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Setting

v

manage a portfolio of assets over multiple periods

take into account
» market returns
» trading cost
» holding cost

v

choose trades

» using forecasts updated each period
» respecting constraints on trades and positions

v

v

goal is to achieve high (net) return, low risk
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Some trading strategies

» traditional

>

>
>
>
>

buy and hold

hold and rebalance

rank assets and long/short
stat arb

momentum /reversion

» academic

>

>

stochastic control
dynamic programming

> optimization based
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Optimization based trading

» solve optimization problem to determine trades
» traces to Markowitz (1952)
» simple versions widely used

» trading policy is shaped by selection of objective terms,
constraints, hyper-parameters

» topic of this talk
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Why now?

v

huge advances in computing power
» mature convex optimization technology

» growing availability of data, sophisticated forecasts

v

can handle many practical aspects
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Example: Traditional versus optimization-based

» S&P 500, daily realized returns/volumes, 2012-2016
» initial allocation $100M uniform on S&P 500

» simulated (noisy) market return forecasts

» rank (‘long-short’) trading

» rank assets by return forecast
» buy top 10, sell bottom 10; 1% daily turnover

» single-period optimization (SPO)
» empirical factor risk model
» forecasts of transaction and holding cost
» hyper-parameters adjusted to match rank trading return
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Example: Traditional versus optimization-based

5220M
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Portfolio total value
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» rank: return 16.78%, risk 13.91%
» SPO: return 16.25%, risk 9.08%
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Portfolio positions and weights

» portfolio of n assets, plus a cash account
> time periodst=1,..., T
> (dollar) holdings or positions at time t: h; € R"1

» net portfolio value is vy = 17 h;

» we work with normalized portfolio or weights w; = h;/v;
> ].TWlL =1

» leverage is ||(we)1:n|l1

Model
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Trades and post-trade portfolio

» u; € R™™ is (dollar value) trades, including cash
» assumed made at start of period t

» post-trade portfolio is h; + us

» we work with normalized trades z; = u;/v;

» turnover is ||(z)1:nl1/2

Model
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Transaction and holding cost

» normalized transaction cost (dollar cost/v;) is ¢{'34¢(z,)
» normalized holding cost (dollar cost/v;) is ¢} (z)
> these are separable across assets, zero for cash account

» self-financing condition:
172+ 677%(22) + 9% (we + 2) = 0

» this determines cash ‘trade’ (z:)n+1 in terms of asset
holdings and trades (wt)1:n, (2¢)1:n

Model
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Single asset transaction cost model

» trading dollar amount x in an asset incurs cost

|X’3/2

alx| + bo Vi

+ cx

» a, b, c are transaction cost model parameters
> o is one-period volatility
» V is one-period volume

» a standard model used by practitioners
> variations: quadratic term, piecewise-linear, ...

» same formula for normalized trades, with V — V /v
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Single asset holding cost model

v

holding x costs s(x)_ = s max{—x,0}

v

s > 0 is shorting cost rate
» variations: quadratic term, piecewise-linear, ...

» same formula for normalized portfolio (weights)

Model
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Investment

v

hold post-trade portfolio for one period
ht_;,_l = (1 + rt) o (ht + Ut)

r: € R™1 are asset (and cash) returns

v

v

> o is elementwise multiplication

» portfolio return in terms of normalized positions, trades:
Vi+l — Wt
RY = v r (we +z¢) — 929 (22) — 6§ (we + 2t)
t
Model
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Simulation

» simulation: fort=1,..., T,

» (arbitrary) trading policy chooses asset trades (z;)1.,
» determine cash trade (z;),4+1 from self-financing condition
» update portfolio weights and value

» backtest

» use realized past returns, volumes
» evaluate candidate trading policies

> stress test
» use challenging (but plausible) data
» model calibration
» adjust model parameters so simulation tracks real portfolio

Model
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Estimated portfolio return

RE = 7 (we + z¢) = 9% (22) — 1 (we + 2¢)

v

quantities with ™ are estimates or forecasts
(based on data available at time t)

v

asset return forecast f; is most important

v

transaction cost estimates depend on estimates of bid-ask
spread, volume, volatility

v

holding cost is typically known

Single-period optimization
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Single-period optimization problem

maximize  RP — 7"k, (wy + z¢)
subject to z; € Z,  wy + zp € W,
]_th 4 (bgrade(zt) 4 ¢ft10Id(Wt + Zt) =0

v

z is variable; ws is known

risk

v

1y is risk measure, v > 0 risk aversion parameter

v

objective is risk-adjusted estimated net return

v

Z; are trade constraints, WW; hold constraints

Single-period optimization
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Single-period optimization problem

» self-financing constraint can be approximated as 17z, = 0
(slightly over-estimates updated cash balance)

maximize FtT(n_/vt + zt)
_,yArlskwt(Wt +Zt)
_qﬁrade(zt)
— 1o (wye + z¢)
subject to 172,=0, z €2, w4z W,

> a convex optimization problem provided risk, trade, and
hold functions/constraints are

Single-period optimization
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Traditional quadratic risk measure

> e(x) = xT Lix

» > ; is an estimate of return covariance

v

factor model risk >; = Fth;FtT + D;

» F, € R™¥ is factor exposure matrix

» F,w, are factor exposures

» ¥ is factor covariance

» D, is diagonal (‘idiosyncratic’) asset returns

v

variation: ¥(x) = (XTth _ (O.tar)2)+

> (0')? is target risk

Single-period optimization
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Robust risk measures

> worst case quadratic risk: t:(x) = max;=1,..m XTZEI)X

» Y() are scenario or market regime covariances

> worst case over correlation changes:

Ul = max xT(Z+D)x, |y < w(Zi5)"?

k € ]0,1) is a parameter, say x = 0.05

> can express as

2
Do) = xTEx 4k (Tl + -+ Tl
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Return forecast risk

» forecast uncertainty: any return forecast of form
P40, |6 <peR™

is plausible; p; is forecast return spread for asset i

> worst case return forecast is

|%T|1I<n (Pt + 5)T(W1_- + Zt) = PtT(Wt + Zt) — ,07—|W1_L + Zt|
sp

» same as using nominal return forecast, with a return
forecast risk term :(x) = p'|x|

Single-period optimization

23



Holding constraints

long only

leverage limit
capitalization limit
weight limits

minimum cash balance
factor/sector neutrality
liquidation loss limit

concentration limit

Single-period optimization

wiy +2z: >0

[(wt + zt)1:aln < LT

(Wt + z¢) <0Gt/ vy

WN < etz < WM

(Wt + Zt)nt1 > Cmin/ Ve

(Fe)l (we +2:) =0
Tliq$§rade((wt + Zt)/Tqu) < )
Y (we + 2z < w
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Trading constraints

turnover limit
limit to trading volume

transaction cost limit

Single-period optimization

1(z¢)1:n]l1/2 <0
|(z)1:n] < 6(V7/we)
q';trade(zt) < S
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Convexity

> objective terms and constraints above are convex, as are
many others

> consequences of convexity: we can

> (globally) solve, reliably and fast
» add many objective terms and constraints
» rapidly develop using domain-specific languages

> nonconvexities are not needed or easily handled, e.g.,

» quantized positions
» minimum trade sizes
> target leverage (e.g., ||(xt + we)1n]|1 = L*)

Single-period optimization
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Using single-period optimization

> constraints and objective terms are inspired by estimates of
the real values, e.g., of transaction or hold costs

» we add positive (hyper) parameters that scale the terms,
e.g. ,ytradev ,yhold
> these are knobs we turn to get what we want

» absolute value term in étmde discourages small trades
» 3/2-power term in Pirade discourages large trades

» shorting cost discourages holding short positions

» liquidation cost discourages holding illiquid positions

» we simulate/back-test to choose hyper-parameter values

» exact same (meta-) story in control, machine learning, . ..

Single-period optimization
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Example

» S&P 500, daily realized returns, volumes, 2012-2016

» initial allocation $100M uniform on S&P 500

» simulated (noisy) market return forecasts

> risk model: empirical factor model with 15 factors

» volume, volatility estimated as average of last 10 values

» vary hyper-parameters ~isk Atrade hold qyer rapoes
Yy nyper-p v v Y
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Example: Risk-return trade-off
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Example: Pareto optimal frontier

> grid search over 410 hyper-parameter combinations
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Example: Timing

» execution time, generic CVXPY, single-thread ECOS solver

08 { HEE simulator
m solver
N policy

i 33 it 13 i X3 i 3 it
13‘\3"0 .p'\}'“ .9'9'0 .p‘\.nn .p‘\,mh 13‘\."'0 .p'\."'“ .p‘\,“'o .p‘\."'“
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Multi-period optimization

Multi-period optimization
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Idea

> at period t, optimize over sequence of portfolio weights

Wity ooy Wet H-1

subjectto 17w, =1, 7=t+1,...,t+H—-1
» H is the (planning) horizon

> execute trades z; = w11 — wy

> need forecasts over the horizon, e.g.,
P’T‘t? T:t7...,t+H*1

forecast of market return in period 7 made at period t

» can exploit differing short- and long-term forecasts

Multi-period optimization
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Multi-period optimization

maximize ZT 41 ( A ~iskapy (wy)
hoId (ﬁb—OId ( WT)
s - w,-1))
subjectto 17w, =1, w,—wr_1 € 2., w, €W,
T=t+1,... ,t+H

» reduces to single-period optimization for H =1
» computational cost scales linearly in horizon H

> same idea widely used in model predictive control

Multi-period optimization 34



Example

» same data as single-period example
» H =2, so we have forecasts for current and next periods

» grid search over 390 hyper-parameter combinations

Multi-period optimization
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Example: Pareto frontier
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Example: Multi- and single-period comparison
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Conclusions

convex optimization to choose trades

v

idea traces to Markowitz (1952), model predictive control

> gives an organized way to parametrize good trading
strategies

v

works with any forecasts

handles a wide variety of practical constraints and costs

v

Multi-period optimization
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Is it optimal?

» if we assume (say) log(1 + ry) ~ N (u, X) are independent,
the multi-period trading problem is a convex stochastic
control problem

» multi-period optimization is almost an optimal strategy
(Boyd, Mueller, O'Donoghue, Wang, 2014)

» but real returns are not log-normal, or independent, or
stationary, or even a stochastic process

Multi-period optimization
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