# Multi-Period Trading via Convex Optimization

Stephen BoydEnzo BussetiSteven DiamondRonald KahnKwangmoo KohPeter NystrupJan SpethJan Speth

Stanford University & Blackrock

City University of Hong Kong September 11, 2017

## Outline

Introduction

Model

Single-period optimization

Multi-period optimization

# Setting

- manage a portfolio of assets over multiple periods
- take into account
  - market returns
  - trading cost
  - holding cost
- choose trades
  - using forecasts updated each period
  - respecting constraints on trades and positions
- goal is to achieve high (net) return, low risk

## Some trading strategies

- traditional
  - buy and hold
  - hold and rebalance
  - rank assets and long/short
  - stat arb
  - momentum/reversion
- ▶ academic
  - stochastic control
  - dynamic programming
- optimization based

# **Optimization based trading**

- solve optimization problem to determine trades
- traces to Markowitz (1952)
- simple versions widely used
- trading policy is shaped by selection of objective terms, constraints, hyper-parameters
- topic of this talk

## Why now?

- huge advances in computing power
- mature convex optimization technology
- growing availability of data, sophisticated forecasts
- can handle many practical aspects

### Example: Traditional versus optimization-based

- ▶ S&P 500, daily realized returns/volumes, 2012–2016
- initial allocation \$100M uniform on S&P 500
- simulated (noisy) market return forecasts
- rank ('long-short') trading
  - rank assets by return forecast
  - buy top 10, sell bottom 10; 1% daily turnover
- single-period optimization (SPO)
  - empirical factor risk model
  - forecasts of transaction and holding cost
  - hyper-parameters adjusted to match rank trading return

## Example: Traditional versus optimization-based



- rank: return 16.78%, risk 13.91%
- SPO: return 16.25%, risk 9.08%

## Outline

Introduction

### Model

Single-period optimization

Multi-period optimization

#### Model

## Portfolio positions and weights

- portfolio of n assets, plus a cash account
- time periods  $t = 1, \ldots, T$
- (dollar) holdings or positions at time  $t: h_t \in \mathbf{R}^{n+1}$
- net portfolio value is  $v_t = \mathbf{1}^T h_t$
- we work with normalized portfolio or weights  $w_t = h_t / v_t$
- ▶  $\mathbf{1}^T w_t = 1$
- leverage is  $||(w_t)_{1:n}||_1$

### Trades and post-trade portfolio

- $u_t \in \mathbf{R}^{n+1}$  is (dollar value) trades, including cash
- assumed made at start of period t
- post-trade portfolio is  $h_t + u_t$

- we work with **normalized trades**  $z_t = u_t/v_t$
- turnover is  $||(z_t)_{1:n}||_1/2$

#### Model

## Transaction and holding cost

- normalized transaction cost (dollar  $cost/v_t$ ) is  $\phi_t^{trade}(z_t)$
- normalized holding cost (dollar  $cost/v_t$ ) is  $\phi_t^{hold}(z_t)$
- ▶ these are separable across assets, zero for cash account
- self-financing condition:

$$\mathbf{1}^{\mathsf{T}} z_t + \phi_t^{\text{trade}}(z_t) + \phi_t^{\text{hold}}(w_t + z_t) = 0$$

► this determines cash 'trade' (z<sub>t</sub>)<sub>n+1</sub> in terms of asset holdings and trades (w<sub>t</sub>)<sub>1:n</sub>, (z<sub>t</sub>)<sub>1:n</sub>

## Single asset transaction cost model

trading dollar amount x in an asset incurs cost

$$a|x| + b\sigma \frac{|x|^{3/2}}{V^{1/2}} + cx$$

- ▶ *a*, *b*, *c* are transaction cost model parameters
- $\sigma$  is one-period volatility
- V is one-period volume
- a standard model used by practitioners
- variations: quadratic term, piecewise-linear, ...
- ▶ same formula for normalized trades, with  $V \mapsto V/v_t$

## Single asset holding cost model

- holding x costs  $s(x)_- = s \max\{-x, 0\}$
- ▶ s > 0 is shorting cost rate
- variations: quadratic term, piecewise-linear, ...
- same formula for normalized portfolio (weights)

### Investment

hold post-trade portfolio for one period

• 
$$h_{t+1} = (1 + r_t) \circ (h_t + u_t)$$

- $r_t \in \mathbf{R}^{n+1}$  are asset (and cash) returns
- ▶ is elementwise multiplication
- portfolio return in terms of normalized positions, trades:

$$R_t^{\mathrm{p}} = \frac{v_{t+1} - v_t}{v_t} = r_t^{\mathsf{T}}(w_t + z_t) - \phi_t^{\mathrm{trade}}(z_t) - \phi_t^{\mathrm{hold}}(w_t + z_t)$$

# Simulation

- simulation: for  $t = 1, \ldots, T$ ,
  - ▶ (arbitrary) trading policy chooses asset trades  $(z_t)_{1:n}$
  - determine cash trade  $(z_t)_{n+1}$  from self-financing condition
  - update portfolio weights and value

### backtest

- use realized past returns, volumes
- evaluate candidate trading policies
- stress test
  - use challenging (but plausible) data
- model calibration
  - adjust model parameters so simulation tracks real portfolio

## Outline

Introduction

Model

Single-period optimization

Multi-period optimization

Single-period optimization

### Estimated portfolio return

$$\hat{R}_t^{\mathrm{p}} = \hat{r}_t^{\mathsf{T}}(w_t + z_t) - \hat{\phi}_t^{\mathsf{trade}}(z_t) - \hat{\phi}_t^{\mathsf{hold}}(w_t + z_t)$$

- quantities with ^ are estimates or forecasts (based on data available at time t)
- asset return forecast  $\hat{r}_t$  is most important
- transaction cost estimates depend on estimates of bid-ask spread, volume, volatility
- holding cost is typically known

## Single-period optimization problem

$$\begin{array}{ll} \text{maximize} & \hat{R}_t^{\mathsf{p}} - \gamma^{\mathsf{risk}} \psi_t(w_t + z_t) \\ \text{subject to} & z_t \in \mathcal{Z}_t, \quad w_t + z_t \in \mathcal{W}_t, \\ & \mathbf{1}^{\mathsf{T}} z_t + \hat{\phi}_t^{\mathsf{trade}}(z_t) + \hat{\phi}_t^{\mathsf{hold}}(w_t + z_t) = 0 \end{array}$$

- $z_t$  is variable;  $w_t$  is known
- $\psi_t$  is risk measure,  $\gamma^{\text{risk}} > 0$  risk aversion parameter
- objective is risk-adjusted estimated net return
- $\mathcal{Z}_t$  are trade constraints,  $\mathcal{W}_t$  hold constraints

#### Single-period optimization

## Single-period optimization problem

 self-financing constraint can be approximated as 1<sup>T</sup> z<sub>t</sub> = 0 (slightly over-estimates updated cash balance)

maximize 
$$\hat{r}_t^T(w_t + z_t)$$
  
 $-\gamma^{\text{risk}}\psi_t(w_t + z_t)$   
 $-\hat{\phi}_t^{\text{trade}}(z_t)$   
 $-\hat{\phi}_t^{\text{hold}}(w_t + z_t)$   
subject to  $\mathbf{1}^T z_t = 0, \quad z_t \in \mathcal{Z}_t, \quad w_t + z_t \in \mathcal{W}_t$ 

a convex optimization problem provided risk, trade, and hold functions/constraints are

## Traditional quadratic risk measure

• 
$$\psi_t(x) = x^T \Sigma_t x$$

•  $\Sigma_t$  is an estimate of return covariance

• factor model risk  $\Sigma_t = F_t \Sigma_t^f F_t^T + D_t$ 

- $F_t \in \mathbf{R}^{n \times k}$  is factor exposure matrix
- $F_t^T w_t$  are factor exposures
- $\Sigma_t^{f}$  is factor covariance
- ► *D<sub>t</sub>* is diagonal ('idiosyncratic') asset returns

#### Single-period optimization

### **Robust risk measures**

- worst case quadratic risk: ψ<sub>t</sub>(x) = max<sub>i=1,...,M</sub> x<sup>T</sup>Σ<sup>(i)</sup><sub>t</sub>x
   Σ<sup>(i)</sup> are scenario or market regime covariances
- worst case over correlation changes:

$$\psi_t(x) = \max_{\Delta} x^{\mathcal{T}}(\Sigma + \Delta) x, \qquad |\Delta_{ij}| \le \kappa (\Sigma_{ii} \Sigma_{jj})^{1/2}$$

 $\kappa \in [0,1)$  is a parameter, say  $\kappa = 0.05$ 

can express as

$$\psi_t(x) = x^T \Sigma x + \kappa \left( \Sigma_{11}^{1/2} |x_1| + \dots + \Sigma_{nn}^{1/2} |x_n| \right)^2$$

#### Single-period optimization

### **Return forecast risk**

forecast uncertainty: any return forecast of form

$$\hat{r} + \delta, \quad |\delta| \le \rho \in \mathbf{R}^{n+1}$$

is plausible;  $\rho_i$  is forecast return spread for asset *i* 

worst case return forecast is

$$\min_{|\delta| \le \rho} (\hat{r}_t + \delta)^T (w_t + z_t) = \hat{r}_t^T (w_t + z_t) - \rho^T |w_t + z_t|$$

Same as using nominal return forecast, with a return forecast risk term ψ<sub>t</sub>(x) = ρ<sup>T</sup>|x|

### Holding constraints

long only leverage limit capitalization limit weight limits minimum cash balance factor/sector neutrality liquidation loss limit concentration limit

 $w_t + z_t > 0$  $\|(w_t + z_t)_{1 \le n}\|_1 < L^{\max}$  $(w_t + z_t) < \delta C_t / v_t$  $w^{\min} < w_t + z_t < w^{\max}$  $(w_t + z_t)_{n+1} > c_{\min}/v_t$  $(F_t)_i^T(w_t + z_t) = 0$  $T^{\text{liq}}\hat{\phi}_{t}^{\text{trade}}((w_{t}+z_{t})/T^{\text{liq}}) < \delta$  $\sum_{i=1}^{K} (w_t + z_t)_{[i]} \leq \omega$ 

Single-period optimization

### **Trading constraints**

turnover limit limit to trading volume transaction cost limit 
$$\begin{split} \|(z_t)_{1:n}\|_1/2 &\leq \delta \\ |(z_t)_{1:n}| &\leq \delta (\hat{V}_T/v_t) \\ \hat{\phi}^{\text{trade}}(z_t) &\leq \delta \end{split}$$

## Convexity

- objective terms and constraints above are convex, as are many others
- consequences of convexity: we can
  - (globally) solve, reliably and fast
  - add many objective terms and constraints
  - rapidly develop using domain-specific languages
- nonconvexities are not needed or easily handled, e.g.,
  - quantized positions
  - minimum trade sizes
  - ► target leverage (e.g.,  $||(x_t + w_t)_{1:n}||_1 = L^{tar}$ )

#### Single-period optimization

## Using single-period optimization

- constraints and objective terms are inspired by estimates of the real values, *e.g.*, of transaction or hold costs
- $\blacktriangleright$  we add positive (hyper) parameters that scale the terms, e.g.,  $\gamma^{trade}$ ,  $\gamma^{hold}$
- these are knobs we turn to get what we want
  - $\blacktriangleright$  absolute value term in  $\hat{\phi}^{\mathrm{trade}}$  discourages small trades
  - $\blacktriangleright$  3/2-power term in  $\hat{\phi}^{\mathrm{trade}}$  discourages large trades
  - shorting cost discourages holding short positions
  - Iiquidation cost discourages holding illiquid positions
- we simulate/back-test to choose hyper-parameter values
- exact same (meta-) story in control, machine learning, ...

### Example

- ▶ S&P 500, daily realized returns, volumes, 2012–2016
- ▶ initial allocation \$100M uniform on S&P 500
- simulated (noisy) market return forecasts
- ▶ risk model: empirical factor model with 15 factors
- volume, volatility estimated as average of last 10 values
- $\blacktriangleright$  vary hyper-parameters  $\gamma^{\mathrm{risk}}$ ,  $\gamma^{\mathrm{trade}}$ ,  $\gamma^{\mathrm{hold}}$  over ranges

## Example: Risk-return trade-off



### **Example: Pareto optimal frontier**

▶ grid search over 410 hyper-parameter combinations



### **Example: Timing**

▶ execution time, generic CVXPY, single-thread ECOS solver



## Outline

Introduction

Model

Single-period optimization

Multi-period optimization

Multi-period optimization

## Idea

▶ at period *t*, optimize over sequence of portfolio weights

 $W_{t+1},\ldots,W_{t+H-1}$ 

subject to  $\mathbf{1}^{\mathsf{T}} w_{\tau} = 1$ ,  $\tau = t + 1, \dots, t + H - 1$ 

- H is the (planning) horizon
- execute trades  $z_t = w_{t+1} w_t$
- ▶ need forecasts over the horizon, e.g.,

$$\hat{r}_{\tau|t}, \quad \tau = t, \dots, t+H-1$$

forecast of market return in period  $\tau$  made at period t

can exploit differing short- and long-term forecasts

Multi-period optimization

### **Multi-period optimization**

$$\begin{array}{ll} \text{maximize} & \sum_{\tau=t+1}^{t+H} \left( \hat{r}_{\tau|t}^{\mathsf{T}} w_{\tau} - \gamma^{\mathsf{risk}} \psi_{\tau}(w_{\tau}) \\ & - \gamma^{\mathsf{hold}} \hat{\phi}_{\tau}^{\mathsf{hold}}(w_{\tau}) \\ & - \gamma^{\mathsf{trade}} \hat{\phi}_{\tau}^{\mathsf{trade}}(w_{\tau} - w_{\tau-1}) \right) \\ \text{subject to} & \mathbf{1}^{\mathsf{T}} w_{\tau} = 1, \quad w_{\tau} - w_{\tau-1} \in \mathcal{Z}_{\tau}, \quad w_{\tau} \in \mathcal{W}_{\tau}, \\ & \tau = t+1, \dots, t+H \end{array}$$

- reduces to single-period optimization for H = 1
- computational cost scales linearly in horizon H
- same idea widely used in model predictive control

### Example

- same data as single-period example
- H = 2, so we have forecasts for current and next periods
- grid search over 390 hyper-parameter combinations

### **Example:** Pareto frontier



### Example: Multi- and single-period comparison



### Conclusions

convex optimization to choose trades

- ▶ idea traces to Markowitz (1952), model predictive control
- gives an organized way to parametrize good trading strategies
- works with any forecasts
- handles a wide variety of practical constraints and costs

## Is it optimal?

- if we assume (say) log(1 + r<sub>t</sub>) ~ N(μ, Σ) are independent, the multi-period trading problem is a convex stochastic control problem
- multi-period optimization is almost an optimal strategy (Boyd, Mueller, O'Donoghue, Wang, 2014)
- but real returns are not log-normal, or independent, or stationary, or even a stochastic process

### References

- Active Portfolio Management: A Quantitative Approach, Grinold & Kahn
- Convex Optimization, Boyd & Vandenberghe
- Multi-Period Trading via Convex Optimization, Boyd et al., Foundations & Trends in Optimization

github.com/cvxgrp/cvxportfolio