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Setting

I manage a portfolio of assets over multiple periods
I take into account

I market returns
I trading cost
I holding cost

I choose trades
I using forecasts updated each period
I respecting constraints on trades and positions

I goal is to achieve high (net) return, low risk
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Some trading strategies

I traditional
I buy and hold
I hold and rebalance
I rank assets and long/short
I stat arb
I momentum/reversion

I academic
I stochastic control
I dynamic programming

I optimization based
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Optimization based trading

I solve optimization problem to determine trades

I traces to Markowitz (1952)

I simple versions widely used

I trading policy is shaped by selection of objective terms,
constraints, hyper-parameters

I topic of this talk
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Why now?

I huge advances in computing power

I mature convex optimization technology

I growing availability of data, sophisticated forecasts

I can handle many practical aspects
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Example: Traditional versus optimization-based

I S&P 500, daily realized returns/volumes, 2012–2016

I initial allocation $100M uniform on S&P 500

I simulated (noisy) market return forecasts

I rank (‘long-short’) trading
I rank assets by return forecast
I buy top 10, sell bottom 10; 1% daily turnover

I single-period optimization (SPO)
I empirical factor risk model
I forecasts of transaction and holding cost
I hyper-parameters adjusted to match rank trading return

Introduction 7



Example: Traditional versus optimization-based

I rank: return 16.78%, risk 13.91%

I SPO: return 16.25%, risk 9.08%
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Portfolio positions and weights

I portfolio of n assets, plus a cash account

I time periods t = 1, . . . ,T

I (dollar) holdings or positions at time t: ht ∈ Rn+1

I net portfolio value is vt = 1Tht

I we work with normalized portfolio or weights wt = ht/vt
I 1Twt = 1

I leverage is ‖(wt)1:n‖1
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Trades and post-trade portfolio

I ut ∈ Rn+1 is (dollar value) trades, including cash

I assumed made at start of period t

I post-trade portfolio is ht + ut

I we work with normalized trades zt = ut/vt
I turnover is ‖(zt)1:n‖1/2
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Transaction and holding cost

I normalized transaction cost (dollar cost/vt) is φtradet (zt)

I normalized holding cost (dollar cost/vt) is φholdt (zt)

I these are separable across assets, zero for cash account

I self-financing condition:

1T zt + φtradet (zt) + φholdt (wt + zt) = 0

I this determines cash ‘trade’ (zt)n+1 in terms of asset
holdings and trades (wt)1:n, (zt)1:n
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Single asset transaction cost model

I trading dollar amount x in an asset incurs cost

a|x |+ bσ
|x |3/2

V 1/2
+ cx

I a, b, c are transaction cost model parameters
I σ is one-period volatility
I V is one-period volume

I a standard model used by practitioners

I variations: quadratic term, piecewise-linear, . . .

I same formula for normalized trades, with V 7→ V /vt
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Single asset holding cost model

I holding x costs s(x)− = s max{−x , 0}
I s > 0 is shorting cost rate

I variations: quadratic term, piecewise-linear, . . .

I same formula for normalized portfolio (weights)
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Investment

I hold post-trade portfolio for one period

I ht+1 = (1 + rt) ◦ (ht + ut)

I rt ∈ Rn+1 are asset (and cash) returns

I ◦ is elementwise multiplication

I portfolio return in terms of normalized positions, trades:

Rp
t =

vt+1 − vt
vt

= rTt (wt + zt)− φtrade
t (zt)− φhold

t (wt + zt)
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Simulation

I simulation: for t = 1, . . . ,T ,
I (arbitrary) trading policy chooses asset trades (zt)1:n

I determine cash trade (zt)n+1 from self-financing condition
I update portfolio weights and value

I backtest
I use realized past returns, volumes
I evaluate candidate trading policies

I stress test
I use challenging (but plausible) data

I model calibration
I adjust model parameters so simulation tracks real portfolio
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Estimated portfolio return

R̂p
t = r̂Tt (wt + zt)− φ̂trade

t (zt)− φ̂hold
t (wt + zt)

I quantities with ˆ are estimates or forecasts
(based on data available at time t)

I asset return forecast r̂t is most important

I transaction cost estimates depend on estimates of bid-ask
spread, volume, volatility

I holding cost is typically known
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Single-period optimization problem

maximize R̂p
t − γriskψt(wt + zt)

subject to zt ∈ Zt , wt + zt ∈ Wt ,

1T zt + φ̂trade
t (zt) + φ̂hold

t (wt + zt) = 0

I zt is variable; wt is known

I ψt is risk measure, γrisk > 0 risk aversion parameter

I objective is risk-adjusted estimated net return

I Zt are trade constraints, Wt hold constraints
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Single-period optimization problem

I self-financing constraint can be approximated as 1T zt = 0
(slightly over-estimates updated cash balance)

maximize r̂Tt (wt + zt)
−γriskψt(wt + zt)

−φ̂trade
t (zt)

−φ̂hold
t (wt + zt)

subject to 1T zt = 0, zt ∈ Zt , wt + zt ∈ Wt

I a convex optimization problem provided risk, trade, and
hold functions/constraints are
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Traditional quadratic risk measure

I ψt(x) = xTΣtx

I Σt is an estimate of return covariance

I factor model risk Σt = FtΣ
f
tF

T
t + Dt

I Ft ∈ Rn×k is factor exposure matrix
I FT

t wt are factor exposures
I Σf

t is factor covariance
I Dt is diagonal (‘idiosyncratic’) asset returns

I variation: ψt(x) =
(
xTΣtx − (σtar)2

)
+

I (σtar)2 is target risk
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Robust risk measures

I worst case quadratic risk: ψt(x) = maxi=1,...,M xTΣ
(i)
t x

I Σ(i) are scenario or market regime covariances

I worst case over correlation changes:

ψt(x) = max
∆

xT (Σ + ∆)x , |∆ij | ≤ κ (ΣiiΣjj)
1/2

κ ∈ [0, 1) is a parameter, say κ = 0.05

I can express as

ψt(x) = xTΣx + κ
(

Σ
1/2
11 |x1|+ · · ·+ Σ

1/2
nn |xn|

)2
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Return forecast risk

I forecast uncertainty: any return forecast of form

r̂ + δ, |δ| ≤ ρ ∈ Rn+1

is plausible; ρi is forecast return spread for asset i

I worst case return forecast is

min
|δ|≤ρ

(r̂t + δ)T (wt + zt) = r̂Tt (wt + zt)− ρT |wt + zt |

I same as using nominal return forecast, with a return
forecast risk term ψt(x) = ρT |x |
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Holding constraints

long only wt + zt ≥ 0

leverage limit ‖(wt + zt)1:n‖1 ≤ Lmax

capitalization limit (wt + zt) ≤ δCt/vt

weight limits wmin ≤ wt + zt ≤ wmax

minimum cash balance (wt + zt)n+1 ≥ cmin/vt

factor/sector neutrality (Ft)
T
i (wt + zt) = 0

liquidation loss limit T liqφ̂trade
t ((wt + zt)/T

liq) ≤ δ

concentration limit
∑K

i=1(wt + zt)[i ] ≤ ω
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Trading constraints

turnover limit ‖(zt)1:n‖1/2 ≤ δ

limit to trading volume |(zt)1:n| ≤ δ(V̂T/vt)

transaction cost limit φ̂trade(zt) ≤ δ
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Convexity

I objective terms and constraints above are convex, as are
many others

I consequences of convexity: we can
I (globally) solve, reliably and fast
I add many objective terms and constraints
I rapidly develop using domain-specific languages

I nonconvexities are not needed or easily handled, e.g.,
I quantized positions
I minimum trade sizes
I target leverage (e.g., ‖(xt + wt)1:n‖1 = Ltar)
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Using single-period optimization

I constraints and objective terms are inspired by estimates of
the real values, e.g., of transaction or hold costs

I we add positive (hyper) parameters that scale the terms,
e.g., γtrade, γhold

I these are knobs we turn to get what we want
I absolute value term in φ̂trade discourages small trades
I 3/2-power term in φ̂trade discourages large trades
I shorting cost discourages holding short positions
I liquidation cost discourages holding illiquid positions

I we simulate/back-test to choose hyper-parameter values

I exact same (meta-) story in control, machine learning, . . .
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Example

I S&P 500, daily realized returns, volumes, 2012–2016

I initial allocation $100M uniform on S&P 500

I simulated (noisy) market return forecasts

I risk model: empirical factor model with 15 factors

I volume, volatility estimated as average of last 10 values

I vary hyper-parameters γrisk, γtrade, γhold over ranges
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Example: Risk-return trade-off
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Example: Pareto optimal frontier

I grid search over 410 hyper-parameter combinations
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Example: Timing

I execution time, generic CVXPY, single-thread ECOS solver
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Idea

I at period t, optimize over sequence of portfolio weights

wt+1, . . . ,wt+H−1

subject to 1Twτ = 1, τ = t + 1, . . . , t + H − 1

I H is the (planning) horizon

I execute trades zt = wt+1 − wt

I need forecasts over the horizon, e.g.,

r̂τ |t , τ = t, . . . , t + H − 1

forecast of market return in period τ made at period t

I can exploit differing short- and long-term forecasts
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Multi-period optimization

maximize
∑t+H

τ=t+1

(
r̂Tτ |twτ − γ

riskψτ (wτ )

− γholdφ̂hold
τ (wτ )

− γtradeφ̂trade
τ (wτ − wτ−1)

)
subject to 1Twτ = 1, wτ − wτ−1 ∈ Zτ , wτ ∈ Wτ ,

τ = t + 1, . . . , t + H

I reduces to single-period optimization for H = 1

I computational cost scales linearly in horizon H

I same idea widely used in model predictive control
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Example

I same data as single-period example

I H = 2, so we have forecasts for current and next periods

I grid search over 390 hyper-parameter combinations

Multi-period optimization 35



Example: Pareto frontier
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Example: Multi- and single-period comparison
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Conclusions

convex optimization to choose trades

I idea traces to Markowitz (1952), model predictive control

I gives an organized way to parametrize good trading
strategies

I works with any forecasts

I handles a wide variety of practical constraints and costs
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Is it optimal?

I if we assume (say) log(1 + rt) ∼ N (µ,Σ) are independent,
the multi-period trading problem is a convex stochastic
control problem

I multi-period optimization is almost an optimal strategy
(Boyd, Mueller, O’Donoghue, Wang, 2014)

I but real returns are not log-normal, or independent, or
stationary, or even a stochastic process
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