generate the next values, a
(l+1)
j and b

(l+1)
j , from the current partition

P
(l)
j , as follows. For each j = 1, . . . , k, we carry out a least-squares fit of aT

j ui + bj

to yi , using only the data points with i ∈ P
(l)
j . In other words, we take a

(l+1)
j and

b
(l+1)
j as values of a and b that minimize

∑

i∈P
(l)
j

(aT ui + b − yi)
2. (8)

In the simplest (and most common) case, there is a unique pair (a, b) that mini-
mizes (8), i.e.,

[
a

(l+1)
j

b
(l+1)
j

]

=
[∑

uiu
T
i

∑
ui∑

uT
i |P (l)

j |

]−1 [∑
yiui∑
yi

]
, (9)

where the sums are over i ∈ P
(l)
j .

When there are multiple minimizers of the quadratic function (8), i.e., the matrix
to be inverted in (9) is singular, we have several options. One option is to add some
regularization to the simple least-squares objective in (8), i.e., an additional term of
the form λ‖a‖2

2 + µb2, where λ and µ are positive constants. Another possibility is
to take the updated parameters as the unique minimizer of (8) that is closest to the
previous value, (a

(l)
j , b

(l)
j ), in Euclidean norm.

Using the new values of the coefficients, we update the partition to obtain P
(l+1)
j ,

by assigning i to P
(l+1)
s if

f (l)(ui) = max
s=1,...,k

(a(l)T
s ui + b(l)

s ) = a
(l)T
j ui + b

(l)
j . (10)

(This means that the term a
(l)T
j ui + b

(l)
j is ‘active’ at the data point ui .) Roughly

speaking, this means that P
(l+1)
j is the set of indices for which the affine function

aT
j z + bj is the maximum; we can break ties (if there are any) arbitrarily.

This iteration is run until convergence, which occurs if the partition at an iteration
is the same as the partition at the previous iteration, or some maximum number of
iterations is reached.
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We can write the algorithm as

LEAST-SQUARES PARTITION ALGORITHM.

given partition P
(0)
1 , . . . ,P

(0)
K of {1, . . . ,m}, iteration limit lmax

for l = 0, . . . , lmax

1. Compute a
(l+1)
j and b

(l+1)
j as in (9).

2. Form the partition P
(l+1)
1 , . . . ,P

(l+1)
k as in (10).

3. Quit if P
(l)
j = P

(l+1)
j for j = 1, . . . , k.

During the execution of the least-squares partition algorithm, one or more of the
sets P

(l)
j can become empty. The simplest approach is to drop empty sets from the

partition, and continue with a smaller value of k.

3.2 Interpretation as Gauss-Newton method

We can interpret the algorithm as a Gauss-Newton method for the problem (3). Sup-
pose that at a point u ∈ Rn, there is a unique j for which f (u) = aT

j u + bj (i.e.,
there are no ties in the maximum that defines f (u)). In this case the function f is
differentiable with respect to a and b; indeed, it is locally affine in these parameter
values. Its first order approximation at a, b is

f (u) ≈ f̂ (u) = ãT
j u + b̃j .

This approximation is exact, provided the perturbed parameter values ã1, . . . , ãk ,
b̃1, . . . , ãb are close enough to the parameter values a1, . . . , ak , b1, . . . , ab .

Now assume that for each data point ui , there is a unique j for which f (ui) =
a

(l)T
j ui + b

(l)
j (i.e., there are no ties in the maxima that define f (ui)). Then the first

order approximation of (f (u1), . . . , f (um)) is given by

f (ui) ≈ f̂ (ui) = ãT
j (i)ui + b̃j (i),

where j (i) is the unique active j at ui , i.e., i ∈ P
(l)
j .

In the Gauss-Newton method for a nonlinear least-squares problem, we form the
first order approximation of the argument of the norm, and solve the resulting least-
squares problem to get the next iterate. In this case, then, we form the linear least-
squares problem of minimizing

Ĵ =
m∑

i=1

(
f̂ (ui) − yi

)2
=

m∑

i=1

(
ãT
j (i)ui + b̃j (i) − yi

)2
,

over the variables ã1, . . . , ãk , b̃1, . . . , b̃k . We can re-arrange the sum defining J into
terms involving each of the pairs of variables a1, b1, . . . , ak, bk separately:

Ĵ = Ĵ1 + · · · + Ĵk,
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where

Ĵj =
∑

i∈P
(l)
j

(ãT ui + b̃ − yi)
2, j = 1, . . . , k.

Evidently, we can minimize Ĵ by separately minimizing each Ĵi . Moreover, the para-
meter values that minimize Ĵ are precisely a

(l+1)
1 , . . . , a

(l+1)
k , b

(l+1)
1 , . . . , b

(l+1)
k . This

is exactly the least-squares partition algorithm described above.
The algorithm is closely related to the k-means algorithm used in least-squares

clustering (Gersho and Gray 1991). The k-means algorithm approximately solves the
problem of finding a set of k points in Rn, {z1, . . . , zk}, that minimizes the mean
square Euclidean distance to a given data set u1, . . . , um ∈ Rn. (The distance be-
tween a point u and the set of points {z1, . . . , zk} is defined as the minimum distance,
i.e., minj=1,...,k ‖u − zj‖2.) In the k-means algorithm, we iterate between two steps:
first, we partition the data points according to the closest current point in the set
{z1, . . . , zk}; then we update each zj as the mean of the points in its associated parti-
tion. (The mean minimizes the sum of the squares of the Euclidean distances to the
point.) Our algorithm is conceptually identical to the k-means algorithm: we partition
the data points according to which of the affine functions is active (i.e., largest), and
then update the affine functions, separately, using only the data points in its associated
partition.

3.3 Nonconvergence of least-squares partition algorithm

The basic least-squares partition algorithm need not converge; it can enter a (noncon-
stant) limit cycle. Consider, for example, the data

u1 = −2, u2 = −1, u3 = 0, u4 = 1, u5 = 2,

y1 = 0, y2 = 1, y3 = 3, y4 = 1, y5 = 0,

and k = 2. The data evidently cannot be fit well by any convex function; the (globally)
best fit is obtained by the constant function f (u) = 1. For many initial parameter
values, however, the algorithm converges to a limit cycle with period 2, alternating
between the two functions

f1(u) = max{u + 2,−(3/2)u + 17/6}, f2(u) = max{(3/2)u + 17/6,−u + 2}.

The algorithm therefore fails to converge; moreover, each of the functions f1 and f2
gives a very suboptimal fit to the data.

On the other hand, with real data (not specifically designed to illustrate noncon-
vergence) we have observed that the least-squares partition algorithm appears to con-
verge in most cases. In any case, convergence failure has no practical consequences
since the algorithm is terminated after some fixed maximum number of steps, and
moreover, we recommend that it be run from a number of starting points, with the
best fit obtained used as the final fit.
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3.4 Piecewise-linear fitting algorithm

The least-squares partition algorithm, used by itself, has several serious shortcom-
ings. It need not converge, and when it does converge, it can (and often does) con-
verge to a piecewise-linear approximation with a poor fit to the data. Both of these
problems can be mitigated by running the least-squares partition algorithm multiple
times, with different initial partitions. The final fit is taken to be the best fit obtained
among all iterations of all runs of the algorithm.

We first describe a simple method for generating a random initial partition. We
randomly choose points p1, . . . , pK , and define the initial partition to be the Voronoi
sets associated with these points. We have

P
(0)
j = {i | ‖ui − pj‖ < ‖ui − ps‖ for s ,= j}, j = 1, . . . ,K. (11)

(Thus, P
(0)
j is the set of indices of data points that are closest to pj .) The seed points

pi should be generated according to some distribution that matches the shape of the
data points ui , for example, they can be chosen from a normal distribution with mean
ū and covariance $u (see (6)).

The overall algorithm can be described as

PIECEWISE-LINEAR FITTING ALGORITHM.

given number of trials Ntrials, iteration limit lmax

for i = 1, . . . ,Ntrials
1. Generate random initial partition via (11).
2. Run least-squares partition algorithm with iteration limit lmax.
3. Keep track of best RMS fit obtained.

3.5 General form fitting

In this section we show the least-squares partition algorithm can be modified to fit
piecewise-linear functions with the more general form (4),

f (x,α) = ψ(φ(x,α)),

where ψ is a fixed convex piecewise-linear function, and φ is a fixed bi-affine func-
tion.

We described the least-squares partition algorithm in terms of a partition of the in-
dices, according to which of the k affine functions is active at the point ui . The same
approach of an explicit partition will not work in the more general case, since the size
of the partition can be extremely large. Instead, we start from the idea that the parti-
tion gives an approximation of f (ui) that is affine in α, and valid near α(l). If there is
no ‘tie’ at ui (i.e., there is a unique affine function that achieves the maximum), then
the affine approximation is exact in a neighborhood of the current parameter value
α(l).

We can do the same thing with the more general form. For each i, we find ai(α)
and bi(α), both affine functions of α, so that

f (ui, α) ≈ ai(α)T ui + bi(α)
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for α near α(l), the current value of the parameters. This approximation is exact in a
neighborhood of α(l) if ψ(ui,α) is a point of differentiability of ψ . (For max-affine
functions, this is the case when there is no ‘tie’ at ui .) If it is not such a point, we can
choose any subgradient model of f (ui, α), i.e., any ai(α) and bi(α) for which

f (ui, α
(l)) = ai(α

(l))T ui + bi(α
(l)),

(the approximation is exact for α = α(l)), and

f (ui, α) ≥ ai(α)T ui + bi(α)

for all α. (In the case of max-affine functions, breaking any ties arbitrarily satisfies
this condition.)

We then compute a new parameter value using a Gauss-Newton like method. We
replace f (ui) in the expression for J with

f̂ (l)(ui, α) = ai(α
(l))T ui + bi(α

(l)),

which is affine in α. We then choose α(l+1) as the minimizer of

Ĵ =
m∑

i=1

(f̂ (l)(ui) − yi)
2,

which can be found using standard linear least-squares.
To damp this update rule, we can add a regularization term to Ĵ , by choosing

α(l+1) as the minimizer of

m∑

i=1

(f̂ (l)(ui) − yi)
2 + ρ‖α − α(l)‖2,

where ρ > 0 is a parameter.

4 Numerical examples

In this section we show some numerical results, using the following data set. The
dimension is n = 3, and we have m = 113 = 1331 points. The set of points ui is
given by V × V × V , where V = {−5,−4,−3,−2,−1,0,1,2,3,4,5}. The values
are obtained as yi = g(ui), where g is the (convex) function

g(x) = log(expx1 + expx2 + expx3).

We use the piecewise-linear fitting algorithm described in Sect. 3.4, with iteration
limit lmax = 50, and number of terms varying from k = 0 to k = 20. For k = 0, the
fitting function is taken to be zero, so we report the RMS value of y1, . . . , ym as
the RMS fit. For k = 1, the fit is the best affine fit to the data, which can be found
using least-squares. Figure 1 shows the RMS fits obtained after Ntrials = 10 trials
(top curve), and after Ntrials = 100 trials (bottom curve). These show that good fits
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Fig. 1 Best RMS fit obtained with 10 trials (top curve) and 100 trials (bottom curve), versus number of
terms k in max-affine function

are obtained with only 10 trials, and that (slightly) better ones are obtained with 100
trials.

To give an idea of the variation in RMS fit obtained with different trials, as well
as the number of steps required for convergence (if it occurs), we fix the number
of terms at k = 12, and run the least-squares partition algorithm 200 times, with a
limit of 50 iterations, recording both the final RMS fit obtained, and the number of
steps before convergence. (The number of steps is reported as 50 if the least-squares
partition algorithm has not converged in 50 steps.) Figure 2 shows the histogram of
RMS fit obtained. We can see that the fit is often, but not always, quite good; in just
a few cases the fit obtained is poor. Evidently the best of even a modest number of
trials will be quite good.

Figure 3 shows the distribution of the number of iterations of the least-squares
partition algorithm required to converge. Convergence failed in 13 of the 200 trials;
but in fact, the RMS fit obtained in these trials was not particularly bad. Typically
convergence occurs within around 25 iterations.

In our last numerical example, we compare fitting the data with a max-affine func-
tion with k terms, and with the more general form

f (x) = max
i=1,...,k/2

(
aT
i x + bi

)
+ max

i=k/2+1,...,k

(
aT
i x + bi

)
,

parametrized by a1, . . . , ak ∈ Rn and b1, . . . , bk ∈ R. (Note that the number of para-
meters in each function form is the same.) This function corresponds to the general
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Fig. 2 Distribution of RMS fit obtained in 200 trials of least-squares partition algorithm, for k = 12,
lmax = 50

Fig. 3 Distribution of the number of steps required by least-squares partition algorithm to converge, over
200 trials. The number of steps is reported as 50 if convergence has not been obtained in 50 steps

form (4) with

ψ(z1, . . . , zk) = max
i=1,...,k/2

zi + max
i=k/2+1,...,k

zi ,
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Fig. 4 Best RMS fit obtained for max-affine function (top) and sum-max function (bottom)

and

φ(x,α) = (aT
1 x + b1, . . . , a

T
k x + bk).

We set the iteration limit for both forms as lmax = 100, and take the best fit ob-
tained in Ntrials = 10 trials. We use the value ρ = 10−5 for the regularization parame-
ter in the general form algorithm. Figure 4 shows the RMS fit obtained for the two
forms, versus k. Evidently the sum-max form gives (slightly) better RMS fit than the
max-affine form.

5 Conclusions

We have described a new method for fitting a convex piecewise linear function to a
given (possibly large) set of data (with a modest number of independent variables).
The method is heuristic, since the algorithm can (and does) fail to converge to the
globally optimal fit. Numerical examples suggest, however, that the method works
very well in practice, on data that can be fit well by a convex function.

The method has many applications in practical optimization modeling. Data sam-
ples can be used to generate piecewise-linear convex functions, which in turn can be
used to construct linear programming models.
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